Distance edge coloring by total labeling of graphs - Archive ouverte HAL
Article Dans Une Revue Utilitas Mathematica Année : 2016

Distance edge coloring by total labeling of graphs

Résumé

Distance edge-coloring total labeling of a connected graph $G$ is an assignment $f$ of non negative integers to the vertices and edges of $G$ such that $w(e) \neq w(e') \text{ if } d(e,e') \leq \ell$ for any two edges $e$ and $e'$ of $G$, where $w(e)$ denotes the weight of an edge $e = uv$ and is defined by: $w(uv) = f(u)+f(v)+f(uv)$ and $d(e,e')$ is the distance between $e$ an $e'$ in $G$. In this paper, we propose a lower and an upper bounds for the chromatic number of the distance edge coloring by total labeling of general graphs for a positive integer $ 0 \leq \ell \leq \text{diam}(G) - 1$. Moreover, we prove exact values for this parameter in the case of paths, cycles and spiders.
Fichier non déposé

Dates et versions

hal-01475496 , version 1 (23-02-2017)

Identifiants

  • HAL Id : hal-01475496 , version 1

Citer

Hamida Seba, Riadh Khennoufa. Distance edge coloring by total labeling of graphs. Utilitas Mathematica, 2016, 101. ⟨hal-01475496⟩
143 Consultations
0 Téléchargements

Partager

More