LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy Process - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy Process

Résumé

This work focuses on the Local Asymptotic Mixed Normality (LAMN) property from high frequency observations, of a continuous time process solution of a stochastic differential equation driven by a pure jump Lévy process with index α ∈ (0, 2). The process is observed on the fixed time interval [0,1] and the parameters appear in both the drift coefficient and scale coefficient. This extends the results of [5] where the index α ∈ (1, 2) and the parameter appears only in the drift coefficient. We compute the asymptotic Fisher information and find that the rate in the LAMN property depends on the behavior of the Lévy measure near zero. The proof relies on the small time asymptotic behavior of the transition density of the process obtained in [6].
Fichier principal
Vignette du fichier
LAMNRev-06_11_17.pdf (446.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01472749 , version 1 (21-02-2017)
hal-01472749 , version 2 (08-11-2017)

Identifiants

  • HAL Id : hal-01472749 , version 2

Citer

Emmanuelle Clément, Arnaud Gloter, Huong Nguyen. LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy Process. 2017. ⟨hal-01472749v2⟩
1152 Consultations
489 Téléchargements

Partager

More