A Population-Based Algorithm for Learning a Majority Rule Sorting Model with Coalitional Veto - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

A Population-Based Algorithm for Learning a Majority Rule Sorting Model with Coalitional Veto

Résumé

MR-Sort (Majority Rule Sorting) is a multiple criteria sort-ing method which assigns an alternative a to category Ch when a is better than the lower limit of Ch on a weighted majority of criteria, and this is not true with the upper limit of Ch. We enrich the descriptive ability of MR-Sort by the addition of coalitional vetoes which operate in a symmetric way as compared to the MR-Sort rule w.r.t. to category limits, using specific veto profiles and veto weights. We describe a heuris-tic algorithm to learn such an MR-Sort model enriched with coalitional veto from a set of assignment examples, and show how it performs on real datasets.
Fichier principal
Vignette du fichier
2017-Sobrie-et-al-EMO.pdf (159.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01474712 , version 1 (23-02-2017)

Identifiants

  • HAL Id : hal-01474712 , version 1

Citer

Olivier Sobrie, Vincent Mousseau, Marc Pirlot. A Population-Based Algorithm for Learning a Majority Rule Sorting Model with Coalitional Veto. Evolutionary Multi-Criterion Optimization, Mar 2017, Münster, Germany. pp.575-589. ⟨hal-01474712⟩
168 Consultations
298 Téléchargements

Partager

More