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Introduction

Modeling with pure jump Lévy processes plays an important role in many fields, especially in mathematical finance (see for example [START_REF] Barndorff-Nielsen | Lévy processes[END_REF], [START_REF] Jing | Modeling high-frequency financial data by pure jump processes[END_REF], [START_REF] Kong | Testing for pure-jump processes for high-frequency data[END_REF]) and parametric inference for such processes is a currently active subject.

In this paper, we are concerned with parametric estimation of a stochastic differential equation driven by a pure jump Lévy process, from high-frequency observations on a fixed observation time. More precisely we consider the statistical experiment (R n , B n , (P β n ) β∈Θ⊂R 2 ) corresponding to the observation of a Lévy driven stochastic equation at discrete times (X β i n ) 1≤i≤n , solution of

X β t = x 0 + t 0 b(X β s , θ)ds + σL t , t ∈ [0, 1],
where (L t ) t∈[0,1] is a truncated α-stable process with exponent α ∈ (0, 2) and β = (θ, σ) T ∈ R × (0, ∞) is an unknown parameter to be estimated. We prove in this work that the Local Asymptotic Mixed Normality property (LAMN) holds for the parameter β. The LAMN property has been introduced by Jeganathan [14] [15] to extend to the markovian case the LAN property introduced in the pioneer works by Lecam and Hájek (see [START_REF] Le | Asymptotics in statistics[END_REF], [START_REF] Hájek | A characterization of limiting distributions of regular estimates[END_REF]) in the i.i.d. case. This property permits in particular to identify the optimal estimation rate for the parameters θ and σ and the asymptotic Fisher information. Parametric inference and LAN property for pure jump Lévy processes based on high frequency observations have been investigated in several papers, see for example Aït-Sahalia and Jacod [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF] [2], Kawai and Masuda [START_REF] Kawai | On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling[END_REF] [START_REF] Kawai | Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling[END_REF], Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF]. In particular, in [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF], the LAN property is established and estimators are proposed for the parameters (θ, σ, α) in the model X t = θt + σL α t , where (L α t ) is an α-stable process. Aït-Sahalia and Jacod [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF] [2] considered the model X t = σL α t + θY t where (Y t ) is a Lévy process, independent of (L α t ) and dominated by (L α t ). More recently, Ivanenko, Kulik and Masuda [START_REF] Ivanenko | Uniform LAN property of locally stable Lévy process observed at high frequency[END_REF] proved the LAN property for the parameter (θ, σ) in the model X t = θt + σZ t + U t , where Z is a locally α-stable process and U is an independent and less active process. In all these works, the increments (X i n -X i-1 n ) 1≤i≤n are independent and the transition density of the discrete time process (X i n ) 1≤i≤n is almost explicit. Extensions to stochastic equations driven by pure jump Lévy processes are not immediate and require a different approach since the transition density of the Markov chain (X i n ) 1≤i≤n is unknown. Moreover they involve a random asymptotic Fisher information and lead to the LAMN property. Concerning the parametric estimation of a stochastic differential equation driven by a pure jump Lévy process from high frequency observations on a fixed observation time, we can mention the recent paper by Masuda [START_REF] Masuda | Non-gaussian quasi-likelihood estimation of sde driven by locally stable Lévy process[END_REF] where some estimators of the parameters (θ, σ) are proposed for the general equation

X t = x 0 + t 0 b(X s , θ)ds + t 0 c(X s-, σ)dL s ,
where L is a locally α-stable process, with α ∈ [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF][START_REF] Aït | Fisher's information for discretely sampled Lévy processes[END_REF]. However in that case the asymptotic efficiency of the estimators is not yet establish and to our knowledge, the only result in that direction is given in Clément and Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], where the LAMN property is proved for the estimation of the drift parameter θ for the process solution of (2.1) (with σ = 1), in the case α ∈ (1, 2). They show that the LAMN property is satisfied with rate r n = n 

I θ = 1 0 ∂ θ b(X β s , θ) 2 ds R ϕ α (u) 2
ϕα(u) du, where ϕ α is the density of the standard α-stable distribution with characteristic function u → e -C(α)|u| α .

Based on the main ideas of [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] and using the results of [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF], we extend in the present paper these results to α ∈ (0, 2) and prove that the LAMN property holds for the parameters (θ, σ) with rate r n = n 

I 22 = 1 σ 2 R (ϕα(u)+uϕ α (u)) 2 ϕα(u)
du. The proof is mainly based on the L 2 -regularity property of the transition density (see Jeganathan [START_REF] Jeganathan | On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal[END_REF]) and on Malliavin calculus (see for example Gobet [START_REF] Gobet | Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach[END_REF] for the use of Malliavin calculus in the case of a diffusion process). The L 2 -regularity property is established here by using the asymptotic behavior of the density of the process solution of (2.1) in small time as well as its derivative with respect to the parameter, given in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] and based on the Malliavin calculus for jump processes developed by Bichteler, Gravereaux and Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF]. It also requires a careful study of the asymptotic behavior of the information matrix based on one observation of the process, this is the subject of Section 3. This paper contains also an independent and interesting result stating a continuity property with respect to the conditioning variable in a conditional expectation (see Proposition 6.3).

This paper is organized as follows. The main results (asymptotic expansion of the log-likelihood function and LAMN property) are stated in Section 2. Section 3 studies the asymptotic behavior of the Fisher information matrix based on the observation of X β 1 n (as n goes to infinity). The proof of the main results are given in Section 4 and Section 5. Finally, Section 6 contains some additional technical proof required to establish the results of Section 3.

Main results

We consider the process (X β t ) t∈[0,1] solution to

X β t = x 0 + t 0 b(X β s , θ)ds + σL t t ∈ [0, 1], (2.1) 
where (L t ) t∈[0,1] is a pure jump Lévy process defined on some probability space (Ω, A, P) and we are interested in the statistical properties of the process (X β t ), based on the discrete time observations (X β i/n ) i=0,...n . We assume that the following assumptions are fulfilled. H 1 : (a) The function b has bounded derivatives up to order five with respect to both variables. (b i ) The Lévy process (L t ) t∈[0,1] is given by L t = t 0 [-1,1] z{µ(ds, dz)-υ(ds, dz)}+ t 0 [-1,1] c zµ(ds, dz) where µ is a Poisson random measure, with compensator υ(dt, dz) = dt × F (z)dz where F (z) is given on R by F (z) = 1 |z| α+1 1 |z| =0 τ (z), α ∈ (0, 2). We assume that τ is a non negative smooth function equal to 1 on [-1,1], vanishing on [-2, 2] c such that 0 ≤ τ ≤ 1.

(b ii ) We assume that ∀p ≥ 1, R τ (u) τ (u) p τ (u)du < ∞, R τ (u) τ (u) p τ (u)du < ∞.
These assumptions are sufficient to ensure that (2.1) has an unique solution belonging to L p , ∀p ≥ 1, and that X β t admits a density, for t > 0 (see [START_REF] Picard | On the existence of smooth densities for jump processes[END_REF]). Moreover, it is proved in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] that this density is differentiable with respect to β.

Remark 2.1. Our assumptions on the Lévy measure F are quite restrictive and reduce the generality of our results but simplify the proofs which nevertheless remain still technical. There are mainly two important properties required on the Lévy measure in our approach. First, since our method is based on Malliavin calculus, the L p -bounds for the tails of the Lévy process are crucial to ensure that our process belongs to the Malliavin space. Secondly, the stable behavior of the Lévy measure around zero is also required to make the rescaled process (n 1/α L t/n ) close to the α-stable process (L α t ). The introduction of the truncation function τ permits to address both issues and to avoid more technical proofs. In particular it permits to ensure that the process (n 1/α L t/n ) has no jump of size larger than 2n 1/α and consequently makes easier the control of the asymptotic behavior of the Malliavin weights (mainly studied in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]). Moreover the exact stable behavior of the Lévy measure around zero (τ = 1) gives the equality between the rescaled process (n 1/α L t/n ) and the α-stable process (L α t ), and also the equality of the corresponding Poisson measures, on a set A n whose complementary has small probability ( P(A c n ) ≤ C/n, see Lemma 3.1 below). This property is repeatedly used in our proofs (see for example the proof of Theorem 2.3) and is also essential to study the limit of the Malliavin weights in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF].

However, since the information matrix obtained in the LAMN property (established in Corollary 2.4) does not depend on the function τ , this suggests that the same result probably holds for a more general Lévy measure even with no integrability conditions on the large jumps and that the truncation or integrability assumptions should only be introduced in the proof sections. To that end, a possible extension of our paper (and also of [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]) could be to replace τ by a more general function g such that g(0) = 1 and satisfying (b ii ), but up to now we do not know how to obtain the key results established in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] in this more general context.

Before stating our main results, we introduce some notations which are used throughout this paper. For a vector h ∈ R 2 , h T denotes the transpose of h, and |h| denotes the euclidean norm. For a function f defined on R × R 2 depending on both variables (x, β), here β = (θ, σ) T ∈ R × (0, +∞), we denote by f the derivative of f with respect to the variable x, by ∂ θ f the derivative of f with respect to the parameter θ, by ∂ σ f the derivative of f with respect to the parameter σ, and

∇ β f = ∂ θ f ∂ σ f .
We denote by p β i/n (x, y) the transition density of the homogeneous Markov chain (X

β i/n ) i=0,...n , by (F i/n ) i the σ-field such that F i/n = σ(X β s , s ≤ i/n) = σ(L s , s ≤ i/n
) and by P β n the law of the vector (X β 1 n , ..., X β 1 ) on R n . Our first result is an asymptotic expansion of the log-likelihood ratio.

Theorem 2.1. We assume that H 1 holds. Let

r n = n 1 2 -1 α 0 0 n -1 2 , then for every h ∈ R 2 log dP β+rnh n dP β n (X β 1 n , ..., X β 1 ) = h T J n (β) 1 2 N n (β) - 1 2 h T J n (β)h + o P (1), (2.2) 
with

J n (β) = r n n-1 i=0 E ξ i,n (β)ξ T i,n (β)|F i/n r n , N n (β) = J n (β) -1 2 r n n-1 i=0 ξ i,n (β), ξ i,n (β) =       ∂ θ p β 1 n p β 1 n X β i n , X β i+1 n ∂σp β 1 n p β 1 n X β i n , X β i+1 n      
.

We can precise the asymptotic behavior of J n (β) and N n (β). Let ϕ α be the density of L α 1 , where (L α 1 ) is a centered α-stable Lévy process whose Lévy measure is dz |z| 1+α 1 |z| =0 . We define the following quantity which will be the random asymptotic information of the statistical model:

I(β) = I 11 0 0 I 22 (2.3) 
where

I 11 = 1 σ 2 1 0 ∂ θ b(X β s , θ) 2 ds × R ϕ α (u) 2 ϕ α (u) du, I 22 = 1 σ 2 × R (ϕ α (u) + uϕ α (u)) 2 ϕ α (u) du.
Remark 2.2. i) From [START_REF] Aït | Fisher's information for discretely sampled Lévy processes[END_REF] and [START_REF] Ivanenko | Uniform LAN property of locally stable Lévy process observed at high frequency[END_REF], we know that the parameter θ of the process

X θ t = θt + L t is estimated with rate n 1 2 -1 α and Fisher information R ϕ α (u) 2
ϕα(u) du and that the parameter σ of the process X σ t = σL t is estimated with the usual rate n -1/2 and Fisher information

R (ϕα(u)+uϕ α (u)) 2 ϕα(u)
du. ii) It is worth to notice that the information does not depend on the truncation function τ , but depends on α through the Fisher information of the translated α-stable process and multiplicative α-stable process.

Theorem 2.2. With the notations and assumptions of Theorem 2.1, the following convergences hold:

J n (β) n→∞ ---→ I(β) in probability, (2.4) 
∀ > 0, n-1 i=0 E |r n ξ i,n (β)| 2 1 {|rnξ i,n (β)|≥ } n→∞ ---→ 0. (2.5) 
Theorem 2.3. We have the convergence in law

J n (β) 1 2 N n (β) = r n n-1 i=0 ξ i,n (β) ⇒ N (0, I(β)) (2.6)
where the limit variable is conditionally Gaussian and the convergence is stable with respect to the σ-field σ(L s , s ≤ 1).

The stable convergence in law (2.6) and the convergence in probability (2.4) yield the convergence in law of the couple (J n (β), N n (β)):

(J n (β), N n (β)) ⇒ (I(β), N ),
where N is a standard Gaussian variable independent of I(β). As a consequence of the asymptotic expansion given in Theorem 2.1 and the preceding limit theorems, we deduce the LAMN property. The rate of estimation of the drift parameter depends on α : when α tends to 2, the rate is extremely low, however, when α goes to zero, it becomes high, especially for α < 1 where it is faster than the usual one n -1/2 . On the other hand, the rate of estimation of the volatility parameter σ is n -1/2 and does not depend on α.

Before proceeding to the proof of these results, we discuss some extensions of our model that are not addressed in this paper.

• The Malliavin calculus used in this paper allows to consider the more general process

X β t = x 0 + t 0 b(X β s , θ)ds + t 0 c(X β s-, σ)dL s ,
and based on the results given in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] the Malliavin operators have explicit expressions. But the difficulty relies on the control of the Malliavin weights. Although explicit, these weights contain a lot of cumbersome terms especially the iterated weights involving the derivatives of the process with respect to the parameters θ and σ. These iterated weights (and their asymptotic behavior) are crucial to obtain the asymptotic behavior of the derivative of the transition density in small time (see [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]). The restriction to a constant coefficient c, assumed in this paper, permits to handle all these terms successfully. The theoretically possible extension to a general coefficient is still open.

• Unlike the papers [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF], [START_REF] Aït | Fisher's information for discretely sampled Lévy processes[END_REF] and [START_REF] Ivanenko | Uniform LAN property of locally stable Lévy process observed at high frequency[END_REF], our model does not contain an additional noise. Based on the structure of an additive model, the key point in these papers is that the density of the observed process can be written explicitly as a convolution between the Lévy process and the additional noise. Since we are dealing with a stochastic equation, this approach does not work anymore in our case and the introduction of an additional noise complicates significantly our model study.

• In contrast to the diffusion or jump-diffusion case, the interesting particularity of a pure jump process is that we can estimate the drift coefficient observing the process on a fixed time period [0, T ]. It is important to stress that the estimation of θ is impossible without letting T go to infinity if (L t ) has a Brownian component. This is why we focus in this paper on the estimation of (θ, σ) from high frequency observations on the time interval [0, 1]. The long time estimation problem (nh n → ∞, where n is the number of observations and h n the step between two consecutive observations) is also an interesting problem, but substantially different, that can certainly be treated with our methodology under ergodicity assumptions.

The remainder of the paper is devoted to the proofs of the main theorems above. The first step of our approach consists in studying the asymptotic Fisher information matrix by using Malliavin calculus techniques.

3 The asymptotic Fisher information matrix in small time

The asymptotic properties of the Fisher information matrix

Our main concern in this section is to study the asymptotic properties of the Fisher information carried by the observation of the random variable X β 1/n . We recall the definition of the Fisher information matrix:

I n,β,x 0 = I n,β,x 0 11 I n,β,x 0 12 I n,β,x 0 12 I n,β,x 0 22 (3.1)
where

I n,β,x 0 11 = E      ∂ θ p β 1 n (x 0 , X β 1/n ) p β 1 n (x 0 , X β 1/n )   2    , I n,β,x 0 12 = E     ∂ θ p β 1 n (x 0 , X β 1/n ) p β 1 n (x 0 , X β 1/n ) ∂ σ p β 1 n (x 0 , X β 1/n ) p β 1 n (x 0 , X β 1/n )     , and 
I n,β,x 0 22 = E   ∂σp β 1 n (x 0 ,X β 1/n ) p β 1 n (x 0 ,X β 1/n ) 2   .
The following proposition gives the asymptotic behavior of the Fisher information based on the observation of the random variable X β 1/n as 1 n tends to zero.

Theorem 3.1. Let (β n ) be a sequence such that β n n→∞ ---→ β, Q ⊂ R × (0, ∞) a compact set and r n = n 1 2 -1 α 0 0 n -1 2 then i) nr n I n,βn,x 0 r n n→∞ ---→   1 σ 2 ∂ θ b(x 0 , θ) 2 R ϕ α (u) 2 ϕα(u) du 0 0 1 σ 2 R [ϕα(u)+uϕ α (u)] 2 ϕα(u) du  
and this convergence is uniform with respect to x 0 .

ii

) ∀p ≥ 1, sup n,β∈Q,x 0 E n 1/2 r n ∇ β p β 1 n (x 0 ,X β 1 n ) p β 1 n (x 0 ,X β 1 n ) p < ∞.
As a consequence of ii) with p = 2, we deduce immediately sup n,β∈Q,x 0 n 2-2/α I n,β,x 0 11 < ∞, sup n,β∈Q,x 0 I n,β,x 0 22 < ∞ and from Cauchy-Schwarz inequality sup n,β∈Q,x 0 n 1-1/α I n,β,x 0 12 < ∞. Remark 3.1. From Theorem 3.1, we see that the Fisher information contained in one observation is of magnitude n -1 r -2 n and the Fisher information based on n observations is of magnitude r -2 n . This is consistent with the fact that r n is the rate in the LAMN property stated in Corollary 2.4.

The rest of this section is devoted to the proof of Theorem 3.1.

Proof of Theorem 3.1

The proof of Theorem 3.1 relies on a representation of the score function using Malliavin calculus initiated by Gobet (see [START_REF] Gobet | Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach[END_REF] and [START_REF] Gobet | LAN property for ergodic diffusions with discrete observations[END_REF]) and adapted to our context in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF].

This representation is established after a rescaling that we describe in the next subsection.

Rescaling and representation of the score function using Malliavin calculus

We consider µ e (dt, dz, du) a Poisson measure on [0, ∞) × R × [0, 1] with compensating measure υ e (dt, dz, du) = dt1 |z| =0 dz |z| 1+α du and for n ≥ 1, we define the Poisson random measure µ (n) by

∀A ⊂ [0, ∞) × R, µ (n) (A) = [0,∞) R [0,1] 1 A (t, z)1 {u≤τ ( z n 1/α )} µ e (dt, dz, du).
We note that the compensator of µ

(n) (dt, dz) is υ (n) (dt, dz) = dt × τ ( z n 1/α )1 |z| =0 dz |z| 1+α := dt × F n (z)dz and the compensated Poisson random measure μ(n) (dt, dz) = µ (n) (dt, dz) -υ (n) (dt, dz).
We define the process (L n t ) by:

L n t = t 0 [-n 1/α ,n 1/α ] z μ(n) (ds, dz) + t 0 [-n 1/α ,n 1/α ] c zµ (n) (ds, dz). (3.2)
We observe that the process (L t/n ) (recall H 1 (b i )) equals in law ( 1 n 1/α L n t ) since the associated Poisson measures have the same compensator. Moreover, when n grows, we can show that the process (L n t ) converges almost surely to an α-stable process defined by

L α t = t 0 [-1,1]
z μ(ds, dz)

+ t 0 [-1,1] c zµ(ds, dz), (3.3) 
where µ is the Poisson random measure defined by,

∀A ⊂ [0, ∞) × R, µ(A) = [0,∞) R [0,1]
1 A (t, z)µ e (dt, dz, du).

The compensator of µ(dt, dz) is υ(dt, dz) = dt × 1 |z| =0 dz |z| 1+α and we note the compensated Poisson random measure μ(dt, dz) = µ(dt, dz) -υ(dt, dz). It is important to note that L n and the α-stable process L α are defined on the same probability space (this property is crucial in our method to study the convergence of the Fisher information I n,β,x 0 ). The connection between L n and L α is given more clearly by the following lemma. Lemma 3.1. [lemma 3.1 in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]] On the event

A n = µ({(t, z)|0 ≤ t ≤ 1, |z| ≥ n 1/α }) = 0 , we have µ (n) = µ, L n t = L α t ,
and

P (A n ) = 1 + O(1/n).
Furthermore, let (f n ) n∈N and f be measurable functions from Ω × [0, 1] × R to R such that there exists

C with P(C) = 1 and ∀ω ∈ C, ∀s ∈ [0, 1], ∀|z| > 1 f n (ω, s, z) n→∞ ---→ f (ω, s, z). Then 1 0 |z|>1 f n (ω, s, z)µ (n) (ds, dz) n→∞ ---→ a.s. 1 0 |z|>1
f (ω, s, z)µ(ds, dz).

Moreover, we have

sup t∈[0,1] |L n t -L α t | n→∞ ---→ a.s 0.
We now consider the process (Y n,β,x 0 t

) solution to the equation

Y n,β,x 0 t = x 0 + 1 n t 0 b(Y n,β,x 0 s , θ)ds + σ n 1/α L n t t ∈ [0, 1]. (3.4)
From the construction of L n , (X

β t n ) t∈[0,1] equals in law (Y n,β,x 0 t
) t∈[0,1] . Let q n,β,x 0 be the density of

Y n,β,x 0 1
then the connection between the densities of X β is given by

p β 1/n (x 0 , x) = q n,β,x 0 (x). (3.5)
We remark also that (Y n,β,x 0 t

) t admits derivatives with respect to the parameters θ and σ, denoted by (∂ θ Y β t ) t and (∂ σ Y β t ) t , respectively. With these notations, we have the following representation.

Proposition 3.1. [Theorem 6.2 in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]] Let q n,β,x 0 be the density of Y n,β,x 0 1

then we have the representation of the logarithmic derivative of the density as a conditional expectation:

∇ β p β 1 n p β 1 n (x 0 , u) = ∇ β q n,β,x 0 q n,β,x 0 (u) =   ∂ θ q n,β,x 0
q n,β,x 0 (u)

∂σq n,β,x 0 q n,β,x 0 (u)   = E(H Y n,β,x 0 1 (∇ β Y n,β,x 0 1 )|Y n,β,x 0 1 = u) (3.6)
with

H Y n,β,x 0 1 (∇ β Y n,β,x 0 1 ) =   H Y n,β,x 0 1 (∂ θ Y n,β,x 0 1 
)

H Y n,β,x 0 1 (∂ σ Y n,β,x 0 1 )   .
The Malliavin weight

H Y n,β,x 0 1 (∇ β Y n,β,x 0 1
) depends on the derivatives of Y n,β,x 0 1

with respect to θ and σ and on Malliavin operators. Its explicit expression will be given in Section 6 (see (6.11)) after some recalling on Malliavin calculus.

Intermediate lemmas

In this section, we study the convergence of the Malliavin weight appearing in the representation of the score function. The limit of this Malliavin weight brings out an other weight denoted by H L α (1) (given explicitly in (6.16)) that permits to represent ϕ α /ϕ α , where ϕ α is the density of L α 1 , as an expectation. This representation is not immediate since L α 1 does not belong to the domain of our Malliavin operators (see Section 6). Lemma 3.2. We have the representation

ϕ α (u) ϕ α (u) = -E [H L α (1)|L α 1 = u] . (3.7) 
The connection between the weights

H Y n,β,x 0 1 (∇ β Y n,β,x 0 1 
) and H L α (1) is established in the next lemmas. The first lemma shows the convergence of the normalized iterated Malliavin weight

H Y n,β,x 0 1 (∇ β Y n,β,x 0 1 
).

Lemma 3.3. Let (β n ) n≥1 be a sequence such that β n n→∞ ---→ β.
Then, the following convergence holds uniformly with respect to x 0

n 1/2 r n H Y n,βn,x 0 1 (∇ β Y n,βn,x 0 1 ) =   n 1-1/α H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 ) H Y n,βn,x 0 1 (∂ σ Y n,βn,x 0 1 )   n→∞ -----→ L p ,∀p≥1 1 σ ∂ θ b(x 0 , θ)H L α (1) 1 σ (L α 1 H L α (1) -1) , (3.8) where L α 1 is defined by (3.3). Moreover, for any compact subset Q ⊂ R × (0, ∞), ∀p ≥ 1, sup n,β∈Q,x 0 E n 1/2 r n H Y n,β,x 0 1 (∇ β Y n,β,x 0 1 ) p < ∞.
The next two lemmas are related to a continuity property with respect to the conditioning variable, in a conditional expectation. Lemma 3.4. Let (β n ) n≥1 be a sequence such that β n n→∞ ---→ β. Then, the following convergence holds uniformly with respect to

x 0 . i) n 2-2/α E[E[H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ] 2 ] n→∞ ---→ 1 σ 2 [∂ θ b(x 0 , θ)] 2 E E[H L α (1)|L α 1 ] 2 , ii) E[E[H Y n,βn,x 0 1 (∂ σ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ] 2 ] n→∞ ---→ 1 σ 2 E E[L α 1 H L α (1) -1|L α 1 ] 2 , Lemma 3.5. Let (β n ) n≥1 be a sequence such that β n n→∞ ---→ β.
Then, the following convergence holds uniformly with respect to x 0 ,

n 1-1/α E[E[H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ]E[H Y n,βn,x 0 1 (∂ σ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ]] n→∞ ---→ 1 σ 2 E [E[H L α (1)|L α 1 ]E[L α 1 H L α (1) -1|L α 1 ]] . (3.9)
The proofs of the above lemmas are very technical. They are postponed to Section 6. Admitting these intermediate results, we can proceed to the proof of Theorem 3.1.

Proof of Theorem 3.1

Proof. i) We need to prove that for (β n ) a sequence such that β n n→∞ ---→ β and r n = n 1 2 -1 α 0 0 n -1 2
we have

nr n I n,βn,x 0 r n n→∞ ---→   1 σ 2 ∂ θ b(x 0 , θ) 2 R ϕ α (u) 2 ϕα(u) du 0 0 1 σ 2 R [ϕα(u)+uϕ α (u)] 2 ϕα(u) du  
and that this convergence is uniform with respect to x 0 .

Since

nr n I n,βn,x 0 r n = n 2-2 α I n,βn,x 0 11 n 1-1 α I n,βn,x 0 12 n 1-1 α I n,βn,x 0 12 I n,βn,x 0

22

, the proof of the above convergence reduces to prove the convergence of each entries of the matrix. Convergence of n 2-2/α I n,βn,x 0

11

. From (3.6) in Proposition 3.1, we have

n 2-2/α I n,βn,x 0 11 = n 2-2/α E E H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 )|Y n,βn,x 0 1 2 n→∞ ---→ 1 σ 2 ∂ θ b(x 0 , θ) 2 E E [H L α (1)|L α 1 ] 2 , uniformly with respect to x 0 , from Lemma 3.4 i), = 1 σ 2 ∂ θ b(x 0 , θ) 2 E ϕ α (L α 1 ) 2 ϕ α (L α 1 ) 2 from (3.7) in Lemma 3.2.
Convergence of I n,βn,x 0

22

. We remark that from the representation (3.7), we can deduce the following representation

ϕ α (u) + uϕ α (u) ϕ α (u) = -uE [(H L α (1)) |L α 1 = u] + 1 = -E [(L α 1 H L α (1) -1) |L α 1 = u] . (3.10) 
Furthermore, combining (3.6) and Lemma 3.4 ii), we have

I n,βn,x 0 22 = E E H Y n,βn,x 0 1 (∂ σ Y n,βn,x 0 1 )|Y n,βn,x 0 1 2 , n→∞ ---→ 1 σ 2 E E [(L α 1 H L α (1) -1) |L α 1 ] 2 , uniformly with respect to x 0 , = 1 σ 2 E (ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 )) 2 ϕ α (L α 1 ) 2 from (3.10).
Convergence of n 1-1/α I n,βn,x 0

12

. We first recall the expression for the Fisher information

I n,βn,x 0 12 = E     ∂ θ p βn 1 n (x 0 , X βn 1/n ) p βn 1 n (x 0 , X βn 1/n ) ∂ σ p βn 1 n (x 0 , X βn 1/n ) p βn 1 n (x 0 , X βn 1/n )     ,
then from (3.6) in Proposition 3.1 and Lemma 3.5 we have

n 1-1/α I n,βn,x 0 12 = n 1-1/α E[E[H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ]E[H Y n,βn,x 0 1 (∂ σ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ]] n→∞ ---→ 1 σ 2 E [E[H L α (1)|L α 1 ]E[L α 1 H L α (1) -1|L α 1 ]] . (3.11)
On the other hand, from (3.7) and (3.10) we get

ϕ α (L α 1 ) ϕ α (L α 1 ) ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 ) ϕ α (L α 1 ) = E [H L α (1)|L α 1 ] E [(L α 1 H L α (1) -1) |L α 1 ] . (3.12) 
Combining (3.11) with (3.12) gives

n 1-1/α I n,βn,x 0 12 n→∞ ---→ 1 σ 2 R ϕ α (u) [ϕ α (u) + uϕ α (u)] ϕ α (u) du = 1 σ 2 R ϕ α (u)du + 1 σ 2 R u (ϕ α (u)) 2 ϕ α (u) du = 0, (3.13 
) where we used the fact that ϕ α is a symmetric function, and that the functions under the integral are odd. This completes the proof of part i).

ii) Using (3.6) in Proposition 3.1 again and Jensen's inequality, we get:

E n 1/2 r n ∇ β p β 1 n (x 0 , X β 1 n ) p β 1 n (x 0 , X β 1 n ) p ≤ E|n 1/2 r n H Y n,β,x 0 1 (∇ β Y n,β,x 0 1 )| p ,
and the result follows from Lemma 3.3. This achieves the proof of Theorem 3.1.

4

Proof of the asymptotic expansion of the likelihood (Theorems 2.1 -2.

2)

The aim of this section is to prove the asymptotic expansion of the log-likelihood function, stated in Theorem 2.1 as well as the convergence given in Theorem 2.2. The proof of Theorem 2.1 is based essentially on the L 2 -regularity property of the transition density p β 1/n (x, y). From Jeganathan's article [START_REF] Jeganathan | On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal[END_REF], the following four conditions A1-A4 are sufficient to get the expansion (2.2) of Theorem 2.1.

We recall the notation

ξ i,n (β) =       ∂ θ p β 1 n p β 1 n X β i n , X β i+1 n ∂σp β 1 n p β 1 n X β i n , X β i+1 n       and we denote χ n (β, x, y) =       ∂ θ p β 1 n (x,y) p β 1 n (x,y) 1/2 ∂σp β 1 n (x,y) p β 1 n (x,y) 1/2       . A1. L 2 -regularity n j=1 E   R p β+rnh 1 n X β j-1 n , y 1/2 -p β 1 n X β j-1 n , y 1/2 - 1 2 h T r n χ n (β, X β j-1 n , y) 2 dy   n→∞ ---→ 0. A2. J n (β) = r n n-1 i=0 E ξ i,n (β)ξ T i,n (β)|F i/n r n n→∞ ---→ I(β) (> 0 a.e.
), in probability.

A3

.

∀ > 0, n-1 i=0 E |r n ξ i,n (β)| 2 1 {|rnξ i,n (β)|≥ } n→∞ ---→ 0. A4. sup n n i=0 E( r n ξ i,n (β)ξ i,n (β) T r n ) ≤ C, for a strictly positive constant C.
The condition A1 is proved in Section 4.1 and A2 and A3 are proved in Section 4.2. The condition

A4 is immediate from Theorem 3.1 ii) since nE(r n ξ i,n (β)ξ i,n (β) T r n ) = E   n 2-2 α I n,β,X β i/n 11 n 1-1 α I n,β,X β i/n 12 n 1-1 α I n,β,X β i/n 12 I n,β,X β i/n 22   .
Note that these conditions do not imply the stable convergence in law (2.6) since in our framework the filtration (F i n ) i does not satisfy the "nested condition" (see Theorem 3.2 in [START_REF] Hall | Martingale limit theory and its application[END_REF]). The proof of the stable convergence in law will be given in Section 5.

Proof of the condition A1 (the L 2 -regularity condition).

Following [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], the crucial point of the proof is the asymptotic behavior of the transition density of X β t established in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] and recalled below. We assume that H 1 holds. Let (ς n,θ,x 0 t ) be the solution to the ordinary differential equation

ς n,θ,x 0 t = x 0 + 1 n t 0 b(ς n,θ,x 0 s , θ)ds t ∈ [0, 1]. (4.1) Let (β n ) n≥1 be a sequence such that β n n→∞ ---→ β then for all (x 0 , u) ∈ R 2 , i) σn n 1/α p βn 1 n (x 0 , uσn n 1/α + ς n,θn,x 0 1 ) n→∞ ---→ ϕ α (u), ii) sup u∈R sup n σn n 1/α p βn 1 n (x 0 , uσn n 1/α + ς n,θn,x 0 1 ) < ∞,
where ϕ α is the density of L α 1 , a centered α-stable Lévy process. Theorem 4.2. [Theorem 2.2 in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]] Under the assumptions of Theorem 4.1,

i) σ 2 n n 2 α -1 ∂ θ p βn 1 n (x 0 , uσn n 1/α + ς n,θn,x 0 1 ) n→∞ ---→ -∂ θ b(x 0 , θ) × ϕ α (u), σ 2 n n 1/α ∂ σ p βn 1 n (x 0 , uσn n 1/α + ς n,θn,x 0 1 ) n→∞ ---→ -ϕ α (u) -uϕ α (u), ii) sup u∈R sup n σ 2 n n 2 α -1 ∂ θ p βn 1 n (x 0 , uσn n 1/α + ς n,θn,x 0 1 ) < ∞, sup u∈R sup n σ 2 n n 1/α ∂ σ p βn 1 n (x 0 , uσn n 1/α + ς n,θn,x 0 1 ) < ∞. Proof of A1. By the change of variable y = uσ n 1/α + ς n,θ,X β j-1 n 1 proving A1 is equivalent to show: 1 n n j=1 R E f n (X β j-1 n , u) -g n (X β j-1 n , u) 2 du n→∞ ---→ 0, (4.2) 
where

f n (x, u) = √ σn 1/2-1/2α p β+rnh 1 n x, uσ n 1/α + ς n,θ,x 1 1/2 -p β 1 n x, uσ n 1/α + ς n,θ,x 1 1/2 , g n (x, u) = √ σ 2 n 1/2-1/2α (r n h) T χ n β, x, uσ n 1/α + ς n,θ,x 1 .
Following the proof of Proposition 8 in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], the next three properties are sufficient to prove (4.2).

1. There exists a function f such that,

∀x, u, f n (x, u) n→∞ ---→ f (x, u), g n (x, u) n→∞ ---→ f (x, u). (4.3) 2.
We have for all x,

lim sup n R f n (x, u) 2 du ≤ R f (x, u) 2 du, lim sup n R g n (x, u) 2 du ≤ R f (x, u) 2 du.
(4.4)

3. We have sup

x,n R f n (x, u) 2 du < ∞, sup x,n R g n (x, u) 2 du < ∞. (4.5) 
We now need to check the validity of the conditions (4.3), (4.4) and (4.5).

We start with the proof of the condition (4.3).

We recall that r n = n

1 2 -1 α 0 0 n -1 2 and h = (h 1 , h 2 ) T ∈ R 2
then by a simple computation we have,

g n (x, u) = √ σ 2 n 1-3 2α h 1 ∂ θ p β 1 n x, uσ n 1/α + ς n,θ,x 1 p β 1 n x, uσ n 1/α + ς n,θ,x 1 1/2 + √ σ 2 n -1 2α h 2 ∂ σ p β 1 n x, uσ n 1/α + ς n,θ,x 1 p β 1 n x, uσ n 1/α + ς n,θ,x 1 1/2 .
From Theorems 4.1 and 4.2, we see that

g n (x, u) n→∞ ---→ f (x, u) := - h 1 2σ ∂ θ b(x, θ) ϕ α (u) ϕ α (u) 1/2 - h 2 2σ (ϕ α (u) + uϕ α (u)) ϕ α (u) 1/2 . Let m t = p β+rnht 1 n x, uσ n 1/α + ς n,θ,x 1 , t ∈ [0, 1], then we can rewrite f n (x, u) as f n (x, u) = √ σn 1/2-1/2α m 1/2 1 -m 1/2 0 .
Using the mean value theorem, we get for some s(x, u) ∈ (0, 1)

f n (x, u) = √ σ 2 n 1/2-1/2α m s(x,u) √ m s(x,u) = √ σ 2 n 1/2-1/2α (r n h) T ∇ β p βn 1 n x, uσ n 1/α + ς n,θ,x 1 p βn 1 n x, uσ n 1/α + ς n,θ,x 1 1/2 ,
where β n = β + r n s(x, u)h. From Theorems 4.1 and 4.2, we also get that f n (x, u) n→∞ ---→ f (x, u). Now we prove the condition (4.4). We have

R g n (x, u) 2 du = σh 2 1 4 n 2-3/α R ∂ θ p β 1 n x, uσ n 1/α + ς n,θ,x 1 2 p β 1 n x, uσ n 1/α + ς n,θ,x 1 du + σh 2 2 4 n -1/α R ∂ σ p β 1 n x, uσ n 1/α + ς n,θ,x 1 2 p β 1 n x, uσ n 1/α + ς n,θ,x 1 du + σh 1 h 2 2 n 1-2/α R ∂ θ p β 1 n x, uσ n 1/α + ς n,θ,x 1 p β 1 n x, uσ n 1/α + ς n,θ,x 1 1/2 ∂ σ p β 1 n x, uσ n 1/α + ς n,θ,x 1 p β 1 n x, uσ n 1/α + ς n,θ,x 1 1/2 du. (4.6) From Theorem 3.1, we get R g n (x, u) 2 du n→∞ ---→ R f (x, u) 2 du, ∀x. . (4.7)
Using

f n (x, u) = √ σ 2 n 1/2-1/2α 1 0 (r n h) T ∇ β p β+rnhs 1 n x, uσ n 1/α + ς n,θ,x 1 p β+rnhs 1 n x, uσ n 1/α + ς n,θ,x 1 1/2 ds,
we write: From the Markov property and (3.1) we have:

R f n (x, u) 2 du = ||f n (x, .)|| 2 2 = σn 1-1/α 4 1 0 (r n h) T ∇ β p β+rnhs 1 n x, σ . n 1/α + ς n,θ,x 1 p β+rnhs 1 n x, σ . n 1/α + ς n,θ,x 1 1/2 ds 2 2 ≤ σn 1-1/α 4    1 0 (r n h) T ∇ β p β+rnhs 1 n x, σ . n 1/α + ς n,θ,x 1 p β+rnhs 1 n x, σ . n 1/α + ς n,θ,x 1 1/2 2 ds    2 = σn 1-1/α 4    1 0 n 1 2 -1 α h 1 ∂ θ p β+rnhs 1 n x, σ . n 1/α + ς n,θ,x 1 p β+rnhs 1 n x, σ . n 1/α + ς n,θ,x 1 1/2 + n -1 2 h 2 ∂ σ p β+rnhs 1 n x, σ . n 1/α + ς n,θ,x 1 p β+rnhs 1 n x, σ . n 1/α + ς n,θ,x 1 1/2 2 ds    2 = σn 1-1/α 4     1 0   R n 1-2 α h 2 1 ∂ θ p β+srnh 1 n x, uσ n 1/α + ς n,θ,x 1 2 p β+srnh 1 n x, uσ n 1/α + ς n,θ,x 1 du + R n -1 h 2 2 ∂ σ p β+srnh 1 n x, uσ n 1/α + ς n,θ,x 1 2 p β+srnh 1 n x, uσ n 1/α + ς n,θ,x 1 du + R n -1 α 2h 1 h 2 ∂ θ p β+srnh 1 n x, uσ n 1/α + ς n,θ,x 1 ∂ σ p β+srnh 1 n x, uσ n 1/α + ς n,θ,x 1 p β+srnh 1 n x, uσ n 1/α + ς n,θ,x 1 du   1/2 ds     2 = n 1-1/α 4     1 0   R n 1-1 α h 2 1 ∂ θ p β+srnh 1 n (x, v) 2 p β+srnh 1 n (x, v) dv + R n 1 α -1 h 2 2 ∂ σ p β+srnh 1 n (x, v) 2 p β+srnh 1 n (x, v) dv + R 2h 1 h 2 ∂ θ p β+srnh 1 n (x, v) ∂ σ p n,β+srnh 1 n (x, v) p β+srnh 1 n (x, v) dv   1/2 ds     2 by the change of variable uσ n 1/α + ς n,θ,x 1 = v, = 1 4     1 0   n 2-2 α h 2 1 I n,β+srnh,x 11 + h 2 2 I n,β+srnh,x 22 
+ n 1-1/α 2h 1 h 2 I n,β+srnh,x 12   1/2 ds     2 n→∞ ---→ 1 σ 2 h 2 1 4 (∂ θ b(x, θ)) 2 R (ϕ α (u)) 2 ϕ α (u) du + h 1 h 2 2σ 2 R ϕ α (u) [ϕ α (u) + uϕ α (u)] ϕ α (u) du + 1 σ 2 h 2 2 4 R (ϕ α (u) + uϕ α (u)) 2 ϕ α (u) du = R f 2 (x, u)du.
I n,β,X β i/n = E ξ i,n (β)ξ i,n (β) T |G i/n =   I n,β,X β i/n 11 I n,β,X β i/n 12 I n,β,X β i/n 12 I n,β,X β i/n 22   .
From Theorem 3.1 we know that the quantities sup 0≤i≤n-1

nr n I n,β,X β i/n r n -   1 σ 2 ∂ θ b(X β i/n ) 2 R ϕ (u) 2 ϕ(u) du 0 0 1 σ 2 R [ϕα(u)+uϕ α (u)] 2 ϕα(u) du   converge to zero as n → ∞.
Then the convergence A2 is a consequence of the convergence of a Riemann sum.

To prove A3, from the Markov property, we get:

E |r n ξ i,n (β)| k |X β i/n = x = E   r n ∇ β p β 1 n (x,X β 1 n ) p β 1 n (x,X β 1 n ) k   , for any k ≥ 1. But from Theorem 3.1 ii) we have sup n,x E   n 1/2 r n ∇ β p β 1 n (x,X β 1 n ) p β 1 n (x,X β 1 n ) k   < ∞, ∀k ≥ 1.
This control, for instance with k = 4, is sufficient to imply the Lindeberg's condition A3.

5 Proof of Theorem 2.

(Stable central limit theorem)

The aim of this section is to prove the stable convergence in law stated in Theorem 2.3. We first recall the following result established in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] where Y n,β,x 0 1 is defined by (3.4) and is equal in law to X β ) be the solution to the ordinary differential equation (4.1), then

n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) n→∞ ---→ a.s. σL α 1 , (5.1) 
and this convergence is uniform with respect to x 0 .

Proof of Theorem 2.3. Since

r n = n 1 2 -1 α 0 0 n -1 2
we have

r n n-1 i=0 ξ i,n (β) = n-1 i=0       n 1 2 -1 α ∂ θ p β 1 n p β 1 n X β i n , X β i+1 n n -1 2 ∂σp β 1 n p β 1 n X β i n , X β i+1 n       . Theorem 2.
3 is an immediate consequence of Lemmas 5.2-5.3-5.4 below.

Lemma 5.2. We consider

i,n = n 1-1/α ∂ θ p β 1 n p β 1 n (X β i n , X β i+1 n ) + 1 σ ∂ θ b(X β i n , θ) ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n ) then we have n -1/2 n-1 i=0 i,n n→∞ ---→ P 0.
Proof. Using Lemma 9 in [START_REF] Genon | On the estimation of the diffusion coefficient for multidimensional diffusion processes[END_REF], it is sufficient to show that:

n -1/2 n-1 i=0 |E[ i,n |F i/n ]| n→∞ ---→ P 0, (5.2 
)

n -1 n-1 i=0 |E[ 2 i,n |F i/n ]| n→∞ ---→ P 0, (5.3) 
We start by the proof of (5.2). Since a score function has an expectation equal to zero, and

L i+1 n -L i n is independent of F i/n , we deduce that E[ i,n |F i/n ] = 1 σ ∂ θ b(X β i n , θ)E   ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n )   .
Since (L t ) t has stationary increments, the law of

n 1/α (L i+1 n -L i n
) is the same as the law of L n 1 . Moreover, we know from Lemma 3.1, that P(L n

1 = L α 1 ) = O(1/n), thus E[ i,n |F i/n ] = 1 σ ∂ θ b(X β i n , θ)E ϕ α (L α 1 ) ϕ α (L α 1 ) + ϕ α ϕ α ∞ O(n -1 ),
where we used the fact that ϕ α ϕα is bounded (see e.g. Theorem 7.3.2 in [START_REF] Vassili | Markov processes, semigroups and generators[END_REF]). Using E

ϕ α (L α 1 ) ϕα(L α 1 ) = R ϕ α (u)du = 0, we deduce |E[ i,n |G i/n ]| ≤ Cn -1
for some constant C and (5.2) follows. We now prove (5.3). We have

E[ 2 i,n |F i/n ] = n 2-2/α I n,β,X β i n 11 + 1 σ 2 ∂ θ b(X β i n , θ) 2 E    ϕ α n 1/α (L i+1 n -L i n ) 2 ϕ α n 1/α (L i+1 n -L i n ) 2    + 2E   n 1-1/α ∂ θ p β 1 n (X β i n , X β i+1 n ) p β 1 n (X β i n , X β i+1 n ) 1 σ ∂ θ b(X β i n , θ) ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n ) F i n   .
(5.4)

With a method analogous to the proof of (5.2), we can show that [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF]. From Theorem 3.1, it appears that the first two terms in the right-hand side of (5.4) are asymptotically close to the same quantities, and that (5.3) is proved as soon as we show that the following control holds, uniformly with respect to i,

E   ϕ α n 1/α (L i+1 n -L i n ) 2 ϕα n 1/α (L i+1 n -L i n ) 2   = E ϕ α (L α 1 ) 2 ϕα(L α 1 ) 2 + o
E   n 1-1/α ∂ θ p β 1 n (X β i n , X β i+1 n ) p β 1 n (X β i n , X β i+1 n ) 1 σ ∂ θ b(X β i n , θ) ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n ) F i n   = - 1 σ 2 ∂ θ b(X β i n , θ) 2 E ϕ α (L α 1 ) 2 ϕ α (L α 1 ) 2 + o(1).
(5.5)

Using the notations of Section 3.2.1, we define

d n,θ,x 0 = E n 1-1/α ∂ θ q n,β,x 0 (Y n,β,x 0 1 
)

q n,β,x 0 (Y n,β,x 0 1 ) 1 σ ∂ θ b(x 0 , θ) ϕ α (L n 1 ) ϕα(L n 1 )
, so that the left-hand side of (5.5) reduces, from the Markov property, (3.5) and the fact that

Y n,β,x 0 1 equals in law X β 1 n
, to d n,θ,X β i/n . On the other hand, we can rewrite d n,θ,x 0 as

d n,θ,x 0 = E     n 1-1/α ∂ θ q n,β,x 0 (Y n,β,x 0 1 
)

q n,β,x 0 (Y n,β,x 0 1 ) 1 σ ∂ θ b(x 0 , θ) ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ     + E     n 1-1/α ∂ θ q n,β,x 0 (Y n,β,x 0 1 ) q n,β,x 0 (Y n,β,x 0 1 ) 1 σ ∂ θ b(x 0 , θ)     ϕ α (L n 1 ) ϕ α (L n 1 ) - ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ         .
(5.6) Using the Cauchy-Schwarz inequality for the second term in the right-hand side of (5.6), we get

E     n 1-1/α ∂ θ q n,β,x 0 (Y n,β,x 0 1 ) q n,β,x 0 (Y n,β,x 0 1 ) 1 σ ∂ θ b(x 0 , θ)     ϕ α (L n 1 ) ϕ α (L n 1 ) - ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ         ≤   E n 1-1/α ∂ θ q n,β,x 0 (Y n,β,x 0 1 ) q n,β,x 0 (Y n,β,x 0 1 ) 1 σ ∂ θ b(x 0 , θ) 2   1/2      E     ϕ α (L n 1 ) ϕ α (L n 1 ) - ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ     2      1/2 . (5.7) Furthermore, ∀ > 0 we have E     ϕ α (L n 1 ) ϕ α (L n 1 ) - ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ     2 = E     ϕ α (L n 1 ) ϕ α (L n 1 ) - ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ     2 1 n 1/α (Y n,θ,x 0 1 -ς n,θ,x 0 1 ) σ -L n 1 ≤ + E     ϕ α (L n 1 ) ϕ α (L n 1 ) - ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ     2 1 n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ -L n 1 > ≤ C 1 2 + 2C 2 E   1 n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ -L n 1 >    = C 1 2 + 2C 2 P n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ -L n 1 > n→∞ ---→ C 1 2 ,
where we used the fact that ϕ α ϕα is bounded with a bounded derivative (see e.g. Theorem 7.3.2 in [START_REF] Vassili | Markov processes, semigroups and generators[END_REF]) and Lemma 5.1. From Theorem 3.1 ii), and the estimates above we deduce that (5.7) converges to zero as n → ∞. Then,

d n,θ,x 0 = E     n 1-1/α ∂ θ q n,β,x 0 (Y n,β,x 0 1 ) q n,β,x 0 (Y n,β,x 0 1 ) 1 σ ∂ θ b(x 0 , θ) ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α (Y n,θ,x 0 1 -ς n,θ,x 0 1 ) σ     + o(1), (5.8) 
where the o(1) term is uniform with respect to x 0 . Now, using Proposition 3.1, we get

d n,θ,x 0 = E     n 1-1/α H Y n,β,x 0 1 (∂ θ Y n,β,x 0 1 ) 1 σ ∂ θ b(x 0 , θ) ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ     + o(1).
From Lemma 3.3, we also have sup

x 0 d n,θ,x 0 - 1 σ 2 ∂ θ b(x 0 , θ) 2 E     H L α (1) ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ     n→∞ ---→ 0.
From Lemma 5.1 we can deduce that

d n,θ,x 0 n→∞ ---→ 1 σ 2 [∂ θ b(x 0 , θ)] 2 E H L α (1) ϕ α (L α 1 ) ϕ α (L α 1 )
, uniformly with respect to x 0 . Then, the relation (3.7) enables to rewrite this convergence as,

d n,θ,x 0 n→∞ ---→ - 1 σ 2 [∂ θ b(x 0 , θ)] 2 E ϕ α (L α 1 ) 2 ϕ α (L α 1 )
2 , uniformly with respect to x 0 .

This result implies (5.5) and hence (5.3).

Lemma 5.3. We consider

i,n = ∂ σ p β 1 n p β 1 n (X β i n , X β i+1 n ) + 1 σ ϕ α n 1/α (L i+1 n -L i n ) + n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n ) then we have n -1/2 n-1 i=0 i,n n→∞ ---→ P 0.
Proof. We proceed as in the proof of Lemma 5.2 and check that

n -1/2 n-1 i=0 |E[ i,n |F i/n ]| n→∞ ---→ P 0, (5.9 
)

n -1 n-1 i=0 |E[ 2 i,n |F i/n ]| n→∞ ---→ P 0.
(5.10)

We start by the proof of (5.9). Since a score function has an expectation equal to zero, and

L i+1 n -L i n is independent of F i/n , we deduce that E[ i,n |F i/n ] = 1 σ E   ϕ α n 1/α (L i+1 n -L i n ) + n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n )   .
Since (L t ) t has stationary increments, the law of

n 1/α (L i+1 n -L i n
) is the same as the law of L n 1 . Moreover, we know from Lemma 3.1, that P(L n

1 = L α 1 ) = O(1/n), thus E[ i,n |F i/n ] = 1 σ E ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 ) ϕ α (L α 1 ) + ϕ α (u) + uϕ α (u) ϕ α (u) ∞ O(n -1 ),
where we used the fact that uϕ α (u) ϕα(u) is bounded (see e.g. Theorem 7.3.2 in [START_REF] Vassili | Markov processes, semigroups and generators[END_REF]). Using E

L α 1 ϕ α (L α 1 ) ϕα(L α 1 ) = R uϕ α (u)du = -1, we deduce |E[ i,n |F i/n ]| ≤ Cn -1
for some constant C and 20

(5.9) follows. We now prove (5.10). We have

E[ 2 i,n |F i/n ] = I n,β,X β i n 22 + 1 σ 2 E    ϕ α n 1/α (L i+1 n -L i n ) + n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) 2 ϕ α n 1/α (L i+1 n -L i n ) 2    + 2E   ∂ σ p β 1 n (X β i n , X β i+1 n ) p β 1 n (X β i n , X β i+1 n ) 1 σ ϕ α n 1/α (L i+1 n -L i n ) + n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n ) F i n   .
(5.11) With a method analogous to the proof of (5.9), we can show that

E   ϕα n 1/α (L i+1 n -L i n ) +n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) 2 ϕα n 1/α (L i+1 n -L i n ) 2   = E [ϕα(L α 1 )+L α 1 ϕ α (L α 1 )] 2 ϕα(L α 1 ) 2 + o(1).
Proceeding as in the proof of (5.4), then (5.9) is proved as soon as we show that the following control holds uniformly with respect to i,

E   ∂ σ p β 1 n (X β i n , X β i+1 n ) p β 1 n (X β i n , X β i+1 n ) 1 σ ϕ α n 1/α (L i+1 n -L i n ) + n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n ) F i n   = - 1 σ 2 E (ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 )) 2 ϕ α (L α 1 ) 2
+ o(1). (5.12)

We define d n,σ,x 0

1 = E ∂σq(Y n,β,x 0 1 
)

q(Y n,β,x 0 1 ) 1 σ ϕα(L n 1 )+L n 1 ϕ α (L n 1 ) ϕα(L n 1 )
, so that the left-hand side of (5.12) reduces, from the Markov property, to d n,σ,X β i/n 1 . Proceeding as in the proof of (5.8), noting that uϕ α (u) ϕα(u) is bounded with a bounded derivative (see e.g. Theorem 7.3.2 in [START_REF] Vassili | Markov processes, semigroups and generators[END_REF]), then we also get that

d n,σ,x 0 1 = E ∂ σ q(Y n,β,x 0 1 ) q(Y n,β,x 0 1 ) 1 σ + E     ∂ σ q(Y n,β,x 0 1 ) q(Y n,β,x 0 1 ) 1 σ n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ     + o(1)
where the o(1) term is uniform with respect to x 0 . Now, using Proposition 3.1, we get

d n,σ,x 0 1 = E   H Y n,β,x 0 1 (∂ σ Y n,β,x 0 1 ) σ   + E     H Y n,β,x 0 1 (∂ σ Y n,β,x 0 1 ) σ n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α (Y n,β,x 0 1 -ς n,θ,x 0 1 ) σ     + o(1).
From Lemma 5.1 and the convergence result (3.8) we can deduce that

d n,σ,x 0 1 n→∞ ---→ 1 σ 2 E (L α 1 H L α (1) -1) ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 ) ϕ α (L α 1 )
, uniformly with respect to x 0 . Then, the relation (3.10) enables to rewrite this convergence as,

d n,σ,x 0 1 n→∞ ---→ - 1 σ 2 E (ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 )) 2 ϕ α (L α 1 ) 2 .
This result implies (5.12) and hence (5.10).

Lemma 5.4. We have the convergence in law,

        -n -1/2 n-1 i=0 ϕ α n 1/α (L i+1 n -L i n ) ϕα n 1/α (L i+1 n -L i n ) 1 σ ∂ θ b(X β i n , θ) -n -1/2 n-1 i=0 1 σ ϕα n 1/α (L i+1 n -L i n ) +n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) ϕα n 1/α (L i+1 n -L i n )         ⇒ N (0, I(β)) (5.13)
where the convergence is stable with respect to the σ-field σ(L s , s ≤ 1) .

Proof. We define the following processes:

Z n t = nt i=0 L i+1 n -L i n , Γ n t = Γ n,1 t Γ n,2 t = n -1/2         nt i=0 ϕ α n 1/α (L i+1 n -L i n ) ϕα n 1/α (L i+1 n -L i n ) 1 σ ∂ θ b(X β i n , θ) nt i=0 ϕα n 1/α (L i+1 n -L i n ) +n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) ϕα n 1/α (L i+1 n -L i n ) 1 σ         , Γ n t = Γ n,1 t Γ n,2 t = n -1/2         [nt] i=0 ϕ α n 1/α (L i+1 n -L i n ) ϕα n 1/α (L i+1 n -L i n ) [nt] i=0 ϕα n 1/α (L i+1 n -L i n ) +n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) ϕα n 1/α (L i+1 n -L i n )         .
We will apply Lemma 2.8 in [START_REF] Jacod | The Euler scheme for Lévy driven stochastic differential equations: limit theorems[END_REF] to prove (5.13). Indeed, we will show that there exists a Gaussian random vector γ with var(γ)

=     E ϕ α (L α 1 ) 2 ϕα(L α 1 ) 2 0 0 E (ϕα(L α 1 )+L α 1 ϕ α (L α 1 )) 2 ϕα(L α 1 ) 2     , independent of L 1 such
that one has the convergence in law (Γ n 1 , Z n 1 ) ⇒ (γ, L 1 ).

(5.14)

Then, by application of Lemma 2.8 in [START_REF] Jacod | The Euler scheme for Lévy driven stochastic differential equations: limit theorems[END_REF], there exists a bi-dimensional Brownian motion (Γ t ) t independent of (L t ) t such that one has the convergence in law (Z n , Γ n , Γ n ) ⇒ (L, Γ, Γ ) where

Γ t = t 0 1 σ ∂ θ b(X β s , θ) 0 0 1 σ dΓ s and var(Γ 1 ) = var(γ).
Let us focus on the derivation of the convergence (5.14). For (u, v, w) ∈ R 3 , we set

X n (u, v, w) = E   exp   i u n 1/2 ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) + i v n 1/2 ϕ α (n 1/α L 1 n ) + n 1/α L 1 n ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) + iwL 1 n     .
Using the i.i.d. structure of the increments of the Lévy process L, we easily get the following expression about the characteristic function of (

Γ n 1 , Z n 1 ) log E exp(iuΓ n,1 1 + ivΓ n,2 1 + iwZ n 1 ) = n log X n (u, v, w). (5.15)
Let us study the asymptotic behavior of X n (u, v, w). Using the expansion of the exponential function near zero and that ϕ α ϕα and xϕ α (x) ϕα(x) are bounded we get 6) n (u, v, w) + O(n -3/2 ). (5.16)

X n (u, v, w) = E        e iwL 1 n     1 +   iu n 1/2 ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) + iv n 1/2 ϕ α (n 1/α L 1 n ) + n 1/α L 1 n ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n )   + 1 2   iu n 1/2 ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) + iv n 1/2 ϕ α (n 1/α L 1 n ) + n 1/α L 1 n ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n )   2            +O(n -3/2 ) = E e iwL 1 n + iu n 1/2 E ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) e iwL 1 n + iv n 1/2 E   ϕ α (n 1/α L 1 n ) + n 1/α L 1 n ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) e iwL 1 n   - u 2 2n E   ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) 2 e iwL 1 n   - uv n E   ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) + n 1/α L 1 n ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) e iwL 1 n   - v 2 2n E   ϕ α (n 1/α L 1 n ) + n 1/α L 1 n ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) 2 e iwL 1 n   + O(n -3/2 ) := X (1) n (u, v, w) + iu n 1/2 X (2) n (u, v, w) + iv n 1/2 X (3) n (u, v, w) - u 2 2n X (4) n (u, v, w) - uv n X (5) n (u, v, w) - v 2 2n X ( 
First, we have

X (1) n (u, v, w) = e ψ(w)/n = 1 + ψ(w)/n + O(n -2 ) (5.17)
where ψ(w) is the Lévy Khintchine exponent of L 1 .

We now focus on the term X

n (u, v, w). Using the results of Lemma 3.1, and the fact that n 1/α L 1/n has the same law as L n 1 , we get

X (2) n (u, v, w) = E ϕ α ϕ α (L α 1 )e i wL α 1 n 1/α + O(n -1 ) = R ϕ α (s)e i ws n 1/α ds + O(n -1 ) = - iw n 1/α R ϕ α (s)e i ws n 1/α ds + O(n -1
) using integration by parts formula = O(max(n -1/α , n -1 )).

(5.18)

For the term X

n (u, v, w), using Lemma 3.1 again, it is easy to see that

X (3) n (u, v, w) = E ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 ) ϕ α (L α 1 ) e i wL α 1 n 1/α + O(n -1 ) = R ϕ α (s)e i ws n 1/α ds + R sϕ α (s)e i ws n 1/α ds + O(n -1 ).
(5. [START_REF] Vassili | Markov processes, semigroups and generators[END_REF] Using integration by parts formula, we have

E(e iwL α 1 n ) = R ϕ α (s)e iws n 1/α ds = - n 1/α iw R ϕ α (s)e iws n 1/α ds.
Then, we deduce that

R ϕ α (s)e iws n 1/α ds = - iw n 1/α E(e iwL α 1 n ) = - iw n 1/α E(e iw n 1/α L α 1 ). (5.20)
Since L α 1 is a symmetric α-stable process then we have for some constant C(α) > 0 (5.23)

E(e iw n 1/α L α 1 ) = e -C(α) w n 1/α α . ( 5 
From (5.19) and (5.23) we can deduce that

X (3) n (u, v, w) = O(n -1
).

(5.24)

For the term X

n (u, v, w), using Lemma 3.1 again, we have

X (4) n (u, v, w) = E ϕ α ϕ α (L α 1 ) 2 e i wL α 1 n 1/α + O(n -1 ) n→∞ ---→ E ϕ α ϕ α (L α 1 ) 2 .
(5.25)

For the term X

n (u, v, w) we have

X (5) n (u, v, w) = E ϕ α (L α 1 ) ϕ α (L α 1 ) (ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 )) ϕ α (L α 1 ) e iwL α 1 n 1/α + O(n -1 ) n→∞ ---→ E ϕ α (L α 1 ) ϕ α (L α 1 ) (ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 )) ϕ α (L α 1 )
= 0 from (3.13).

(5.26)

For the term X

n (u, v, w), we see that

X (6) n (u, v, w) = E ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 ) ϕ α (L α 1 ) 2 e iwL α 1 n 1/α + O(n -1 ) n→∞ ---→ E ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 ) ϕ α (L α 1 )
2 .

(5.27)

Collecting the convergence of (X

(i) n (u, v, w)) 1≤i≤6 , we deduce the convergence log E exp(iuΓ n,1 1 + ivΓ n,2 1 + iwZ n 1 ) n→∞ ---→ ψ(v)- u 2 2 E ϕ α ϕ α (L α 1 ) 2 - v 2 2 E ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 ) ϕ α (L α 1 )
2 and thus the convergence in law of this lemma.

6 Proofs of Lemmas 3.2 -3.5

The proof of these lemmas is very technical and requires many intermediate results. We first recall the Malliavin calculus for jump processes used in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] and some properties of the Malliavin weights. Next we will establish a regularity property of a conditional expectation with respect to the conditioning variable. Then we will proceed to the proof of the lemmas.

Malliavin calculus and preliminary lemmas

We recall the Malliavin calculus on the Poisson space associated to the measure µ (n) (defined in Section 3.2.1) and the basic properties of the Malliavin operators (see Bichteler, Gravereaux, Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], Chapter IV, Section 8-9-10). For a test function f

: [0, 1] × E → R ( f is measurable, C 2
with respect to the second variable, with bounded derivative, and

f ∈ ∩ p≥1 L p (ν)) we set µ (n) (f ) = 1 0 E f (t, z)µ (n) (dt, dz).
We introduce an auxiliary function ρ n as

ρ n (z) =      z 4 if |z| < 1 ζ(z) if 1 ≤ |z| ≤ 2 z 2 τ ( z 2n 1/α ) if |z| > 2 (6.1)
where τ is defined in the assumption H 1 (b i ), and ζ is a non negative function belonging to C ∞ such that the function ρ n belongs to C ∞ . Note that ζ is defined such that ρ n (z) admits a derivative and

ρ n , (ρ n ) , ρ n F n (z) Fn(z) belong to ∩ p≥1 L p (F n (z)dz).
From the conditions on τ , we can easily deduce that

z 2 τ ( z 2n 1/α ) = z 2 if 2 ≤ |z| ≤ 2n 1/α 0 if |z| > 4n 1/α .
Moreover, we can see that

ρ n (z) n→∞ ---→ ρ(z) where ρ(z) =      z 4 if |z| < 1 ζ(z) if 1 ≤ |z| ≤ 2 z 2 if |z| > 2. (6.2)
Note that from the definition of ρ n and ρ, we can easily see that ρ n (z) = ρ(z) if |z| ≤ 2n 1/α . With these notations, we define the Malliavin operator L, on a simple functional µ (n) (f ), in the same way as in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] by the following equations :

L(µ (n) (f )) = 1 2 µ (n) (ρ n ) f + ρ n F n F n f + ρ n f ,
where f and f are the derivatives with respect to the second variable. For Φ = F (µ

(n) (f 1 ), .., µ (n) (f k )), with F of class C 2 , we set LΦ = k i=1 ∂F ∂x i (µ (n) (f 1 ), ..., µ (n) (f k ))L(µ (n) (f i )) + 1 2 k i,j=1 ∂ 2 F ∂x i ∂x j (µ (n) (f 1 ), ..., µ (n) (f k ))µ (n) (ρ n f i f j ).
These definitions permit to construct a linear operator L on a space D ⊂ ∩ p≥1 L p whose basic properties are the following.

i) L is self-adjoint: ∀Φ, Ψ ∈ D, we have EΦLΨ = ELΦΨ.
ii) LΦ 2 ≥ 2ΦLΦ.

iii) ELΦ = 0.

We associate to L, the symmetric bilinear operator Γ:

Γ(Φ, Ψ) = L(ΦΨ) -ΦLΨ -ΨLΦ. (6.3) 
This operator satisfies the following properties (see [4, equation (8-3)])

Γ(F (Φ), Ψ) = F (Φ)Γ(Φ, Ψ), (6.4) 
Γ(F (Φ 1 , Φ 2 ), Ψ) = ∂ Φ 1 F (Φ 1 , Φ 2 )Γ(Φ 1 , Ψ) + ∂ Φ 2 F (Φ 1 , Φ 2 )Γ(Φ 2 , Ψ), (6.5) 
|Γ(Φ, Ψ)| ≤ Γ(Φ, Φ) 1/2 Γ(Ψ, Ψ) 1/2 . (6.6) 
Remark 6.1. The operators L and Γ depend on n through the functions ρ n and F n but to simplify the notation we omit the dependence in n.

The operator L and the operator Γ permit to establish the following integration by parts formula (see [4, Propositions 8-10, p.103]). Proposition 6.1. For Φ and Ψ in D, and f bounded with bounded derivative up to order two, if Γ(Φ, Φ) is invertible and Γ -1 (Φ, Φ) ∈ ∩ p≥1 L p then we have

Ef (Φ)Ψ = Ef (Φ)H Φ (Ψ), (6.7) 
with

H Φ (Ψ) = -2ΨΓ -1 (Φ, Φ)LΦ -Γ(Φ, ΨΓ -1 (Φ, Φ)) (6.8) 
= -2ΨΓ -1 (Φ, Φ)LΦ - 1 Γ(Φ, Φ) Γ(Φ, Ψ) + Ψ Γ(Φ, Φ) 2 Γ(Φ, Γ(Φ, Φ)) (6.9) = ΦL Ψ Γ(Φ, Φ) - ΨLΦ Γ(Φ, Φ) -L ΨΦ Γ(Φ, Φ) . (6.10) 
With these notations, we can explicit the Malliavin weight

H Y n,β,x 0 1 (∇ β Y n,β,x 0 1
) appearing in the representation of the score function given in Proposition 3.1. Proposition 6.2. [Theorem 3.1 and Theorem 6.2 in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]]

H Y n,β,x 0 1 (∇ β Y n,β,x 0 1 ) =   H Y n,β,x 0 1 (∂ θ Y n,β,x 0 1 ) H Y n,β,x 0 1 (∂ σ Y n,β,x 0 1 )   = ∂ θ Y n,β,x 0 1 ∂ σ Y n,β,x 0 1 H Y n,β,x 0 1 (1) - 1 Γ(Y n,β,x 0 1 , Y n,β,x 0 1 ) Γ(Y n,β,x 0 1 , ∂ θ Y n,β,x 0 1 ) Γ(Y n,β,x 0 1 , ∂ σ Y n,β,x 0 1 ) (6.11 
) and

H Y n,β,x 0 1 (1) = Γ(Y n,β,x 0 1 , Γ(Y n,β,x 0 1 , Y n,β,x 0 1 )) (Γ(Y n,β,x 0 1 , Y n,β,x 0 1 
))

2 -2 LY n,β,x 0 1 Γ(Y n,β,x 0 1 , Y n,β,x 0 1 ) = 1 σ n 1/α H n β (1) + R n 1,β (1) + R n 2,β (1) + R n 3,β (1). 
(6.12)

The main term H n β (1) is given by

H n β (1) = 1 0 R ( n s ) -3 ρ n (z)(ρ n ) (z)µ n (ds, dz) n 1 1 0 R ( n s ) -2 ρ n (z)µ n (ds, dz) 2 - 1 0 R ( n s ) -1 (ρ n ) (z) -1+α z ρ n (z) µ n (ds, dz) n 1 1 0 R ( n s ) -2 ρ n (z)µ n (ds, dz) (6.13) 
with

n s = exp 1 n s 0 b (Y n,β,x 0 u , θ)du . (6.14) 
The remainder terms satisfy for all compact set

Q ⊂ R × (0, ∞) ∀p ≥ 2, E sup β∈Q R n 1,β (1) p ≤ C n , sup β∈Q |R n 2,β (1)| ≤ C n , sup β∈Q |R n 3,β (1)| ≤ C n , (6.15) 
where C is some deterministic constant. Remark 6.2. i) It is proved in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] (see (4.23) ) that H n β (1) is bounded by a random variable independent of n, β and x 0 and belonging to ∩ p≥1 L p and that it converges in L p , ∀p ≥ 1, uniformly with respect to x 0 (see (4.23) and (5.49) in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]) to H L α (1) given by

H L α (1) = 1 0 R ρ(z)ρ (z)µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) 2 - 1 0 R ρ (z) -1+α z ρ(z) µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) . (6.16) 
Moreover, H L α (1) and L α 1 H L α (1) belong to L p , ∀p ≥ 1. ii) In the case b ≡ 0 and σ = 1, we have n s = 1 and the remainder terms

R n 2,β (1), R n 3,β (1) 
are equal to zero (see (4.7) and (4.8) in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]). Moreover, we see that (6.12) can be rewritten as

H n β (1)+ 1 n 1/α R n 1,β (1) 
= H L n 1 (1), then we can deduce that H L n 1 (1)

L p --→ p≥1 H L α (1).
Before studying the Malliavin weight

H Y n,β,x 0 1 (∇ β Y n,β,x 0 1 
), we give some control on the processes (∂ θ Y β t ) t and (∂ σ Y β t ) t , respectively solution to the equations

∂ θ Y n,β,x 0 t = 1 n t 0 b (Y n,β,x 0 s , θ)∂ θ Y n,β,x 0 s ds + 1 n t 0 ∂ θ b(Y n,β,x 0 s , θ)ds, (6.17) 
∂ σ Y n,β,x 0 t = 1 n t 0 b (Y n,β,x 0 s , θ)∂ σ Y n,β,x 0 s ds + L n t n 1/α . (6.18) 
We have the following properties.

Lemma 6.1.

[Lemma 5.1 in [6]] Let Q ⊂ R × (0, ∞) be a compact subset. We have i) sup β∈Q |∂ θ Y n,β,x 0 1 | ≤ C n , ii) sup β∈Q sup s∈[0,1] ∂ σ Y n,β,x 0 s n→∞ ---→ L p 0, ∀p ≥ 1.
We now proceed to the decomposition of the Malliavin weight

H Y n,βn,x 0 1 (∇ β Y n,βn,x 0 1 
) defined in Proposition 6.2 into some main parts and some remainder parts. From (6.11), (6.12), we can rewrite

H Y n,βn,x 0 1 (∇ β Y n,βn,x 0 1 
) as,

H Y n,βn,x 0 1 (∇ β Y n,βn,x 0 1 ) =   1 σn n 1/α ∂ θ Y n,βn,x 0 1
H n βn (1)

1 σn n 1/α ∂ σ Y n,βn,x 0 1 H n βn (1) -1   +R n βn (∇ β Y n,βn,x 0 1 ) (6.19) 
where H n β (1) is given by (6.13) and

R n βn (∇ β Y n,βn,x 0 1 ) = ∂ θ Y n,βn,x 0 1 ∂ σ Y n,βn,x 0 1 R n 1,βn (1) + R n 2,βn (1) + R n 3,βn (1) -   V n,θn 1 U n,βn 1 V n,σn 1 U n,βn 1 -1 σn   (6.20) with U n,β 1 = Γ(Y n,β,x 0 1 , Y n,β,x 0 1 ), V n,θ 1 = Γ(Y n,β,x 0 1 , ∂ θ Y n,β,x 0 1 
) and V n,σ

1 = Γ(Y n,β,x 0 1 , ∂ σ Y n,β,x 0 1 
) given by

U n,β 1 = ( n 1 ) 2 σ 2 n 2/α 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz), (6.21) 
V n,θ

1 = 1 n ( n 1 ) 2 1 0 ( n s ) -2 U n,β s (∂ θ b) (Y n,β,x 0 s , θ) + b (Y n,β,x 0 s , θ)∂ θ Y n,β,x 0 s ds, (6.22) 
V n,σ ] given by (6.14). Now we recall two technical lemmas given in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] useful to study the convergence of the Malliavin weight H Y n,βn,x 0 1

1 = 1 n ( n 1 ) 2 1 0 ( n s ) -2 b (Y n,β,x 0 s , θ)∂ σ Y n,β,x 0 s U n,β s ds + σ n 2/α ( n 1 ) 2 t 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) (6.23) and ( n s ) s∈[0,1 
(∇ β Y n,βn,x 0 1
) in the proof of Lemmas 3.4 -3.5 later. Lemma 6.2. [Lemma 5.4 in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]] Let (β n ) be a sequence converging to β. For all p ≥ 1, the following convergences hold uniformly with respect to

x 0 i) n∂ θ Y n,βn,x 0 1 H n βn (1) n→∞ ---→ L p ∂ θ b(x 0 , θ)H L α (1), ii) n 1/α ∂ σ Y n,βn,x 0 1 H n βn (1) n→∞ ---→ L p L α 1 H L α (1)
, where H n β (1) and H L α (1) are respectively given by (6.13) and (6.16).

Lemma 6.3. [Lemma 5.3 in [6]] Let Q ⊂ R × (0, ∞)
be a compact subset. The following estimates hold:

i) sup β∈Q V n,θ 1 U n,β 1 ≤ C n , ii) V n,σ 1 U n,β 1 = 1 σ + R n 9,β (1), 
where C is some deterministic constant and sup β∈Q |R n 9,β (1)| converges to zero as n → ∞ in L p , ∀p ≥ 1.

Regularity of the conditional expectation

In this section, we prove a regularity property of the conditional expectation with respect to the conditioning variable. Proposition 6.3. Let H be a random variable such that E(H) 2 < ∞. We assume that there exists a sequence of random variables

(H n ) n≥1 with E(H n ) 2 < ∞ and such that H n n→∞ ---→ L 2
H and

sup n ||Γ(H n , H n )|| 2 < ∞. Then, E E[H|Y n,βn,x 0 1 ] 2 -E E[H|L α 1 ] 2 n→∞ ---→ 0 (6.24)
and this convergence is uniform with respect to x 0 .

Remark 6.3. Note that if the random variable H depends on all the measure µ then the Malliavin calculus of Section 3.2.1 is not defined. So we need to introduce the sequence of random variables (H n ), for which the Malliavin calculus of Section 6.1 is defined, such that Γ(H n , H n ) is also well defined . It is the case, for instance, if H n is a simple functional of µ (n) .

Proof of Proposition 6.3 . First we reduce the situation to the case where the random variable in the expectation is bounded. Let K > 1 and denote by x → X K (x) a smooth truncation function with

     X K (x) = 0 for |x| > K X K (x) = 1 for |x| ≤ K/2 0 ≤ X K (x) ≤ 1 for K/2 ≤ |x| ≤ K. (6.25)
For all > 0, we can choose K large enough such that ||H -HX K (H)|| 2 2 < and then, one can see that (6.24) is implied by the following convergence, ∀K > 2 sup

x 0 E E[HX K (H)|Y n,βn,x 0 1 ] 2 -E E[HX K (H)|L α 1 ] 2 n→∞ ---→ 0. Now since E (H n -H) 2 n→∞ ---→ 0, it is sufficient to prove that, ∀K > 2 sup x 0 E E[H n X K (H n )|Y n,βn,x 0 1 ] 2 -E E[H n X K (H n )|L α 1 ] 2 n→∞ ---→ 0. (6.26)
We now prove (6.26). First, we define η H n,K and η H n,K as follows

η H n,K (Y n,βn,x 0 1 -ς n,θn,x 0 1 ) = E H n X K (H n )|Y n,βn,x 0 1 -ς n,θn,x 0 1 = E H n X K (H n )|Y n,βn,x 0 1 , η H n,K ( σL α 1 n 1/α ) = E H n X K (H n )| σL α 1 n 1/α = E [H n X K (H n )|L α 1 ] . (6.27)
With these notations, we can rewrite (6.26) as sup

x 0 E η H n,K (Y n,βn,x 0 1 -ς n,θn,x 0 1 ) 2 -E η H n,K ( σL α 1 n 1/α ) 2 n→∞
---→ 0. (6.28) Using Lemma 6.5 in Section 6.4, we know that:

sup x 0 E η H n,K (Y n,βn,x 0 1 -ς n,θn,x 0 1 ) -η H n,K (Y n,βn,x 0 1 -ς n,θn,x 0 1 ) n→∞ ---→ 0
and since |η H n,K | and |η H n,K | are bounded by the constant K, we deduce sup

x 0 E[η H n,K (Y n,βn,x 0 1 -ς n,θn,x 0 1 ) 2 ] -E[η H n,K (Y n,βn,x 0 1 -ς n,θn,x 0 1 ) 2 ] n→∞ ---→ 0.
Now, applying Lemma 6.4 in Section 6.4, with the choice H n = 1 with the bounded function (η H n,K ) 2 we get (6.28) and the proposition is proved.

We can now prove Lemma 3.2, Lemma 3.3, Lemma 3.4 and Lemma 3.5.

6.3 Proofs of Lemma 3.2, Lemma 3.3, Lemma 3.4 and Lemma 3.5

Proof of Lemma 3.2. First we remark that although L α 1 does not belong to the domain of Malliavin operators D we can establish a representation for ϕ α /ϕ α .

Indeed, since L n 1 belongs to the Malliavin space D, the integration by parts formula (6.7) gives for any test function f ( f is bounded, compactly supported and f is bounded), 

E[f (L n 1 )] = E[f (L n 1 )H L n 1 (1) 
E[f (L α 1 )] = E[f (L α 1 )H L α (1)]. (6.30) Observing that ϕ α (u)f (u)du = -ϕ α (u)f (u)du, we get f (u)ϕ α (u)du = -E[f (L α 1 )H L α (1)
] and we deduce the representation (3.7).

Proof of Lemma 3.3. The proof of this lemma is based on the results in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] recalled in Section 6. From (6.20), Lemma 6.1, Lemma 6.3 and (6.15), we easily deduce that sup β∈Q R n β (∇ β Y n,βn,x 0 1

) converges to zero in L p , ∀p ≥ 1 (uniformly with respect to x 0 ). From Lemma 6.2 i-ii) and (6.19) we can deduce (3.8). The uniform control of

E n 1/2 r n H Y n,β,x 0 1 (∇ β Y n,β,x 0 1 ) p is immediate.
Proof of Lemma 3.4. From Jensen's inequality, we have

E E[n 1-1/α H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ] -E[ 1 σ ∂ θ b(x 0 , θ)H L α (1)|Y n,βn,x 0 1 ] 2 ≤E E n 1-1/α H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 ) - 1 σ ∂ θ b(x 0 , θ)H L α (1) 2 |Y n,βn,x 0 1 =E n 1-1/α H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 ) - 1 σ ∂ θ b(x 0 , θ)H L α (1)
From Lemma 3.3, the last term converges to zero uniformly with respect to x 0 . In turn, it gives the uniform convergence sup

x 0 n 2-2/α E E[H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ] 2 - 1 σ 2 ∂ θ b(x 0 , θ) 2 E E[H L α (1)|Y n,βn,x 0 1 ] 2 n→∞ ---→ 0.
By the same method as above, we also get the uniform convergence sup

x 0 E E[H Y n,βn,x 0 1 (∂ σ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ] 2 - 1 σ 2 E E[(L α 1 H L α (1) -1) |Y n,βn,x 0 1 ] 2 n→∞ ---→ 0.
Hence, this lemma will be proved as soon as we show that sup

x 0 E E[H L α (1)|Y n,βn,x 0 1 ] 2 -E E[H L α (1)|L α 1 ] 2 n→∞ ---→ 0, (6.31) sup x 0 E E[(L α 1 H L α (1) -1) |Y n,βn,x 0 1 ] 2 -E E[(L α 1 H L α (1) -1) |L α 1 ] 2 n→∞ ---→ 0. (6.32)
To prove (6.31), we apply Proposition 6.3 with the choice H = H L α (1) and H L α (1). The computation of Γ( Hn , Hn ) is omitted but reduces to the computation of the Γ-bracket between simple functionals. After some calculus (similar to those in the proof of Theorem 2.1 in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]) we get that Γ( Hn , Hn ) is bounded by a random variable independent of n and belonging to ∩ p≥1 L p . Turning to 6.32, we proceed similarly with the choices H = L α 1 H L α (1) and

H n = 1 0 R ρ n (z)(ρ n ) (z)µ n (ds, dz) 1 0 R ρ n (z)µ n (ds, dz) 2 - 1 0 R (ρ n ) (z) -1+α z ρ n (z) µ n (ds, dz) 1 0 R ρ n (z)µ n (
H n = L n 1 
Hn . Note that using Lemma 6.2 ii) with b(x, θ) = 0 and σ = 1 we deduce that L n

1 Hn n→∞ ---→ L 2 L α 1 H L α (1) moreover we can prove that sup n ||Γ(L n 1 Hn , L n 1 Hn )|| 2 < ∞.
Proof of Lemma 3.5. It is easy to see that

E   n 1-1/α E[H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ]E[H Y n,βn,x 0 1 (∂ σ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ] -E 1 σ (L α 1 H L α (1) -1) |Y n,βn,x 0 1 E 1 σ ∂ θ b(x 0 , θ)H L α (1)|Y n,βn,x 0 1   ≤ E   n 1-1/α E[H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ] E[H Y n,βn,x 0 1 (∂ σ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ] -E (L α 1 H L α (1) -1) σ |Y n,βn,x 0 1   + E   E (L α 1 H L α (1) -1) σ |Y n,βn,x 0 1 n 1-1/α E[H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ] -E ∂ θ b(x 0 , θ)H L α (1) σ |Y n,βn,x 0 1   . (6.34)
Then using Cauchy-Schwarz inequality

E   n 1-1/α E[H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ]× × E[H Y n,βn,x 0 1 (∂ σ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ] -E (L α 1 H L α (1) -1) σ |Y n,βn,x 0 1   ≤ E n 1-1/α E[H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ] 2 1/2 × ×   E   E[H Y n,βn,x 0 1 (∂ σ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ] -E (L α 1 H L α (1) -1) σ |Y n,βn,x 0 1   2   1/2 ≤ E n 2-2/α E H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 ) 2 |Y n,βn,x 0 1 1/2 × ×   E   E H Y n,βn,x 0 1 (∂ σ Y n,βn,x 0 1 ) - (L α 1 H L α (1) -1) σ 2 |Y n,βn,x 0 1     1/2 = E n 2-2/α H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 ) 2 1/2   E   H n Y n,βn,x 0 1 (∂ σ Y n,βn,x 0 1 ) - (L α 1 H L α (1) -1) σ 2     1/2 . (6.35)
Furthermore, from (3.8) we easily deduce that (6.35) converges to zero uniformly with respect to x 0 . Similarly, we also get that

E E (L α 1 H L α (1)-1) σ |Y n,βn,x 0 1 n 1-1/α E[H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ] -E ∂ θ b(x 0 ,θ)H L α (1) σ |Y n,βn,x 0 1
tends to zero uniformly with respect to x 0 . And then, we can conclude that (6.34) converges to zero uniformly with respect to x 0 . In turn, it gives the uniform convergence sup

x 0 E n 1-1/α E[H Y n,βn,x 0 1 (∂ θ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ]E[H Y n,βn,x 0 1 (∂ σ Y n,βn,x 0 1 )|Y n,βn,x 0 1 ] - -E E 1 σ (L α 1 H L α (1) -1) |Y n,βn,x 0 1 E 1 σ ∂ θ b(x 0 , θ)H L α (1)|Y n,βn,x 0 1 n→∞ ---→ 0. (6.36)
On the other hand, we can rewrite

E E 1 σ (L α 1 H L α (1) -1) |Y n,βn,x 0 1 E 1 σ ∂ θ b(x 0 , θ)H L α (1)|Y n,βn,x 0 1 = 1 4 E    E 1 σ (L α 1 H L α (1) -1) + 1 σ ∂ θ b(x 0 , θ)H L α (1)|Y n,βn,x 0 1 2 -E 1 σ (L α 1 H L α (1) -1) - 1 σ ∂ θ b(x 0 , θ)H L α (1)|Y n,βn,x 0 1 2    . (6.37)
Then, the lemma will be proved as soon as we show that

E    E 1 σ (L α 1 H L α (1) -1) + 1 σ ∂ θ b(x 0 , θ)H L α (1) Y n,βn,x 0 1 2 -E 1 σ (L α 1 H L α (1) -1) - 1 σ ∂ θ b(x 0 , θ)H L α (1) Y n,βn,x 0 1 2    (6.38) is uniformly convergent with respect to x 0 to E    E 1 σ (L α 1 H L α (1) -1) + 1 σ ∂ θ b(x 0 , θ)H L α (1) L α 1 2 -E 1 σ (L α 1 H L α (1) -1) - 1 σ ∂ θ b(x 0 , θ)H L α (1) L α 1 2    . (6.39)
We end the proof by using Proposition 6.3 with

H = L α 1 H L α (1) ± ∂ θ b(x 0 , θ)H L α (1) and H n = L n 1 
Hn ± ∂ θ b(x 0 , θ) Hn where Hn given by (6.33).

6.4 Lemmas 6.4 and 6.5

The aim of this section is to show that the functions η H n,K and η H n,K defined by (6.27) are close in some sense. The idea is mainly based on [5, Proposition 9, p.2348], however we need a more technical study since α ∈ (0, 2) and the function b is not assumed to be bounded. Our first result is the following. Lemma 6.4. Under the assumptions of Proposition 6.3, for all bounded function h, ∀K > 2, there exists a constant

C K > 0 such that |E[H n X K (H n )h(Y n,β,x 0 1 -ς n,θ,x 0 1 )] -E[H n X K (H n )h( σL α 1 n 1/α )] ≤ C K n ||h|| ∞
and the above estimate is uniform with respect to x 0 ∈ R and β ∈ Q, for any compact set

Q ⊂ R × (0, ∞). Proof. Since H n X K (H n ) is bounded and P(L n 1 = L α 1 ) ≤ C n (see Lemma 3.1) it is sufficient to show that E[H n X K (H n )h(Y n,β,x 0 1 -ς n,θ,x 0 1 )] -E[H n X K (H n )h( σL n 1 n 1/α )] ≤ C K n ||h|| ∞ . (6.40) 
We now prove (6.40).

Let us denote H n,K = H n X K (H n ) and H any primitive function of h. Using the integration by parts formula (6.7), we have

E h( σL n 1 n 1/α )H n,K = E H( σL n 1 n 1/α )H ( σL n 1 n 1/α ) (H n,K ) (6.41)
where

H ( σL n 1 n 1/α ) (H n,K
) is given by (6.10), namely here

H ( σL n 1 n 1/α ) (H n,K ) = L H n,K Γ( σL n 1 n 1/α , σL n 1 n 1/α ) σL n 1 n 1/α - L( σL n 1 n 1/α )H n,K Γ( σL n 1 n 1/α , σL n 1 n 1/α ) -L H n,K σL n 1 n 1/α Γ( σL n 1 n 1/α , σL n 1 n 1/α )
.

On the other hand, we have for t

∈ [0, 1] Y n,β,x 0 t -ς n,θ,x 0 t - σL n t n 1/α = 1 n t 0 b(Y n,β,x 0 s , θ) -b(ς n,θ,x 0 s , θ) ds ≤ 1 n t 0 ||b || ∞ |Y n,β,x 0 s -ς n,θ,x 0 s |ds ≤ 1 n t 0 ||b || ∞ |Y n,β,x 0 s -ς n,θ,x 0 s - σL n s n 1/α |ds + 1 n 1+1/α 1 0 |σL n s |ds
Applying the Gronwall's inequality, for C a positive constant, independent of n and K,

Y n,β,x 0 1 -ς n,θ,x 0 1 - σL n 1 n 1/α ≤ C n 1+1/α 1 0 |σL n s |ds. (6.42)
Using that the function H is globally Lipschitz with a Lipschitz constant ||h|| ∞ , we deduce from (6.41) that

E H n,K h( σL n 1 n 1/α ) -E H(Y n,β,x 0 1 -ς n,θ,x 0 1 )H ( σL n 1 n 1/α ) (H n,K ) ≤ σC n 1+1/α ||h|| ∞ E 1 0 |L n s |dsH ( σL n 1 n 1/α ) (H n,K ) . (6.43) Now we compute E[H(Y n,β,x 0 1 -ς n,θ,x 0 1 )H ( σL n 1 n 1/α )
(H n,K )] using successively the self-adjoint property of the operator L, (6.3) and (6.10), to obtain an integration by part formula in a reverse direction:

E[H(Y n,β,x 0 1 -ς n,θ,x 0 1 )H ( σL n 1 n 1/α ) (H n,K )] = E H(Y n,β,x 0 1 -ς n,θ,x 0 1 ) L H n,K Γ( σL n 1 n 1/α , σL n 1 n 1/α ) σL n 1 n 1/α - L( σL n 1 n 1/α )H n,K Γ( σL n 1 n 1/α , σL n 1 n 1/α ) -L H n,K σL n 1 n 1/α Γ( σL n 1 n 1/α , σL n 1 n 1/α ) = E   {L(H(Y n,β,x 0 1 -ς n,θ,x 0 1 ) σL n 1 n 1/α ) -H(Y n,β,x 0 1 -ς n,θ,x 0 1 )L( σL n 1 n 1/α ) -L(H(Y n,β,x 0 1 -ς n,θ,x 0 1 
))

σL n 1 n 1/α )}H n,K Γ( σL n 1 n 1/α , σL n 1 n 1/α )   = E   H n,K Γ( σL n 1 n 1/α , H(Y n,β,x 0 1 -ς n,θ,x 0 1 )) Γ( σL n 1 n 1/α , σL n 1 n 1/α )   = E   H n,K h(Y n,β,x 0 1 -ς n,θ,x 0 1 ) Γ( σL n 1 n 1/α , Y n,β,x 0 1 -ς n,θ,x 0 1 ) Γ( σL n 1 n 1/α , σL n 1 n 1/α )   .
(6.44) Putting together (6.43) and (6.44) we deduce,

E[H n,K h( σL n 1 n 1/α )] -E[H n,K h(Y n,β,x 0 1 -ς n,θ,x 0 1 )] ≤ ( σC n 1+1/α )||h|| ∞ H ( σL n 1 n 1/α ) (H n,K ) 1 0 |L n s |ds 1 + E   H n,K h(Y n,β,x 0 1 -ς n,θ,x 0 1 )    Γ( σL n 1 n 1/α , Y n,β,x 0 1 -ς n,θ,x 0 1 ) Γ( σL n 1 n 1/α , σL n 1 n 1/α ) -1      convexity inequality, we get σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) 2 ≤ 2 -2L(L n 1 )H n,K Γ(L n 1 , L n 1 ) + H n,K Γ(L n 1 , L n 1 ) 2 Γ(L n 1 , Γ(L n 1 , L n 1 )) 2 + Γ(H n,K , H n,K ) Γ(L n 1 , L n 1 )
. (6.50) Then, we can deduce that 

E σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) 2 ≤ 2 E -2L(L n 1 )H n,K Γ(L n 1 , L n 1 ) + H n,K Γ(L n 1 , L n 1 ) 2 Γ(L n 1 , Γ(L n 1 , L n 1 )) 2 I n 1.1 +2 E Γ(H n,K , H n,K ) Γ(L n 1 , L n 1 ) I n 1.2 . ( 6 
, Γ(L n 1 , L n 1 )) Γ(L n 1 , L n 1 ) 2 - 2L(L n 1 ) Γ(L n 1 , L n 1 ) = H L n 1 (1) = H n β (1) + 1 n 1/α R n 1,β . (6.52) 
From the crucial fact ||H n,K || ∞ ≤ K and from (6.12), (6.15), Remark 6.2 we can deduce that I n 1.1 is bounded by a random variable independent of n (but depending on K). For I n 1.2 , from (6.1) and (6.21), we have

I n 1.2 = E Γ(H n,K , H n,K ) Γ(L n 1 , L n 1 ) = E Γ(H n,K , H n,K ) 1 0 R ρ n (z)µ (n) (dt, dz) ≤ E Γ(H n,K , H n,K ) 1 0 |z|<1 z 4 µ(dt, dz)
. Now since H n,K is a smooth Malliavin functional, using the chain rule property (6.4) we have

Γ(H n,K , H n,K ) ≤ c 2 K Γ(H n , H n ) (6.53)
where c K is any upper bound of the derivative of x → xX K (x). Then we deduce that

I n 1.2 ≤ c 2 K E Γ(H n , H n ) 1 0 |z|<1 z 4 µ(dt, dz)
.

From the assumption on Γ(H n , H n ) in Proposition 6. belongs to ∩ p≥1 L p (see [5, the proof of Theorem 4]), we can deduce that I n 1.2 is bounded independently of n. Thus, we get that the expectation of the right-hand side term in (6.47) is finite. Turning to the expectation of (6.48), we have: In fact, from (6.46) we have

E σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) 1 0 |z|>2 |z|µ (n) (dt, dz) ≤ E         -2L(L n 1 )H n,K Γ(L n 1 , L n 1 ) + H n,K Γ(L n 1 , L n 1 ) 2 Γ(L n 1 , Γ(L n 1 , L n 1 )) + Γ(L n 1 , H n,K ) Γ(L n 1 , L n 1 )     × 1 0 |z|>2 |z|µ (n) (dt, dz)     = E -2L(L n 1 )H n,K Γ(L n 1 , L n 1 ) + H n,K Γ(L n 1 , L n 1 ) 2 Γ(L n 1 , Γ(L n 1 , L n 1 
)) 

, L n 1 )) Γ(L n 1 , L n 1 ) 2 - 2L(L n 1 ) Γ(L n 1 , L n 1 ) = H n β (1) + 1 n 1/α R n 1,β (1). 
Then from the boundedness of H n,K , we get

I n 1.3 ≤ KE H n β (1) 1 0 |z|>2 |z|µ (n) (dt, dz) + KE R n 1,β (1) 
1 n 1/α 1 0 |z|>2 |z|µ (n) (dt, dz)
From the proof of Lemma 5.4 in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF], we can deduce that H n β (1) (6.57) From (6.56) and (6.57), we deduce that the left-hand side of (6.56) is bounded by C n . Then we get that sup n I n 1.3 < +∞ . For I n 1.4 , from the boundedness of H n,K , (6.21), and the fact that Γ(L n 1 , H n,K ) ≤ Γ(H n,K , H n,K ) 1/2 Γ(L n 1 , L n 1 ) 1/2 we have:

I n 1.4 ≤ E Γ(H n,K , H n,K ) Γ(L n 1 , L n 1 ) 1/2 1 0 |z|>2 |z|µ (n) (dt, dz) = E   
Γ(H n,K , H n,K ) Applying the Cauchy-Schwarz inequality, we have ≤ C 4 where C 4 is a constant and the fact that Γ(H n,K , H n,K ) admits finite moment, independently of n (but depending of K). Then, (6.59) is bounded independently of n and I n 1.4 is proved. Hence (6.54) follows. 

1 2 - 1 α

 21 and information

Corollary 2 . 4 .

 24 The family (P β n ) satisfies the LAMN property with rate r n = β) given by (2.3).

Theorem 4 . 1 .

 41 [Theorem 2.1 in [6]]

(4. 8 ) 11 ,

 811 Where, in the last line, we have used Theorem 3.1 for the convergences of I n,β+srnh,x I n,β+srnh,x 22 , I n,β+srnh,x12, respectively and the application of the dominated convergence theorem. From (4.7) and (4.8) we get (4.4). (4.5) is deduced directly from Theorem 3.1.

4. 2

 2 Proof of the conditions A2 and A3 (Theorem 2.2)

.

  Lemma 5.1. [Lemma 4.1 in[START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]] Let (ς n,θ,x 0 t

  |sϕ α (s)|ds < ∞ and w → we -C(α) w n 1/α α admits a derivative on R, we obtain by taking the derivative with respect to w of the both sides of (5.22) R sϕ α (s)e iws n 1/α ds = -e -C(α) w n 1/α α + αC(α)e -C(α) w n 1/α α |w| α n = -R ϕ α (s)e iws n 1/α ds + αC(α)e -C(α) w n 1/α α |w| α n .

3 and since 1 0

 1 |z|<1 z 4 µ(dt, dz) -1

1 n 1 1 n 1 1 n 1

 111111 /α ) (H n,K ) 1 0 1≤|z|≤2 |z|µ (n) (dt, dz) + 1 0 |z|>2 |z|µ (n) (dt, dz) ≤ E σ n 1/α H ( σL n /α ) (H n,K ) 1 0 1≤|z|≤2 |z|µ (n) (dt, dz) + E σ n 1/α H ( σL n /α ) (H n,K ) 1 0 |z|>2 |z|µ (n) (dt, dz) .By a similar estimation technique as for the bound of (6.47), we get thatsup (n) (dt, dz) ≤ C K < +∞. (n) (dt, dz) ≤ C K < +∞. (6.54) 

1 0n 1 / 2  1 / 2 ( 6 1 0 |z|>2 |z| n 1 /

 11212611 |z|>2 |z|µ (n) (dt, dz) is bounded by a random variable independent of n and belonging to ∩ p≥1 L p . Using Cauchy-Schwarz inequality and (6.15), we getE R n 1,β(1)1 n 1/α 1 0 |z|>2 |z|µ (n) (dt, dz) ≤ C √ n α µ (n) (dt, dz) .56)Now from µ (n) (ds, dz) = μ(n) (ds, dz) + υ (n) (ds, dz), by convexity inequality, we haveE α µ (n) (ds, dz) nwhere C is a deterministic constant.

1 /2 1 00

 11 R ρ n (z)µ (n) (ds, dz) |z|>2 z 2 µ (n) (ds, dz)

z 2 µ0≤µ 1 0

 21 (n) (ds, dz) ≥ |z|>2 z 2 µ (n) (ds, dz) E Γ(H n,K , H n,K ) (n) (dt, dz) |z|>2 µ (n) (dt, dz) 1/2

Step 2 :Lemma 6 . 5 . 1 -ς n,θ,x 0 1 ) 1 -ς n,θ,x 0 1 ) 1 - 1 ) 1 - 1 ) 1 - 1 )≤ 1 -ς n,θ,x 0 1 ) 1 -ς n,θ,x 0 1 ) 1 n 1 /α )β( σL α 1 n 1 1 n 1 /α )β( σL α 1 n 1 1 -ς n,θ,x 0 1 ) 1 -ς n,θ,x 0 1 )≤ 1 -ς n,θ,x 0 1 ) 1 -ς n,θ,x 0 1 ) 1 n 1 1 n 1 1 -ς n,θ,x 0 1 ) 1 ) 1 n 1 /α )β( σL α 1 n 1 1 - 1 ) 1 n 1 1 -ς n,θ,x 0 1 ) 1 -ς n,θ,x 0 1 ) 1 -ς n,θ,x 0 1 )

 265111111111111111111111111111111111111111111111111111 We now prove sup n nI n 2 < C* where C* is a positive constant.for some constants M and M 1 , we can easily deduce that Γ( Under the assumptions of Proposition 6.3, for any compact set Q ⊂ R×(0, ∞), ∀K > 2, there exists a constant c K > 0 such thatsup x 0 ,β∈Q η H n,K (Y n,β,x 0 -η H n,K (Y n,β,x 0We estimate the L 1 -norm appearing in (6.60) by duality. Let β : R → [-1, 1] be a measurable function, we evaluate:E (η H n,K (Y n,β,x 0 ς n,θ,x 0 -η H n,K (Y n,β,x 0 ς n,θ,x 0 ς n,θ,x 0 E η H n,K (Y n,β,x 0 -E η H n,K ( σL α /α ) + E η H n,K ( σL α /α ) -E η H n,K (Y n,β,x 0 E η H n,K (Y n,β,x 0 -E η H n,K ( σL α used Lemma 6.4 with the choice H n = 1, K > 2 and the choice h = η H n,K β, recalling that ||η H n,K || ∞ ≤ K.From the definition of η H n,K ( σL α /α ) and η H n,K (Y n,β,x 0 as conditional expectations, we have:E η H n,K (Y n,β,x 0 1 -ς n,θ,x 0 1 )β(Y n,β,x 0 1 -ς n,θ,x 0 -E η H n,K ( σL α /α ) = E H n X K (H n )β(Y n,β,x 0 ς n,θ,x 0 -E H n X K (H n )β( L α /α ) ≤ C K nwhere we used Lemma 6.4. This gives,sup ||β||∞≤1 E (η H n,K (Y n,β,x 0 -η H n,K (Y n,β,x 0 ≤ (1 + K) C K nand we deduce the result of this lemma.

  To prove (6.54), we just have to show that I n 1.3 and I n 1.4 are bounded independently of n. For I n 1.3 , we recall here (6.52), Γ(L n 1 , Γ(L n 1

						1	
							|z|µ (n) (dt, dz)
						0	|z|>2
	+ E	Γ(L n Γ(L n 1 , L n 1 ) 1 , H n,K )	0	1	|z|>2	I n 1.3 |z|µ (n) (dt, dz)	(6.55)
			I n 1.4			

(6.45) Hence the lemma will be proved if we show that sup n sup s∈[0,1] I

We can write from (6.9)

. (6.46) Now, let us recall that from (3.2)

First, we consider the expectation of the right-hand side term in (6.47), we have:

(6.49) where M is a deterministic constant. Furthermore, from (6.6) we have Γ(L n 1 , H n,K ) ≤ Γ(H n,K , H n,K ) 1/2 Γ(L n 1 , L n 1 ) 1/2 and from (6.46),