Nonparametric multiple change-point estimation for analyzing large Hi-C data matrices - Archive ouverte HAL
Article Dans Une Revue Journal of Multivariate Analysis Année : 2018

Nonparametric multiple change-point estimation for analyzing large Hi-C data matrices

Détection de ruptures dans un cadre non paramétrique pour l'analyse de matrices Hi-C de grandes tailles

Résumé

We propose a novel nonparametric approach to estimate the location of block boundaries (change-points) of non-overlapping blocks in a random symmetric matrix which consists of random variables whose distribution changes from block to block. Our change-point location estimators are based on nonparametric homogeneity tests for matrices. We first provide some theoretical results for these tests. Then, we prove the consistency of our change-point location estimators. Some numerical experiments are also provided in order to support our claims. Finally, our approach is applied to Hi-C data which are used in molecular biology to study the influence of chromosomal conformation on cell function.
Fichier principal
Vignette du fichier
JMVA-16-232-EiC.pdf (1.86 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01468198 , version 1 (15-02-2017)
hal-01468198 , version 2 (07-03-2019)

Identifiants

Citer

Vincent Brault, Sarah Ouadah, Laure Sansonnet, Céline Lévy-Leduc. Nonparametric multiple change-point estimation for analyzing large Hi-C data matrices. Journal of Multivariate Analysis, 2018, 165, pp.143-165. ⟨10.1016/j.jmva.2017.12.005⟩. ⟨hal-01468198v2⟩
793 Consultations
340 Téléchargements

Altmetric

Partager

More