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Abstract. MR-Sort (Majority Rule Sorting) is a multiple criteria sort-
ing method which assigns an alternative a to category Ch when a is
better than the lower limit of Ch on a weighted majority of criteria, and
this is not true with the upper limit of Ch. We enrich the descriptive
ability of MR-Sort by the addition of coalitional vetoes which operate
in a symmetric way as compared to the MR-Sort rule w.r.t. to category
limits, using specific veto profiles and veto weights. We describe a heuris-
tic algorithm to learn such an MR-Sort model enriched with coalitional
veto from a set of assignment examples, and show how it performs on
real datasets.

1 Introduction

Multiple Criteria Sorting Problems aim at assigning alternatives to one of the
predefined ordered categories C1, C2, ..., Cp, C1 and Cp being the worst and
the best category, respectively. This type of assignment method contrasts with
classical supervised classification methods in that the assignments have to be
monotone with respect to the scores of the alternatives. In other words, an
alternative which has better scores on all criteria than another cannot be assigned
to a worse category.

Many multiple criteria sorting methods have been proposed in the literature
(see e.g., [1,2]). MR-Sort (Majority Rule Sorting, see [3]) is an outranking-based
multiple criteria sorting method which corresponds to a simplified version of
ELECTRE TRI where the discrimination and veto thresholds are omitted1. MR-
Sort proved able to compete with state-of-the-art classification methods such as
Choquistic regression [4] on real datasets.

1 It is worth noting that outranking methods used for sorting are not subject to Con-
dorcet effects (cycles in the preference relation), since alternatives are not compared
in pairwise manner but only to profiles limiting the categories.
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In the pessimistic version of ELECTRE TRI, veto effects make it possible to
worsen the category to which an alternative is assigned when this alternative has
very bad performances on one/several criteria. We consider a variant of MR-Sort
which introduces possible veto effects. While in ELECTRE TRI, a veto involves
a single criterion, we consider a more general formulation of veto (see [5]) which
can involve a coalition of criteria (such a coalition can be reduced to a singleton).

The definition of such a “coalitional veto” exhibits a noteworthy symme-
try between veto and concordance. To put it simple, in a two-category context
(Bad/Good), an alternative is classified as Good when its performances are above
the concordance profile on a sufficient majority of criteria, and when its perfor-
mances are not below the veto profile for a sufficient majority of criteria. Hence,
the veto condition can be viewed as the negation of a majority rule using a
specific veto profile, and specific veto weights.

Algorithms to learn the parameters of an MR-Sort model without veto (cat-
egory limits and criteria weights) have been proposed, either using linear pro-
gramming involving integer variables (see [3]) or using a specific heuristic (see
[6,7]). When the size of the learning set exceeds 100, only heuristic algorithms
are able to provide a solution in a reasonable computing time.

Olteanu and Meyer [8] have developed a simulated annealing based algorithm
to learn a MR-Sort model with classical veto (not coalitional ones).

In this paper, we propose a new heuristic algorithm to learn the parameters
of a MR-Sort model with coalitional veto (called MR-Sort-CV) which makes use
of the symmetry between the concordance and the coalitional veto conditions.
Preliminary results obtained using an initial version of the algorithm can be
found in [9]. The present work describes an improved version of the algorithm
and the results of tests on real datasets involving two or more categories (while
the preliminary version was only tested for classifying in two categories).

The paper is organized as follows. In Sect. 2, we recall MR-Sort the present
work describes and define its extension when considering monocriterion veto and
coalitional veto. After a brief reminder of the heuristic algorithm to learn an MR-
Sort model, Sect. 3 is devoted to the presentation of the algorithm to learn an
MR-Sort model with coalitional veto. Section 4 presents experimentations of this
algorithm and Sect. 5 groups conclusions and directions for further research.

2 Considering Vetoes in MR-Sort

2.1 MR-Sort Model

MR-Sort is a method for assigning objects to ordered categories. It is a simplified
version of ELECTRE TRI, another MCDA method [10,11].

The MR-Sort rule works as follows. Formally, let X be a set of objects eval-
uated on n ordered attributes (or criteria), F = {1, ..., n}. We assume that
X is the Cartesian product of the criteria scales, X =

∏n
j=1 Xj , each scale

Xj being completely ordered by the relation ≥j . An object a ∈ X is a vec-
tor (a1, . . . , aj , . . . , an), where aj ∈ Xj for all j. The ordered categories which
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the objects are assigned to by the MR-Sort model are denoted by Ch, with
h = 1, . . . , p. Category Ch is delimited by its lower limit profile bh−1 and its upper
limit profile bh, which is also the lower limit profile of category Ch+1 (provided
0 < h < p). The profile bh is the vector of criterion values (bh

1 , . . . , bh
j , . . . , bh

n),
with bh

j ∈ Xj for all j. We denote by P = {1, ...., p} the list of category indices.
By convention, the best category, Cp, is delimited by a fictive upper profile, bp,
and the worst one, C1, by a fictive lower profile, b0. It is assumed that the profiles
dominate one another, i.e.: bh

j ≥j bh−1
j , for h = {1, . . . , p} and j = {1, . . . , n}.

Using the MR-Sort procedure, an object is assigned to a category if its crite-
rion values are at least as good as the category lower profile values on a weighted
majority of criteria while this condition is not fulfilled when the object’s crite-
rion values are compared to the category upper profile values. In the former case,
we say that the object is weakly preferred to the profile, while, in the latter, it
is not2. Formally, if an object a ∈ X is weakly preferred to a profile bh, we
denote this by a � bh. Object a is preferred to profile bh whenever the following
condition is met:

a � bh ⇔
∑

j:aj≥jbh
j

wj ≥ λ, (1)

where wj is the nonnegative weight associated with criterion j, for all j and λ sets
a majority level. The weights satisfy the normalization condition

∑
j∈F wj = 1;

λ is called the majority threshold.
The preference relation � defined by (1) is called an outranking relation

without veto or a concordance relation ([11]; see also [12,13] for an axiomatic
description of such relations). Consequently, the condition for an object a ∈ X
to be assigned to category Ch reads:

∑

j:aj≥jbh−1
j

wj ≥ λ and
∑

j:aj≥jbh
j

wj < λ. (2)

The MR-Sort assignment rule described above involves pn + 1 parameters,
i.e. n weights, (p − 1)n profiles evaluations and one majority threshold.

A learning set A is a subset of objects A ⊆ X for which an assignment is
known. For h ∈ P , Ah denotes the subset of objects a ∈ A which are assigned
to category Ch. The subsets Ah are disjoint; some of them may be empty.

2.2 MR-Sort-MV

In this section, we recall the traditional monocriterion veto rule as defined
by [14,15]. In a MR-Sort model with monocriterion veto, an alternative a is
“at least as good as” a profile bh if it has at least equal to or better perfor-
mances than bh on a weighted majority of criteria and if it is not strongly worse
than the profile on any criterion. In the sequel, we call bh a concordance profile
and we define “strongly worse than the profile” bh by means of a veto profile

2 “weak preference” means being “at least as good as”.
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vh = (vh
1 , vh

2 , ..., vh
n), with vh

j ≤j bh
j . It represents a vector of performances such

that any alternative having a performance worse than or equal to this profile on
any criterion would be excluded from category Ch+1. Formally, the assignment
rule is described by the following condition:

a � bh ⇐⇒
∑

j:aj≥jbh
j

wj ≥ λ and not aV bh,

with aV bh ⇐⇒ ∃j ∈ F : aj ≤j vh
j . Note that non-veto condition is frequently

presented in the literature using a veto threshold (see e.g. [16]), i.e. a maximal
difference w.r.t. the concordance profile in order to be assigned to the category
above the profile. Using veto profiles instead of veto thresholds better suits the
context of multicriteria sorting. We recall that a profile bh delimits the cate-
gory Ch from Ch+1, with Ch+1 
 Ch ; with monocriterion veto, the MR-Sort
assignment rule reads as follows:

a ∈ Ch ⇐⇒

⎡

⎢
⎣

∑

j:aj≥jbh−1
j

wj ≥ λ and �j ∈ F : aj ≤ vh−1
j

⎤

⎥
⎦

and

⎡

⎣
∑

j:aj≥jbh
j

wj < λ or ∃j ∈ F : aj ≤ vh
j

⎤

⎦ . (3)

We remark that a MR-Sort model with more than 2 categories remains con-
sistent only if veto profiles vh

j do not overlap, i.e., are chosen such that vh
j ≥ vh′

j

for all {h, h′} s.t. h > h′. Otherwise, an alternative might be on the one hand in
veto against a profile bh, which prevents it to be assigned to Ch+1 and, on the
other hand, not in veto against bh+1, which does not prevent it to be assigned
to Ch+2.

2.3 MR-Sort-CV

We introduce here a new veto rule considering vetoes w.r.t. coalitions of criteria,
which we call “coalitional veto”. With this rule, the veto applies and forbids
an alternative a to be assigned to category Ch+1 when the performance of an
alternative a is not better than vh

j on a weighted majority of criteria.
As for the monocriterion veto, the veto profiles are vectors of performances

vh = (vh
1 , vh

2 , ..., vh
n), for all h = {1, .., p}. Coalitional veto also involves a set of

nonnegative veto weights denoted zj , for all j ∈ F . Without loss of generality, the
sum of zj is set to 1. Furthermore, a veto cutting threshold Λ is also involved and
determines whether a coalition of criteria is sufficient to impose a veto. Formally,
we express the coalitional veto rule aV bh, as follows:

aV bh ⇐⇒
∑

j:aj≤jvh
j

zj ≥ Λ. (4)
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Using coalitional veto, the outranking relation of MR-Sort (2.2) is modified as
follows:

a � bh ⇐⇒
∑

j:aj≥jbh
j

wj ≥ λ and
∑

j:aj≤jvh
j

zj < Λ. (5)

Using coalitional veto with MR-Sort modifies the assignment rule as follows:

a ∈ Ch ⇐⇒

⎡

⎢
⎣

∑

j:aj≥jbh−1
j

wj ≥ λ and
∑

j:aj≤jvh−1
j

zj < Λ

⎤

⎥
⎦

and

⎡

⎣
∑

j:aj≥jbh
j

wj < λ or
∑

j:aj≤jvh
j

zj ≥ Λ

⎤

⎦ (6)

In MR-Sort, the coalitional veto can be interpreted as a combination of perfor-
mances preventing the assignment of an alternative to a category. We call this
new model, MR-Sort-CV.

The coalitional veto rule given in Eq. (5) is a generalization of the monocri-
terion rule. Indeed, if the veto cut threshold Λ is equal to 1

n (n being the number
of criteria), and each veto weight zj is set to 1

n , then the veto rule defined in
Eq. (4) corresponds to a monocriterion veto for each criterion.

2.4 The Non Compensatory Sorting (NCS) Model

In this subsection, we recall the non compensatory sorting (NCS) rule as defined
by [14,15], which will be used in the experimental part (Sect. 4) for comparison
purposes. These rules allow to model criteria interactions. MR-Sort is a particular
case of these, in which criteria do not interact.

In order to take criteria interactions into account, it has been proposed to
modify the definition of the global outranking relation, a � bh, given in (1). We
introduce the notion of capacity. A capacity is a function μ : 2F → [0, 1] such
that:

– μ(B) ≥ μ(A), for all A ⊆ B ⊆ F (monotonicity);
– μ(∅) = 0 and μ(F ) = 1 (normalization).

The Möbius transform allows to express the capacity in another form:

μ(A) =
∑

B⊆A

m(B), (7)

for all A ⊆ F , with m(B) defined as:

m(B) =
∑

C⊆B

(−1)|B|−|C|μ(C) (8)

The value m(B) can be interpreted as the weight that is exclusively allocated
to B as a whole. A capacity can be defined directly by its Möbius transform
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also called “interaction”. An interaction m is a set function m : 2F → [−1, 1]
satisfying the following conditions:

∑

j∈K⊆J∪{j}
m(K) ≥ 0, ∀j ∈ F, J ⊆ F\{i} (9)

and ∑

K⊆F

m(K) = 1.

If m is an interaction, the set function defined by μ(A) =
∑

B⊆A m(B) is a
capacity. Conditions (9) guarantee that μ is monotone [17].

Using a capacity to express the weight of the coalition in favor of an object,
we transform the outranking rule as follows:

a � bh ⇔ μ(A) ≥ λ with A = {j : aj ≥j bh
j }

and μ(A) =
∑

B⊆A

m(B) (10)

Computing the value of μ(A) with the Möbius transform induces the evaluation
of 2|A| parameters. In a model composed of n criteria, it implies the elicitation of
2n parameters, with μ(∅) = 0 and μ(F ) = 1. To reduce the number of parameters
to elicit, we use a 2-additive capacity in which all the interactions involving more
than 2 criteria are equal to zero. Inferring a 2-additive capacity for a model
having n criteria requires the determination of n(n+1)

2 − 1 parameters.
Finally, the condition for an object a ∈ X to be assigned to category Ch can

be expressed as follows:

μ(Fa,h−1) ≥ λ and μ(Fa,h) < λ (11)

with Fa,h−1 = {j : aj ≥j bh−1
j } and Fa,h = {j : aj ≥j bh

j }.

3 Learning MR-Sort

Learning the parameters of MR-Sort and ELECTRE TRI models has been stud-
ied in several articles [3,18–25]. In this section, we recall how to learn the para-
meters of a MR-Sort model using respectively an exact method [3] and a heuristic
algorithm [18]. We then extend the heuristic algorithm to MR-Sort-CV.

3.1 Learning a Simple MR-Sort Model

It is possible to learn a MR-Sort model from a learning set using Mixed Integer
Programming (MIP), see [3]. Such a MIP formulation is not suitable for large
data sets because of the high computing time required to infer the MR-Sort
parameters. In order to learn MR-Sort models in the context of large data sets,
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a heuristic algorithm has been proposed in [18]. As for the MIP, the heuris-
tic algorithm takes as input a set of assignment examples and their vectors of
performances. The algorithm returns the parameters of a MR-Sort model.

The heuristic algorithm proposed in [18] works as follows. First a population
of Nmod MR-Sort models is initialized. Thereafter, the following two steps are
repeated iteratively on each model in the population:

min
∑

a∈A(x′
a + y′

a)
s.t.∑

j:aj≥jbh−1
j

wj − xa + x′
a = λ ∀a ∈ Ah, h = {2, ..., p}

∑
j:aj≥jbh

j
wj + ya − y′

a = λ − ε ∀a ∈ Ah, h = {1, ..., p − 1}
∑n

j=1 wj = 1
wj ∈ [0; 1] ∀j ∈ F
λ ∈ [0; 1]

xa, ya, x′
a, y′

a ∈ R+
0

ε a small positive number.

(12)

1. A linear program optimizes the weights and the majority threshold on the
basis of assignment examples while keeping the profiles fixed.

2. Given the inferred weights and the majority threshold, a heuristic adjusts the
profiles of the model on the basis of the assignment examples.

After applying these two steps to all the models in the population, the
⌊

Nmod
2

⌋

models restoring the least numbers of examples are reinitialized. These steps are
repeated until the heuristic finds a model that fully restores all the examples or
after a number of iterations specified a priori. This approach can be viewed as a
sort of evolutionary metaheuristic (without crossover) in which a population of
models is evolved.

The linear program designed to learn the weights and the majority threshold
is given by (12). It minimizes a sum of slack variables, x′

a and y′
a, that is equal to

0 when all the objects are correctly assigned, i.e. assigned to the category defined
in the input data set. We remark that the objective function of the linear program
does not explicitly minimize the 0/1 loss but a sum of slacks. This implies that
compensatory effects might appear, with undesirable consequences on the 0/1
loss. However in this heuristic, we consider that these effects are acceptable. The
linear program doesn’t involve binary variables. Therefore, the computing time
remains reasonable when the size of the problem increases.

The objective function of the heuristic varying the profiles maximizes the
number of examples compatible with the model. To do so, it iterates over each
profile bh and each criterion j and identifies a set of candidate moves for the
profile, which correspond to the performances of the examples on criterion j
located between profiles bh−1 and bh+1. Each candidate move is evaluated as a
function of the probability to improve the classification accuracy of the model.
To assess whether a candidate move is likely to improve the classification of one
or several objects, the examples which have an evaluation on criterion j located
between the current value of the profile, bh

j , and the candidate move, bh
j +δ (resp.

bh
j − δ), are grouped in different subsets:
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V +δ
h,j (resp. V −δ

h,j ): the sets of objects misclassified in Ch+1 instead of Ch (resp.
Ch instead of Ch+1), for which moving the profile bh by +δ (resp. −δ) on
j results in a correct assignment.

W+δ
h,j (resp. W−δ

h,j ): the sets of objects misclassified in Ch+1 instead of Ch (resp.
Ch instead of Ch+1), for which moving the profile bh by +δ (resp. −δ) on
j strengthens the criteria coalition in favor of the correct classification but
will not by itself result in a correct assignment.

Q+δ
h,j (resp. Q−δ

h,j): the sets of objects correctly classified in Ch+1 (resp. Ch+1)
for which moving the profile bh by +δ (resp. −δ) on j results in a misclas-
sification.

R+δ
h,j (resp. R−δ

h,j): the sets of objects misclassified in Ch+1 instead of Ch (resp.
Ch instead of Ch+1), for which moving the profile bh by +δ (resp. −δ) on j
weakens the criteria coalition in favor of the correct classification but does
not induce misclassification by itself.

T+δ
h,j (resp. T−δ

h,j ): the sets of objects misclassified in a category higher than Ch

(resp. in a category lower than Ch+1) for which the current profile evalu-
ation weakens the criteria coalition in favor of the correct classification.

A formal definition of these sets can be found in [18]. The evaluation of the
candidate moves is done by aggregating the number of elements in each subset.
Finally, the choice to move or not the profile on the criterion is determined by
comparing the candidate move evaluation to a random number drawn uniformly.
These operations are repeated multiple times on each profile and each criterion.

3.2 Learning a MR-Sort-CV Model

As compared with MR-Sort, a MR-Sort-CV model requires the elicitation of
additional parameters: a veto profile, veto weights and a veto threshold. In (2),
the MR-Sort condition

∑
j:aj≥jbh−1

j
wj ≥ λ is a necessary condition for an alter-

native to be assigned to a category at least as good as Ch. Basically, the coali-
tional veto rule can be viewed as a dual version of the majority rule. It provides a
sufficient condition for being assigned to a category worse than Ch. An alterna-
tive a is assigned to such a category as soon as

∑
j:aj≤vh−1

j
zj ≥ λ. This condition

has essentially the same form as the MR-Sort rule except that the sum is over
the criteria on which the alternative’s performance is at most as good as the
profile (instead of “at least as good”, for the MR-Sort rule).

In order to learn a MR-Sort-CV model, we modify the heuristic presented in
the previous subsection as shown in Algorithm 1. The main differences with the
MR-Sort heuristic are highlighted in grey.

In the rest of this section, we give some detail about the changes that have
been brought to the heuristic.

Concordance weights optimization. The concordance profiles being given,
the weights are optimized using the linear program (12). The sum of the error
variables x′

a + y′
a was the objective to be minimized. In the linear program,
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Algorithm 1. Metaheuristic to learn the parameters of an MR-Sort-CV model.
Generate a population of Nmodel models with concordance profiles initialized with a
heuristic
repeat

for all model M of the set do
Learn the concordance weights and majority threshold with a linear program,

using the current concordance profiles
Apply the heuristic Nit times to adjust the concordance profiles, using the

current concordance weights and threshold.

Initialize a set of veto profiles, taking into account the concordance profiles
(in the first step and in case the coalitional veto rule was discarded in the previous
step)

Learn the veto weights and majority threshold with a linear program, using
the current profiles

Adjust the veto profiles by applying the heuristic Nit times, using the current
veto weights and threshold

Discard the coalitional veto if it does not improve classification accuracy

end for
Reinitialize the

⌊
Nmodel

2

⌋
models giving the worst CA

until Stopping criterion is met

x′
a is set to a positive value whenever it is not possible to satisfy the condition

which assigns a to a category at least as good as Ch, while a actually belongs
to Ch. Impeding the assignment of positive values to x′

a amounts to favor
false positive assignments. Hence, positive values of x′

a should be heavily
penalized. In contrast, positive values of y′

a correspond to the case in which
the conditions for assigning a to the categories above the profile are met while
a belongs to the category below the profile. Positive values of y′

a need not be
discouraged as much as those of x′

a and therefore we changed the objective
function of the linear program into min

∑
a∈A 10x′

a + y′
a.

Adjustment of the concordance profiles. In order to select moves by a
quantity ±δ applied to the profile level on a criterion, we compute a probabil-
ity which takes into account the sizes of the sets listed at the end of Section
3.1. To ensure the consistency of the model, the candidate moves are located
in the interval [max(bh−1

j , vh
j ), bh+1

j ]. In all cases, the movements which lower
the profile (−δ) are more favorable to false positive than the opposite move-
ments. Therefore, all other things being equal (i.e. the sizes of the sets), the
probability of choosing a downward move −δ should be larger than that of
an upward move +δ. The probability of an upward move is thus computed
by the following formula

P (bh
j + δ) =

2|V −δ
h,j | + 1|W−δ

h,j | + 0.1|T−δ
h,j |

|V −δ
h,j | + |W−δ

h,j | + |T−δ
h,j | + 5|Q−δ

h,j | + |R−δ
h,j |

, (13)
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while that of a downward move is

P (bh
j − δ) =

4|V +δ
h,j | + 2|W+δ

h,j | + 0.1|T+δ
h,j |

|V +δ
h,j | + |W+δ

h,j | + |T+δ
h,j | + 5|Q+δ

h,j | + |R+δ
h,j |

. (14)

The values appearing in (13) and (14) were determined empirically.
Initialization of veto profiles. A randomly selected veto profile is associated

with each concordance profile. The veto profiles are initialized in ascending
order, i.e. from the profile delimiting the worst category to the one delimit-
ing the best category. The generation of a veto profile is done by drawing a
random number in the interval [bh

j , vh−1
j ] on each criterion j. For the profile

delimiting the worst categories, vh−1
j corresponds to the worst possible per-

formance on criterion j. Veto rules that do not prove useful at the end of the
improvement phase (i.e., that do not contribute to reduce misclassification)
are discarded and new veto profiles are generated during the next loop.

Veto weights optimization. The same type of linear program is used as for
the concordance weights. One difference lies in the objective function in which
we give the same importance to the positive and negative slack variables.
Another difference lies in the constraints ensuring that an alternative a ∈ Ch

should not outrank the profile bh+1. In order not to outrank the profile bh+1,
an alternative should either fulfill the condition

∑n
j=1 wj < λ or the condition

∑n
j=1 zj ≥ Λ Since this is a disjunction of conditions, it is not necessary to

ensure both. Therefore we do not consider the alternatives a ∈ Ch that satisfy
the first condition (

∑n
j=1 wj < λ) in the linear program.

Adjustment of the veto profiles. The same heuristic as for the concordance
profiles is used. The coefficients in (13) and (14) are modified in order to treat
equally upward and downward moves.

4 Experiments

4.1 Datasets

In view of assessing the performance of the heuristic algorithm designed for
learning the parameters of a MR-Sort-CV model, we use the algorithm to
learn MR-Sort-CV models from several real data sets available at http://
www.uni-marburg.de/fb12/kebi/research/repository/monodata, which serve as
benchmark to assess monotone classification algorithms [4]. They involve from
120 to 1728 instances, from 4 to 8 monotone attributes and from 2 to 36 cate-
gories (see Table 1).

In our experiments, categories were initially binarized by thresholding at the
median. We split the datasets in a twofold 50/50 partition: a learning set and a
test set. Models are learned on the first set and evaluated on the test set; this is
done 100 times on learning sets drawn at random.

http://www.uni-marburg.de/fb12/kebi/research/repository/monodata
http://www.uni-marburg.de/fb12/kebi/research/repository/monodata
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4.2 Results Obtained with the Binarized Datasets

In a previous experimental study [6] performed on the same datasets, we com-
pared the classification accuracy on the test sets obtained with MR-Sort and
NCS. These results are reproduced in columns 2 and 3 of Table 2. No signifi-
cant improvement in classification accuracy was observed when comparing NCS
to MR-Sort. We have added the results for the new MR-Sort-CV heuristic in
the fourth column of this table. In four cases, no improvement is observed as
compared with MR-Sort. A slight improvement (of the order of 1%) is obtained
in three cases (CPU, ESL, LEV). In one case (BCC), the results are slightly
worse (2%).

Table 1. Data sets characteristics

Data set #instances #attributes #categories

DBS 120 8 2

CPU 209 6 4

BCC 286 7 2

MPG 392 7 36

ESL 488 4 9

MMG 961 5 2

ERA 1000 4 4

LEV 1000 4 5

CEV 1728 6 4

4.3 Results Obtained with the Original Datasets

We also checked the algorithm for assigning alternatives to the original classes,
in case there are more than two classes. Datasets with more than two classes

Table 2. Average and standard deviation of the classification accuracy on the test sets
obtained with three different heuristics

Data set MR-Sort NCS MR-Sort-CV

DBS 0.8377 ± 0.0469 0.8312 ± 0.0502 0.8390 ± 0.0476

CPU 0.9325 ± 0.0237 0.9313 ± 0.0272 0.9429 ± 0.0244

BCC 0.7250 ± 0.0379 0.7328 ± 0.0345 0.7044 ± 0.0299

MPG 0.8219 ± 0.0237 0.8180 ± 0.0247 0.8240 ± 0.0391

ESL 0.8996 ± 0.0185 0.8970 ± 0.0173 0.9024 ± 0.0179

MMG 0.8268 ± 0.0151 0.8335 ± 0.0138 0.8267 ± 0.0119

ERA 0.7944 ± 0.0173 0.7944 ± 0.0156 0.7959 ± 0.0270

LEV 0.8408 ± 0.0122 0.8508 ± 0.0188 0.8551 ± 0.0171

CEV 0.8516 ± 0.0091 0.8662 ± 0.0095 0.8516 ± 0.0665
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are CPU, MPG, ESL, ERA, LEV and CEV. We did not consider MPG and
ESL in which alternatives are respectively assigned to 36 and 9 categories. It
is not reasonable indeed to aim at learning 35 (resp. 9) concordance and veto
profiles on the basis of 392 (resp. 488) assignment examples in the dataset, half
of them being reserved for testing purposes. The results obtained with the four
remaining datasets are reported in Table 3.

Table 3. Average and standard deviation of the accuracy of classification in more than
two categories obtained for the test sets

Data set MR-Sort MR-SortCV

CPU 0.8039 ± 0.0354 0.8469 ± 0.0426

ERA 0.5123 ± 0.0233 0.5230 ± 0.0198

LEV 0.5662 ± 0.0258 0.5734 ± 0.0213

CEV 0.7664 ± 0.0193 0.7832 ± 0.0130

We observe improvements w.r.t. MR-Sort on all four datasets. The gain
ranges between a little less than 1% for ERA till 4% for CPU.

4.4 Results Obtained Using Randomly Generated MR-Sort-CV
models

In view of the slight improvements w.r.t. MR-Sort obtained on the benchmark
datasets, one may wonder whether this result should not be ascribed to the
design of our heuristic algorithm. In order to check whether our algorithm is
able to learn a MR-Sort-CV model in case the objects have been assigned to
categories according to a hidden MR-Sort-CV rule, we performed the following
experiments.

For a number of criteria ranging from 4 to 7, we generate at random a MR-
Sort-CV model with two categories. We generate a learning set composed of
1000 random vectors of alternatives. Then we assign the alternatives to the
two categories using the MR-Sort-CV model. We use the algorithm to learn a
MR-Sort-CV model that reproduces as accurately as possible the assignments
of the alternatives in the learning set. Having generated 10000 additional alter-
natives at random and having assigned them to a category using the generated
MR-Sort-CV model, we compare these assignments with those produced by the
learned model. We repeat this 100 times for each number of criteria. The average
classification accuracy for the learning and the test sets is displayed in Table 4.

We observe that, on average, the learned model correctly restores more than
98.5% of the assignments in the learning set and more than 97.5% of the assign-
ments in the test set. This means that our heuristic algorithm is effective in
learning a MR-Sort-CV model when the assignments are actually made accord-
ing to such a model.
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Table 4. Average and standard deviation of the classification accuracy of MR-Sort-CV
models learned on data generated by random MR-Sort-CV models with 2 categories
and 4 to 7 criteria. The learning set is composed of 1000 alternatives and the test set
is composed of 10000 alternatives.

#criteria Learning set Test set

4 0.9908 ± 0.01562 0.98517 ± 0.01869

5 0.9904 ± 0.01447 0.98328 ± 0.01677

6 0.9860 ± 0.01560 0.97547 ± 0.02001

7 0.9827 ± 0.01766 0.96958 ± 0.02116

An alternative explanation of the modest improvements yielded by using the
MR-Sort-CV model is that the latter has limited additional descriptive power
as compared to MR-Sort. We check this hypothesis by running the MR-Sort
learning algorithm on the same artificial datasets generated by random MR-
Sort-CV rules as in Table 4. The experimental results are reported in Table 5. By
comparing Tables 4 and 5, we see that MR-Sort models are able to approximate
very well MR-Sort-CV models. Indeed, the classification accuracy obtained with
MR-Sort models is quite high on the test sets and only about 2% below that
obtained with a learned MR-Sort-CV model.

Table 5. Average and standard deviation of the classification accuracy of MR-Sort
models learned on data generated by random MR-Sort-CV models with 2 categories
and 4 to 7 criteria. The learning set is composed of 1000 alternatives and the test set
is composed of 10000 alternatives.

#criteria Learning set Test set

4 0.9760 ± 0.0270 0.9700 ± 0.0309

5 0.9713 ± 0.0275 0.9627 ± 0.0318

6 0.9645 ± 0.0248 0.9525 ± 0.0307

7 0.9639 ± 0.0264 0.9518 ± 0.0301

5 Conclusion

We have presented MR-Sort-CV, a new original extension of the MR-Sort
ordered classification model. This model introduces a new and more general
form of veto condition which applies on coalitions of criteria rather than a single
criterion. This coalitional veto condition can be expressed as a “reversed” MR-
Sort rule. Such a symmetry enables us to design a heuristic algorithm to learn
an MR-Sort-CV model, derived from an algorithm used to learn MR-Sort.

The experimental results obtained on benchmark datasets show that there is
no significant improvement in classification accuracy as compared with MR-Sort
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in the case of two categories. The new model and the proposed learning algorithm
lead to modest but definite gains in classification accuracy in the case of several
categories. We checked that the learning algorithm was not responsible for the
weak improvement of the assignment accuracy on the test sets. Therefore, the
conclusion should be that the introduction of coalitional veto only adds limited
descriptive ability to the MR-Sort model. This was also checked empirically.

The fact that coalitional veto (and this holds a fortiori for ordinary, single-
criterion, veto) adds little descriptive power to the MR-Sort model is an impor-
tant information by itself. In a learning context, the present study indicates
that there is little hope to substantially improve classification accuracy by mov-
ing from a MR-Sort to a MR-Sort-CV model (as was also the case with the
NCS model [6]). Note that small improvements in classification accuracy may
be valuable, for instance, in medical applications (see e.g. [26]). Therefore it may
be justified to consider MR-Sort-CV in spite of the increased complexity of the
algorithm and of the model interpretation as compared to MR-Sort. It should
be emphasized that the MR-Sort models lean themselves to easy interpretation
in terms of rules [26]. The MR-Sort-CV model, although more complex, inherits
this property since the coalitional veto condition is a reversed MR-Sort rule.
Therefore, MR-Sort-CV models may be useful in specific applications.
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approach to obtain robust conclusions with ELECTRE TRI. Eur. J. Oper. Res.
138(1), 332–348 (2002)

23. Doumpos, M., Marinakis, Y., Marinaki, M., Zopounidis, C.: An evolutionary app-
roach to construction of outranking models for multicriteria classification: the case
of the ELECTRE TRI method. Eur. J. Oper. Res. 199(2), 496–505 (2009)

24. Cailloux, O., Meyer, P., Mousseau, V.: Eliciting ELECTRE TRI category limits
for a group of decision makers. Eur. J. Oper. Res. 223(1), 133–140 (2012)

25. Zheng, J., Metchebon, S.A., Mousseau, V., Pirlot, M.: Learning criteria weights of
an optimistic ELECTRE TRI sorting rule. Comput. OR 49, 28–40 (2014)

26. Sobrie, O., Lazouni, M.E.A., Mahmoudi, S., Mousseau, V., Pirlot, M.: A new deci-
sion support model for preanesthetic evaluation. Comput. Methods Programs Bio-
med. 133, 183–193 (2016)

http://dx.doi.org/10.1007/3-540-18579-8_8
http://dx.doi.org/10.1007/978-3-642-41575-3_26
http://dx.doi.org/10.1007/978-3-642-41575-3_26



