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Abstract

We propose a novel nonparametric approach to estimate the location of block boundaries (change-points)
of non-overlapping blocks in a random symmetric matrix which consists of random variables whose dis-
tribution changes from block to block. Our change-point location estimators are based on nonparametric
homogeneity tests for matrices. We first provide some theoretical results for these tests. Then, we prove
the consistency of our change-point location estimators. Some numerical experiments are also provided
in order to support our claims. Finally, our approach is applied to Hi-C data which are used in molecular
biology to study the influence of chromosomal conformation on cell function.

Keywords: Hi-C data, multiple change-point estimation, nonparametric estimation.

1. Introduction

Detecting and identifying the location of changes in the distribution of random variables is a major
statistical issue that arises in many fields such as industrial process surveillance [2], anomalie detection
in internet traffic data [15, 21], and molecular biology. In the latter field, several change-point detection
methods have been designed to deal with different kinds of data such as Copy Number Variation or CNV
[19, 23], RNAseq data [7], and more recently Hi-C data which motivated this work.

Hi-C technology is a recent chromosome conformation capture method that was developed to enhance
our understanding of the influence of chromosomal conformation on cell function. This technology, which
is based on a deep sequencing approach, provides read pairs corresponding to pairs of genomic loci that
physically interact in the nucleus [16]. The raw measurements provided by Hi-C data are often summarized
as a square matrix where entry (i, j) gives the total number of read pairs matching in positions i and j; see
[8] for further details. Blocks of different intensities arise within this matrix, revealing interacting genomic
regions among which some have already been confirmed to host co-regulated genes. The purpose of the
statistical analysis is then to provide an efficient strategy to determine a decomposition of the matrix in non-
overlapping blocks, yielding as a by-product a list of non-overlapping interacting chromosomic regions.

This issue has already been addressed by Lévy-Leduc et al. [14] in the particular framework where the
mean of the observations changes from one diagonal block to the other and is constant everywhere else. In
this work, the authors use a parametric maximum likelihood approach. In contrast, we will address here
the case where the non-overlapping blocks are no longer diagonal using a nonparametric method. Our
goal will thus be to design an efficient and nonparametric method to find the block boundaries, also called
change-points, of non-overlapping blocks in large matrices which can be modeled as matrices of random
variables whose distribution changes from one block to the next.

A large literature is devoted to change-point detection when both the number of observations and the
number of vectors go to infinity at different rates. Horváth and Hušková [9] proposed a change-point de-
tection approach also in the context where the number of observations and the number of vectors go to
infinity but cannot be equal. Cho and Fryzlewicz [6] devised a parametric approach to identify multiple
change-points in the second-order structure of a multivariate (possibly high-dimensional) time series based
on localized periodograms and cross-periodograms computed on the original multivariate time series. Ji-
rak [10] proposed nonparametric change-point tests in very general high-dimensional settings. Matteson
and James [18] devised a nonparametric change-point estimation procedure which allows them to retrieve
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change-points within n K-variate multivariate observations, where K is fixed and n may be large. It is based
on the use of an empirical divergence measure derived from the divergence measure of Szekely and Rizzo
[20]. Another approach based on ranks has been proposed by Lung-Yut-Fong et al. [17] in the same frame-
work as [18]. Their approach consists in extending the classical Wilcoxon and Kruskal–Wallis statistics
[13] to the multivariate case.

In this paper, we propose a nonparametric change-point estimation approach based on nonparametric
homogeneity tests generalizing the approach of [17] to the case where we have to deal with large matrices
instead of fixed vectors. Moreover, our methodology is adapted to our very specific problem where we have
to process a large symmetric matrix X = (Xi, j)1≤i, j≤n such that the Xi, js are independent random variables
when i ≥ j. Hence, in our case, the number of observations and the number of vectors are equal and both
go to infinity. This specific setting has never been considered, so far as we know.

The paper is organized as follows. We first propose in Section 2 nonparametric homogeneity tests for
two, and more than two, samples. In Section 3, we deduce from these tests a nonparametric procedure to
estimate the block boundaries of a matrix of random variables whose distribution changes from block to
block. The consistency of these change-point location estimators is established in Theorems 3–4. These
methods are then illustrated by some numerical experiments in Section 4. An application to real Hi-C data
is also given in Section 5. Finally, the proofs of our theoretical results are given in Section 7.

2. Homogeneity tests

In this section, we propose nonparametric homogeneity test statistics for two, and more than two,
samples. These statistics will be used in Section 3 to estimate the location of block boundaries (change-
points) of non-overlapping blocks in a random symmetric matrix.

2.1. Two-sample homogeneity test
Let X = (Xi, j)1≤i, j≤n be a symmetric matrix whose entries Xi, j are independent random variables when

i ≥ j. Observe that X can be rewritten as X = (X(1), . . . ,X(n)), where X( j) = (X1, j, . . . , Xn, j)> denotes the
jth column of X.

Let n1 be a given integer in {1, . . . , n}. The purpose of this section is to propose a statistic to test the null
hypothesisH0: “(X(1), . . . ,X(n1)) and (X(n1+1), . . . ,X(n)) are identically distributed random vectors” against
the alternative H1: “(X(1), . . . ,X(n1)) has distribution P1 and (X(n1+1), . . . ,X(n)) has distribution P2, where
P1 , P2”. Hypothesis H0 means that for all i ∈ {1, . . . , n}, Xi,1, . . . , Xi,n are independent and identically
distributed (iid) random variables and while alternative H1 means that there exists i ∈ {1, . . . , n} such that
Xi,1, . . . , Xi,n1 have distribution Pi

1 and Xi,n1+1, . . . , Xi,n have distribution Pi
2, with Pi

1 , Pi
2.

To decide whether H0 should be rejected or not, we propose to use a test statistic inspired by the one
designed by [17] which extends the well-known Wilcoxon–Mann–Whitney rank-based test to deal with
multivariate data. Our statistical test can thus be seen as a way to decide whether n1 can be considered as a
potential change in the distribution of the Xi, js or not.

The test statistic that we propose for assessing the presence of the potential change n1 is defined by

S n(n1) =

n∑
i=1

U2
n,i(n1), (1)

where

Un,i(n1) =
1

√
nn1(n − n1)

n1∑
j0=1

n∑
j1=n1+1

h(Xi, j0 , Xi, j1 ),

with h(x, y) = 1{x≤y} − 1{y≤x}.
Our framework is different from that of Lung-Yut-Fong et al. [17] because the vectors X( j) they consider

are K-variate with K fixed, while ours are n-dimensional where n may be large.
Note that the statistic Un,i can also be written using the rank R(i)

j of Xi, j among Xi,1, . . . , Xi,n. Indeed,

Un,i(n1) =
2

√
nn1(n − n1)

n1∑
j0=1

(
n + 1

2
− R(i)

j0

)
=

2
√

nn1(n − n1)

n∑
j1=n1+1

(
R(i)

j1
−

n + 1
2

)
, (2)
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where

R(i)
j =

n∑
k=1

1{Xi,k≤Xi, j}. (3)

Form (2) will be used below to extend the two-sample homogeneity test to the multiple sample case.
If the distribution of the Xi, js is continuous, then the following theorem establishes that the test statistic

S n(n1) is properly normalized, namely S n(n1) is bounded in probability as n → ∞ under H0. Note that
H0 assumes that for all i ∈ {1, . . . , n}, Xi,1, . . . , Xi,n are iid random variables. Since we also assume that
X = (Xi, j)1≤i, j≤n is a symmetric matrix whose entries are independent random variables when i ≥ j, it
implies that underH0, all the rows i have the same distribution. Hence, all the Xi, js such that i ≥ j are iid.

Theorem 1. Let X = (Xi, j)1≤i, j≤n be a symmetric matrix of random variables Xi, j whose entries are iid
when i ≥ j. Assume that the distribution of the Xi, js is continuous and that there exists τ1 ∈ (0, 1) such
that n1/n → τ1 as n → ∞. Then, as n → ∞, Tn(n1) ≡ n−1/2 [S n(n1) − E {S n(n1)}] = OP(1), where
E {S n(n1)} = (n + 1)/3.

The proof of Theorem 1 is given in Section 7.1. Observe that the assumptions of Theorem 1 correspond
to the null hypothesisH0 described in Section 2.1. Hence, we could rejectH0 when

Tn(n1) > s, (4)

for some threshold s. A way of computing this threshold will be given in Section 4.1.

2.2. Multiple-sample homogeneity test

The purpose of this section is to extend the two-sample homogeneity test of the previous section to deal
with the multiple sample case.

Let us assume that X = (Xi, j)1≤i, j≤n is still a symmetric matrix whose entries are independent random
variables when i ≥ j. Let 0 = n0 < · · · < nL+1 = n be L integers given in {1, . . . , n − 1}. We propose a
statistic to testH0: “(X(1), . . . ,X(n1)), (X(n1+1), . . . ,X(n2)), . . . ,(X(nL+1), . . . ,X(n)) have the same distribution”
against the alternativeH1: “there exists ` ∈ {1, . . . , L} such that (X(n`−1+1), . . . ,X(n`)) has distribution P` and
(X(n`+1), . . . ,X(n`+1)) has distribution P`+1, where P` , P`+1”.

The homogeneity test presented in the previous section for two groups can be extended in order to deal
with L + 1 groups instead of 2 by using the following statistic:

S n (n1, . . . , nL) =
4
n2

L∑
`=0

(n`+1 − n`)
n∑

i=1

(
R

(i)
` −

n + 1
2

)2

, (5)

with

R
(i)
` =

1
n`+1 − n`

n`+1∑
j=n`+1

R(i)
j , (6)

where the rank R(i)
j of Xi, j is defined by (3) and R

(i)
` is its mean in the group `.

Observe that (5) can be seen as a natural extension of the classical Kruskal–Wallis statistic for univariate
observations to the multivariate case; see [22, p. 181].

Remark 1. Note that when L = 1, S n(n1) defined in (5) boils down to S n(n1) defined in (1) since

4
n2

n1

n∑
i=1

 1
n1

n1∑
j=1

R(i)
j −

n + 1
2

2

+ (n − n1)
n∑

i=1

 1
n − n1

n∑
j=n1+1

R(i)
j −

n + 1
2

2
=

4
n2n1

n∑
i=1


n1∑
j=1

(
R(i)

j −
n + 1

2

)
2

+
4

n2(n − n1)

n∑
i=1


n∑

j=n1+1

(
R(i)

j −
n + 1

2

)
2

,
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which, in view of (2), can be reexpressed as

n∑
i=1

U2
n,i(n1) =

1
n

 n∑
i=1

(n − n1)

 2
√

nn1(n − n1)

n1∑
j=1

(
R(i)

j −
n + 1

2

)
2

+

n∑
i=1

n1

 2
√

nn1(n − n1)

n∑
j=n1+1

(
R(i)

j −
n + 1

2

)
2 .

If the distribution of the Xi, js is continuous, then the following theorem establishes that the test statistic
S n (n1, . . . , nL) is properly normalized, namely S n (n1, . . . , nL) is bounded in probability as n→ ∞.

Theorem 2. Let X = (Xi, j)1≤i, j≤n be a symmetric matrix of random variables Xi, j whose entries are iid when
i ≥ j. Assume that distribution of the Xi, js is continuous and that there exist 0 < τ1 < · · · < τL < 1 such that
for all ` ∈ {1, . . . , L}, n`/n→ τ` as n→ ∞. Then, as n→ ∞, n−1/2 [S n (n1, . . . , nL) − E {S n (n1, . . . , nL)}] =

OP(1), with E {S n (n1, . . . , nL)} = L(n + 1)/3.

The proof of Theorem 2 is given in Section 7.2. Note that the n`s can be seen as the boundaries of
groups of random variables having different distributions. We will explain in the next section how to derive
from this theorem a methodology for estimating the n`s when they are assumed to be unknown.

3. Change-point estimation

We propose in this section to use the test statistic (5) to derive the location of the block boundaries
n∗1 < · · · < n∗L. More precisely, we propose to estimate (n∗1, . . . , n

∗
L) as follows:

n̂ = (̂n1, . . . , n̂L) ≡ Argmax1≤n1<···<nL<n S n(n1, . . . , nL), (7)

where S n(n1, . . . , nL) is defined in (5). For all ` ∈ {0, . . . , L}, set

D∗` = {i ∈ {1, . . . , n} : n∗` + 1 ≤ i ≤ n∗`+1}. (8)

3.1. Theoretical results

The following theorem establishes that the procedure provides a consistent estimator for the change-
point location when L = 1.

Theorem 3. Let X = (Xi, j)1≤i, j≤n be a symmetric matrix whose entries are independent random variables
when i ≥ j with a continuous distribution. Let P0

0 be the distribution of Xi, j for i, j ∈ D∗0, P0
1 be the

distribution of Xi, j for i ∈ D∗0, j ∈ D∗1, and P1
1 be the distribution of Xi, j for i, j ∈ D∗1 where P0

0 , P0
1 or

P0
1 , P1

1. Assume that
Pr(X ≤ Y) , 1/2, (9)

where X ∼ P0
0 (or P0

1) and Y ∼ P0
1 (or P1

1). Assume also that there exists τ∗1 ∈ (0, 1) such that n∗1/n→ τ∗1, as
n→ ∞. Then, for all positive δ, as n→ ∞, Pr

(
|̂n1 − n∗1| ≥ nδ

)
→ 0, where n̂1 is defined by (7) when L = 1.

Remark 2. Note that Assumption (9) in Theorem 3 is classic in the context of rank-based test statistics
such as the Mann–Whitney test; see [22].

The proof of Theorem 3 is given in Section 7.3. The following theorem extends the results of Theorem 3
to the case where L > 1.

Theorem 4. Let X = (Xi, j)1≤i, j≤n be a symmetric matrix whose entries are independent random variables
when i ≥ j with a continuous distribution. Let P`2

`1
be the distribution of Xi, j for i ∈ D∗`2

and j ∈ D∗`1
and

F`2,`1 the associated cumulative distribution function, where the D∗`s are defined in (8). Assume that for all `

4



in {1, . . . , L}, there exists τ∗` ∈ (0, 1) such that n∗`/n→ τ∗` , as n→ ∞ such that ∆∗τ = min0≤`≤L |τ
∗
`+1−τ

∗
` | > 0.

Assume also that, for all `1 ∈ {0, . . . , L − 1}, there exists `4 ∈ {0, . . . , L} such that

L∑
`3=0

(τ∗`3+1 − τ
∗
`3

)E
{
F`4,`1 (X) − F`4,`1+1(X)

}
, 0, (10)

where X ∼ P`4
`3

. Then, for all positive δ, Pr
(
‖̂n − n∗‖∞ ≥ nδ

)
→ 0, as n → ∞, where n̂ is defined by (7),

n∗ = (n∗1, . . . , n
∗
L) and ‖̂n− n∗‖∞ = max0≤`≤L |n̂` − n∗` |.

Remark 3. Observe that Assumption (10) holds for example when, for all `1, there exists `4 in {0, . . . , L},
such that, for all x, F`4,`1 (x) > F`4,`1+1(x) or for all x, F`4,`1 (x) < F`4,`1+1(x). This holds for instance in the
case where the Xi, j are Gaussian random variables having different means in two consecutive blocks.

A sketch of the proof of Theorem 4 is given in Section 7.4.

3.2. Practical implementation
In practice, maximizing (7) directly is computationally prohibitive; the task’s complexity grows expo-

nentially with L. However, thanks to the additive structure of (5), it is possible to use a dynamic program-
ming strategy as we will explain hereafter. We refer here to the classical dynamic programming approach
described in [11] which can be traced back to the note of Bellman [4].

Let us introduce the following notations:

∆(n` + 1 : n`+1) = (n`+1 − n`)
n∑

i=1

(
R

(i)
` −

n + 1
2

)2

,

where R
(i)
` is defined by (6) and

IL(p) = max
1≤n1<···<nL<nL+1=p

L∑
`=0

∆(n` + 1 : n`+1), (11)

for L ∈ {0, . . . , Lmax} and p ∈ {1, . . . , n}, where Lmax is assumed to be a known upper bound for the number
of block boundaries. Observe that IL(p) satisfies the recursive formula

IL(p) = max
nL
{IL−1(nL) + ∆(nL + 1 : p)} , (12)

which is proved in Section 7.5. Thus, for solving the optimization problem (7), we proceed as follows.
We start by computing ∆(i : j) for all (i, j) such that 1 ≤ i ≤ j ≤ n. All the I0(p) are thus available for
p ∈ {1, . . . , n}. Then I1(p) is computed by using the recursion (12) and so on. Hence the complexity of our
algorithm is O(n3).

Figure 1 shows the computational times in seconds associated with our multiple change-point estima-
tion strategy based on the dynamic programming algorithm. The computational time of our procedure is
seen to be polynomial. For instance, it takes 15 minutes to our algorithm to process a 500 × 500 matrix.
Note that in the framework of univariate time series segmentation, the PELT procedure devised by [12]
performs multiple change-point detection at a linear computational cost. It would be interesting to see if
the computational burden of our procedure could be reduced by using an extension of their approach.

4. Numerical experiments

4.1. Statistical performance of the two-sample homogeneity test
We propose hereafter a procedure for calibrating the threshold s of the rejection region Tn(n1) > s

defined in (4). To ensure that the two-sample homogeneity test is of level α, an estimation of the 1 − α
quantile of Tn(n1) has to be provided. In the sequel, such an estimation is given in the case where α = 0.05.

We generated 10,000 n×n symmetric matrices X = (Xi, j) with n ∈ {50, 100, 500, 1000}. More precisely,
the (Xi, j)i≥ js are independent random variables having a zero mean standard Gaussian distribution,N(0, 1),

5
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Figure 1: Computational times in seconds for the dynamic programming algorithm described in Section 3 as a function of n for
different values of Lmax.

a Cauchy distribution with 0 and 1 location and scale parameters, C(0, 1), respectively or an exponential
distribution with parameter 2, E(2). We consider two values for n1, namely n1 = b0.1nc and n1 = b0.5nc,
where bxc denotes the integer part of x.

The empirical 0.95 quantiles of Tn(n1) are given in Table 1. We observe from this table that the empiri-
cal 0.95 quantiles do not seem to be sensitive neither to the values of n1 and n nor to the distribution of the
observations since they slightly vary around 0.8.

4.1.1. Power of the test statistic
In this section, we study the power of the two-sample homogeneity test defined in Section 3. We

generated 10,000 n × n symmetric matrices X = (Xi, j) split into four blocks defined as follows and n ∈
{50, 100, 500, 1000}. Let I1 = {(i, j) : 1 ≤ j ≤ i ≤ n1}, I2 = {(i, j) : 1 ≤ j ≤ n1, n1 + 1 ≤ i ≤ n}, and
I3 = {(i, j) : n1 + 1 ≤ j ≤ i ≤ n}.

In the sequel, we assume that (Xi, j)(i, j)∈I1

iid
∼ L1, (Xi, j)(i, j)∈I2

iid
∼ L2 and (Xi, j)(i, j)∈I3

iid
∼ L3 and we take

the following values for n1: n1 = b0.1nc and n1 = b0.5nc.
Figure 2 displays the power curves of the two-sample homogeneity test defined in Section 2 when

L1 = L3 = N(0, 1) and L2 = N(µ, 1), where µ ∈ {0, 0.01, 0.02, . . . , 0.99, 1}. We can see from this figure
that for large values of n, our testing procedure appears to be powerful whatever the value of µ. For small
values of n, we observe that the power of our testing procedure becomes higher as µ increases.

Table 1: Estimation of the empirical 0.95 quantiles of Tn(n1).

n1 = b0.1nc n1 = b0.5nc
N(0, 1) C(0, 1) E(2) N(0, 1) C(0, 1) E(2)

n = 50 0.83 0.83 0.82 0.78 0.79 0.76
n = 100 0.81 0.8 0.82 0.78 0.8 0.78
n = 500 0.78 0.8 0.81 0.8 0.78 0.77
n = 1000 0.79 0.78 0.79 0.78 0.77 0.79
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Figure 2: Power curves for the two-sample homogeneity test as a function of µ for different values of n, n1 = b0.1nc (left) and
n1 = b0.5nc (right).

4.2. Statistical performance of the multiple change-point estimation procedure

In this section, we study the statistical performance of the multiple change-point estimation proce-
dure described in Section 3. This method is implemented in the R package MuChPoint available on the
Comprehensive R Archive Network (CRAN).

We generated 10,000 n × n symmetric matrices X = (Xi, j) where n ∈ {50, 100, 200, 300, 400} with
different block configurations and L = 10 block boundaries (change-points). In the following, this value of
L is assumed to be known.

We first consider the Block Diagonal configuration. In this case, the matrix consists of diagonal blocks
of size n/10. Within each of these diagonal blocks, the Xi, js such that i ≥ j are independent and have
distribution L1. The Xi, js lying in the extra-diagonal part of the lower triangular part of X are independent
and have distribution L2, with L2 , L1. The upper triangular part of X is then derived by symmetry.

We also consider the Chessboard configuration. In this case, the matrix consists of non overlapping
blocks of size n/10. The Xi, js belonging to two blocks sharing a boundary have different distributions. This
configuration implies that only two distributions L1 and L2 are at stake. The distribution of the upper left
block is denoted by L1 in the sequel.

For these two configurations, we consider for L1 a N(1, σ2), a E(2) or a C(1, a) distribution where
σ, a ∈ {1, 2, 5}. The L2 distributions associated with each of them are N(0, σ2), E(λ) and C(0, a) where
λ ∈ {1, 0.5, 4}. We display in Figure 3 some examples of the Block Diagonal and Chessboard configurations
for the Gaussian, exponential and Cauchy distributions. In these plots, large values are displayed in red and
small values in blue.

In the Gaussian Chessboard configuration, Figure 4 displays the frequency of the number of times
where each position in {1, . . . , n− 1} has been estimated as a change-point. We can see from this figure that
the true change-point positions are in general properly retrieved by our approach even in cases where the
change-points are not easy to detect with the naked eye. However, we observe that when σ increases, some
spurious change-points appear close to the true change-point positions.

We also compared our multiple change-point estimation strategy (MuChPoint) to the one devised by
[18] (ecp), which is, to the best of our knowledge, the most recent approach proposed for solving this
issue. The results are illustrated in Figures 5 and 6, which display the boxplots of the distance D, defined
in (13), between the change-points provided by these procedures in the Block Diagonal and Chessboard
configurations for the Gaussian, exponential and Cauchy distributions. To use the ecp package, we have
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Figure 3: Examples of 400 × 400 matrices X. Top: Block Diagonal configuration. Bottom: Chessboard configuration. Left: L1 =

N(1, 4), L2 = N(0, 4), middle: L1 = E(2), L2 = E(1) and right: L1 = C(1, 1), L2 = C(0, 1).

to chose α ∈ (0, 2] such that E(|X|
α

) < ∞. By default α = 1 and we keep this value for the Gaussian and
the exponential distributions but, for the Cauchy distribution, we need to have α < 1; thus for this case
we used α = 0.99. These boxplots are obtained from 100 replications of n × n symmetric matrices where

σ = 1 σ = 2 σ = 5
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Figure 4: Barplots associated with the multiple change-point estimation procedure for n = 100 (top), n = 400 (bottom),L1 = N(1, σ2)
and L2 = N(0, σ2) for different values of σ. The true positions of the change-points are located at the multiples of n/10.
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n ∈ {50, 100, 200, 300, 400}. More precisely, the distanceD is defined as

D(̂n,n∗) =
1
n

√√√ L∑
`=1

(̂n` − n∗
`
)2, (13)

where n∗ = (n∗1, . . . , n
∗
L) denotes the vector of the true L change-point positions and n̂ = (̂n1, . . . , n̂L) its

estimation either obtained by MuChPoint or ecp. Note that it actually corresponds to the usual `2-norm
of the vector τ∗ − τ̂ where τ∗ = (τ∗1, . . . , τ

∗
L), τ̂ = (̂τ1, . . . , τ̂L) with n∗` = bnτ∗`c and n̂` = bn̂τ`c. In order

to benchmark these methodologies, we provide to both of them the true value L of the number of change-
points, which is here equal to 10.

We observe from Figures 5 and 6 that both approaches have similar statistical performance. However,
MuchPoint performs better than ecp in the Cauchy case. In the Gaussian framework, the performance of
ecp are a little bit better for small n and large σ.
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Figure 5: Boxplots of the distancesD for MuChPoint and ecp in the Chessboard configuration. Left: L1 = N(1, σ2),L2 = N(0, σ2),
middle: L1 = C(1, a), L2 = C(0, a) and right: L1 = E(2), L2 = E(λ) for different values of σ, λ and a. The boxplots associated with
MuChPoint are displayed in gray and the ones of ecp in white.
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σ = 1 a = 1 λ = 1/2
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Figure 6: Boxplots of the distances D for MuChPoint and ecp in the Block Diagonal configuration. Left: L1 = N(1, σ2), L2 =

N(0, σ2), middle: L1 = C(1, a), L2 = C(0, a) and right: L1 = E(2), L2 = E(λ) for different values of σ, λ and a. The boxplots
associated with MuChPoint are displayed in gray and the ones of ecp in white.

5. Application to real data

In this section, we apply our methodology to publicly available Hi-C data (http://chromosome.
sdsc.edu/mouse/hi-c/download.html) already studied by Dixon et al. [8]. This technology provides
read pairs corresponding to pairs of genomic loci that physically interact in the nucleus;1 see [16] for
further details. The raw measurements provided by Hi-C data is therefore a list of pairs of locations along
the chromosome, at the nucleotide resolution. These measurements are often summarized by a symmetric
matrix X, where each entry Xi, j corresponds the total number of read pairs matching in position i and
position j, respectively. Positions refer here to a sequence of non-overlapping windows of equal sizes
covering the genome. The number of windows may vary from one study to another; Lieberman-Aiden
et al. [16] considered a Mb resolution, whereas Dixon et al. [8] went deeper and used windows of 40kb
(called hereafter the resolution).

In the sequel, we analyze the interaction matrices of Chromosome 19 of the mouse cortex at a resolution
40 kb and we compare the location of the estimated change-points found by our approach with those
obtained by Dixon et al. [8] on the same data since no ground truth is available. In this case, the matrix
that has to be processed is a n × n symmetric matrix where n = 1534.
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Figure 7: Estimated matrices X̂ for different number of estimated change-points: 35 (left), 55 (middle) and 75 (right).

We display in Figure 7 the estimated matrix X̂ obtained by using our strategy for various numbers
of estimated change-points. This estimated matrix is a block-wise constant matrix for which the block
boundaries are estimated by using MuChPoint and the values within each block correspond to the empirical
mean of the observations lying in it. We can see from this figure that both the diagonal and the extra
diagonal blocks are properly retrieved even when the number of estimated change-points is not that large.

In order to further compare our approach with the one proposed by Dixon et al. [8], we computed the
two parts of the Hausdorff distance which is defined by

d
(̂
nB, n̂

)
= max

{
d1

(̂
nB, n̂

)
, d2

(̂
nB, n̂

)}
, (14)

where n̂ and n̂B are the change-points found by our approach and [8], respectively. In (14),

d1 (a,b) = sup
b∈b

inf
a∈a
|a − b| , d2 (a,b) = d1 (b, a) .

More precisely, Figure 8 displays the boxplots of the d1 and d2 parts of the Hausdorff distance without
taking the supremum in white and gray for different values of the estimated number of change-points,
respectively.

For comparison purpose, we used the R package Capushe which implements a model selection ap-
proach based on the slope heuristics theory and described in [3]. It can be used here to estimate the number
of change-points L. According to the outputs of this package which are given in Figure 9, L is estimated to
be 40. The corresponding estimated matrix X̂ is displayed in Figure 10.

When the number of estimated change-points considered in our methodology is on a par with the one
of [8], i.e., equal to 85, the positions of the block boundaries are very close as displayed in Figure 11.

6. Conclusion

In this paper, we designed a novel nonparametric method for retrieving the block boundaries of non-
overlapping blocks in large matrices modeled as symmetric matrices of random variables having their dis-
tribution changing from one block to the other. Our approach is implemented in the R package MuChPoint
which will be available from the Comprehensive R Archive Network (CRAN). In the course of this study,
we have shown that our method, inspired by a generalization of nonparametric multiple sample tests to
multivariate data, has two main features which make it very attractive. First, it is a nonparametric approach
which performs very well from a practical point of view. Second, its computational burden makes its use
possible on large Hi-C data matrices.
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Figure 8: Boxplots for the infimum parts of the Hausdorff distances d1 (white) and d2 (gray) between the change-points found by [8]
and our approach for different values of the estimated number of change-points.
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Figure 9: Outputs of the R package Capushe.

7. Proofs

In this section, we prove Theorems 1–3 and Eq. (12). We also give a sketch of the proof of Theorem 4.
The proofs of the theorems given below use technical lemmas established in Section 7.5.

7.1. Proof of Theorem 1

To prove Theorem 1, we first compute the expectation of S n(n1), viz.

E {S n(n1)} =

n∑
i=1

E{U2
n,i(n1)} =

1
nn1(n − n1)

n∑
i=1

E




n1∑
j0=1

n∑
j1=n1+1

h(Xi, j0 , Xi, j1 )


2
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Figure 10: Estimated matrix X̂ when L is estimated by using the R package Capushe.

Figure 11: Topological domains detected by Dixon et al. [8] (upper triangular part of the matrix) and by our method (lower triangular
part of the matrix).

=
1

nn1(n − n1)

n∑
i=1

∑
1≤ j0,k0≤n1

∑
n1+1≤ j1,k1≤n

E{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi,k1 )},

which can be expanded as follows:

1
nn1(n − n1)

n∑
i=1

 n1∑
j0=1

n∑
j1=n1+1

E{h2(Xi, j0 , Xi, j1 )} +

n1∑
j0=1

∑
n1+1≤ j1,k1≤n

E{h(Xi, j0 , Xi, j1 )h(Xi, j0 , Xi,k1 )}
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+
∑

1≤ j0,k0≤n1

n∑
j1=n1+1

E{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi, j1 )} +
∑

1≤ j0,k0≤n1

∑
n1+1≤ j1,k1≤n

E{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi,k1 )}

 .
Using Lemma 1, we get

E {S n(n1)} =
1

nn1(n − n1)

n∑
i=1

{
n1(n − n1) +

1
3

n1(n − n1)(n − n1 − 1) +
1
3

n1(n1 − 1)(n − n1)
}

=
n + 1

3
.

In order to derive the asymptotic behavior of S n(n1) we write the centered version of S n(n1) as

S n(n1) − E {S n(n1)} =
1

nn1(n − n1)

n∑
i=1


n1∑

j0=1

n∑
j1=n1+1

h(Xi, j0 , Xi, j1 )


2

−
n + 1

3
≡

1
nn1(n − n1)

(A + B + C + D) ,

where

A =

n∑
i=1

n1∑
j0=1

n∑
j1=n1+1

{h2(Xi, j0 , Xi, j1 ) − 1}, B =

n∑
i=1

n1∑
j0=1

∑
n1+1≤ j1,k1≤n

{h(Xi, j0 , Xi, j1 )h(Xi, j0 , Xi,k1 ) − 1/3},

C =

n∑
i=1

∑
1≤ j0,k0≤n1

n∑
j1=n1+1

{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi, j1 ) − 1/3},

D =

n∑
i=1

∑
1≤ j0,k0≤n1

∑
n1+1≤ j1,k1≤n

h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi,k1 )

in which each term is centered. First, we observe that A = 0 a.s. (almost surely) by Assertion (ii) of
Lemma 1. Using Markov’s inequality, we see that, for all ε > 0,

Pr(|B/
√

n| > 6n3/ε) ≤ εn−7/2E (|B|) /6

≤
ε

6n7/2

n∑
i=1

E


∣∣∣∣∣∣∣∣

n1∑
j0=1

∑
n1+1≤ j1,k1≤n

{h(Xi, j0 , Xi, j1 )h(Xi, j0 , Xi,k1 ) − 1/3}

∣∣∣∣∣∣∣∣
 .

Using the Cauchy–Schwarz inequality, we thus deduce that

Pr(|B/
√

n| > 6n3/ε)

≤
ε

6n7/2

n∑
i=1

E


 n1∑

j0=1

∑
n1+1≤ j1,k1≤n

{h(Xi, j0 , Xi, j1 )h(Xi, j0 , Xi,k1 ) − 1/3}

2


1/2

=
ε

6n7/2

n∑
i=1

( ∑
1≤ j0, j′0≤n1

∑
n1+1≤ j1,k1≤n

∑
n1+1≤ j′1,k′1≤n

E
[
{h(Xi, j0 , Xi, j1 )h(Xi, j0 , Xi,k1 ) − 1/3}

× {h(Xi, j′0 , Xi, j′1 )h(Xi, j′0 , Xi,k′1 ) − 1/3}
])1/2

.

By Assertion (iii) of Lemma 1, the above expectation is equal to zero when the cardinality of the set of
indices { j0, j′0, j1, j′1, k1, k′1} equals 6. Indeed, the right- and left-hand side of the product in the expectation
are independent in that case. Thus, only the cases where the cardinality of the set is at most 5 need be
considered. Moreover, note that, for all x, y, z, t, x′, y′, z′, t′, |{h(x, y)h(z, t)−1/3}×{h(x′, y′)h(z′, t′)−1/3}| ≤
16/9 ≤ 2. Hence we get that, for all ε > 0,

Pr(|B/
√

n| > 6n3/ε) ≤
ε

6n7/2

n∑
i=1

2n5/2 = ε/3. (15)
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Using similar arguments, we find that, for all ε > 0,

Pr(|C/
√

n| > 6n3/ε) ≤ ε/3. (16)

Using Markov’s inequality and the Cauchy–Schwarz inequality as previously, we get that, for all ε > 0,

Pr(|D/
√

n| > 3n3/ε) ≤ εn−7/2E (|D|) /3

≤
ε

3n7/2 E


∣∣∣∣∣∣∣∣

n∑
i=1

∑
1≤ j0,k0≤n1

∑
n1+1≤ j1,k1≤n

h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi,k1 )

∣∣∣∣∣∣∣∣


≤
ε

3n7/2

E



n∑
i=1

∑
1≤ j0,k0≤n1

∑
n1+1≤ j1,k1≤n

h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi,k1 )


2


1/2

=
ε

3n7/2

[
E
{ n∑

i=1

∑
1≤ j0,k0≤n1

∑
n1+1≤ j1,k1≤n

h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi,k1 )

×

n∑
i′=1

∑
1≤ j′0,k′0≤n1

∑
n1+1≤ j′1,k′1≤n

h(Xi′, j′0 , Xi′, j′1 )h(Xi′,k′0 , Xi′,k′1 )
}]1/2

.

The above expectation is equal to zero when the cardinality of {i, i′, j0, j′0, k0, k′0, j1, j′1, k1, k′1} is between
8 and 10 inclusively by Assertion (v) of Lemma 1. Only the cases where the cardinality of the set is at most
7 need be considered. Observe moreover that, for all x, y, z, t, x′, y′, z′, t′ ∈ R, |h(x, y)h(z, t)h(x′, y′)h(z′, t′)| ≤
1. Therefore, for all ε > 0, we get

Pr(|D/
√

n| > 3n3/ε) ≤
ε

3n7/2 × n7/2 = ε/3. (17)

Finally, by combining (15), (16) and (17), we obtain that, for all ε > 0,

Pr
[
|S n(n1) − E {S n(n1)}|

√
n

>
15n2

εn1(n − n1)

]
≤ ε.

Since we assumed that n1/n → τ1 as n → ∞, we get that [S n(n1) − E {S n(n1)}]/
√

n = OP(1), which
concludes the proof of Theorem 1. �

7.2. Proof of Theorem 2
Start with the computation of E{S n (n1, . . . , nL)}. First observe that, for any i ∈ {1, . . . , n} and ` ∈

{0, . . . , L},(
R

(i)
` −

n + 1
2

)2

=

 1
n`+1 − n`

n`+1∑
j=n`+1

R(i)
j −

n + 1
2

2

=
1

(n`+1 − n`)2

 n`+1∑
j=n`+1

A(i)
j +

∑
n`+1≤ j, j′≤n`+1

B(i)
j j′

 , (18)

where

A(i)
j =

(
R(i)

j −
n + 1

2

)2

, B(i)
j j′ =

(
R(i)

j −
n + 1

2

) (
R(i)

j′ −
n + 1

2

)
.

Using Definition (6) of R(i)
j , we find

A(i)
j = =


n∑

k=1
k, j

(
1{Xi,k≤Xi, j} −

1
2

)
2

=

n∑
k=1
k, j

g(Xi,k, Xi, j)2 +

n∑
k=1
k, j

n∑
k′=1
k′,k
k, j

g(Xi,k, Xi, j)g(Xi,k′ , Xi, j), (19)

where g(x, y) = 1x≤y − 1/2 and, by Assertions (i) and (ii) of Lemma 2, we get

E(A(i)
j ) =

1
4

(n − 1) +
1
12

(n − 1)(n − 2) =
(n − 1)(n + 1)

12
. (20)
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Then, we decompose B(i)
j j′ into four terms as follows:

B(i)
j j′ =

(
R(i)

j −
n + 1

2

) (
R(i)

j′ −
n + 1

2

)
=


n∑

k=1
k, j

(
1{Xi,k≤Xi, j} −

1
2

)


n∑
k′=1
k′, j′

(
1{Xi,k′≤Xi, j′ } −

1
2

)
=

n∑
k=1
k, j

n∑
k′=1
k′, j′

g(Xi,k, Xi, j)g(Xi,k′ , Xi, j′ ) ≡ B1 + B2 + B3 + B4, (21)

where

B1 = g(Xi, j′ , Xi, j)g(Xi, j, Xi, j′ ), B2 =

n∑
k=1
k, j
k, j′

g(Xi,k, Xi, j)g(Xi, j, Xi, j′ ),

B3 =

n∑
k′=1
k′, j′
k′, j

g(Xi, j′ , Xi, j)g(Xi,k′ , Xi, j′ ), B4 =

n∑
k=1
k, j
k, j′

n∑
k′=1
k′, j′
k′, j

g(Xi,k, Xi, j)g(Xi,k′ , Xi, j′ )

We deduce from Lemma 2 that E (B1) = −1/4, E (B2) = E (B3) = −(n − 2)/12 and E (B4) = (n − 2)/12,
since all terms in the sum defining B4 have zero expectation except when k = k′. Hence,

E(B(i)
j j′ ) = −

1
4
− 2 ×

n − 2
12

+
n − 2

12
= −

1
4
−

n − 2
12

= −
n + 1

12
. (22)

By (18), (20) and (22),

E


(
R

(i)
` −

n + 1
2

)2
 =

1
(n`+1 − n`)2


n`+1∑

j=n`+1

(n − 1)(n + 1)
12

−
∑

n`+1≤ j, j′≤n`+1

(n + 1)
12


=

1
(n`+1 − n`)

(n − 1)(n + 1)
12

−
(n`+1 − n`)(n`+1 − n` − 1)

(n`+1 − n`)2 ×
(n + 1)

12

=
1

(n`+1 − n`)

{
(n − 1)(n + 1)

12
−

(n + 1)(n`+1 − n` − 1)
12

}
.

By (5), we get that

E {S n (n1, . . . , nL)} =
4
n2

L∑
`=0

(n`+1 − n`)
n∑

i=1

E


(
R

(i)
` −

n + 1
2

)2


=
4
n

L∑
`=0

{
(n − 1)(n + 1)

12
−

(n + 1)(n`+1 − n` − 1)
12

}
=

4(n + 1)
12n

{(L + 1)(n − 1) − (n − L − 1)} =
L(n + 1)

3
.

Now we focus on the asymptotic behavior of S n (n1, . . . , nL). For this, we first write

S n (n1, . . . , nL) − E {S n (n1, . . . , nL)} =
4
n2

L∑
`=0

(n`+1 − n`)
n∑

i=1

(
R

(i)
` −

n + 1
2

)2

−
L(n + 1)

3
,

which we decompose as

4
n2

L∑
`=0

1
n`+1 − n`

n∑
i=1

7∑
t=1

Z(t)
i =

16



4
n2

L∑
`=0

(n`+1 − n`)
n∑

i=1

 1
(n`+1 − n`)2

 n`+1∑
j=n`+1

{A(i)
j − E(A(i)

j )} +
∑

n`+1≤ j, j′≤n`+1

{B(i)
j j′ − E(B(i)

j j′ )}


 ,

where A(i)
j and B(i)

j j′ are defined in (19) and (21), and the Z(t)
i are defined as follows:

Z(1)
i =

n`+1∑
j=n`+1

n∑
k=1
k, j

{
g(Xi,k, Xi, j)2 −

1
4

}
,

Z(2)
i =

n`+1∑
j=n`+1

n∑
k=1
k, j

n∑
k′=1
k′,k
k, j

{
g(Xi,k, Xi, j)g(Xi,k′ , Xi, j) −

1
12

}
,

Z(3)
i =

∑
n`+1≤ j, j′≤n`+1

{
g(Xi, j′ , Xi, j)g(Xi, j, Xi, j′ ) +

1
4

}
,

Z(4)
i =

∑
n`+1≤ j, j′≤n`+1

n∑
k=1
k, j
k, j′

{
g(Xi,k, Xi, j)g(Xi, j, Xi, j′ ) +

1
12

}
,

Z(5)
i =

∑
n`+1≤ j, j′≤n`+1

n∑
k′=1
k′, j′
k′, j

{
g(Xi, j′ , Xi, j)g(Xi,k′ , Xi, j′ ) +

1
12

}
,

Z(6)
i =

∑
n`+1≤ j, j′≤n`+1

n∑
k=1
k, j
k, j′

{
g(Xi,k, Xi, j)g(Xi,k, Xi, j′ ) −

1
12

}
,

Z(7)
i =

∑
n`+1≤ j, j′≤n`+1

n∑
k=1
k, j
k, j′

n∑
k′=1
k′, j′
k′, j
k′,k

g(Xi,k, Xi, j)g(Xi,k′ , Xi, j′ ).

It follows that, for all M > 0,

Pr
[∣∣∣∣∣∣S n (n1, . . . , nL) − E {S n (n1, . . . , nL)}

√
n

∣∣∣∣∣∣ > M
]
≤

L∑
`=0

7∑
t=1

Pr

 4
n2

1
n`+1 − n`

∣∣∣∣∣∣∣
n∑

i=1

Z(t)
i

∣∣∣∣∣∣∣ > M
√

n
7(L + 1)


≤

L∑
`=0

7∑
t=1

Pr


∣∣∣∣∣∣∣

n∑
i=1

Z(t)
i

∣∣∣∣∣∣∣ > M(n`+1 − n`)n5/2

28(L + 1)

 .
Using Markov’s inequality, we deduce that

Pr
[∣∣∣∣∣∣S n (n1, . . . , nL) − E {S n (n1, . . . , nL)}

√
n

∣∣∣∣∣∣ > M
]
≤

L∑
`=0

7∑
t=1

28(L + 1)
M(n`+1 − n`)n5/2 E


∣∣∣∣∣∣∣

n∑
i=1

Z(t)
i

∣∣∣∣∣∣∣
 .

Calling on the Cauchy–Schwarz inequality, we obtain

Pr
[∣∣∣∣∣∣S n (n1, . . . , nL) − E {S n (n1, . . . , nL)}

√
n

∣∣∣∣∣∣ > M
]

≤

L∑
`=0

7∑
t=1

28(L + 1)
M(n`+1 − n`)n5/2

E

 n∑

i=1

Z(t)
i

2


1/2

.
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We now bound E{(
∑n

i=1 Z(t)
i )2} for each t ∈ {1, . . . , 7}. First, Assertion (i) of Lemma 2 implies

E


 n∑

i=1

Z(1)
i

2 =

n∑
i=1

n∑
i′=1

E(Z(1)
i Z(1)

i′ )

=

n∑
i=1

n∑
i′=1

n`+1∑
j=n`+1

n∑
k=1
k, j

n`+1∑
r=n`+1

n∑
s=1
s,r

E
[{

g(Xi,k, Xi, j)2 −
1
4

}{
g(Xi′ s, Xi′r)2 −

1
4

}]
= 0.

Then,

E


 n∑

i=1

Z(2)
i

2 =

n∑
i=1

n∑
i′=1

E(Z(2)
i Z(2)

i′ )

=

n∑
i=1

n∑
i′=1

n`+1∑
j=n`+1

n∑
k=1
k, j

n∑
k′=1
k′,k
k, j

n`+1∑
r=n`+1

n∑
s=1
s,r

n∑
s′=1
s′,s
s,r

E
[{

g(Xi,k, Xi, j)g(Xi,k′ , Xi, j) −
1

12

}

×

{
g(Xi′ s, Xi′r)g(Xi′ s′ , Xi′r) −

1
12

}]
.

The above expectation is equal to zero when the cardinality of the set of indices
{i, i′, j, k, k′, r, s, s′} equals 8 by Assertion (ii) of Lemma 2. Hence, only the cases where the cardinality
of this set is at most 7 need be considered. Since |{g(x, y)g(z, t) − 1/12}{g(x′, y′)g(z′, t′) − 1/12}| ≤ 1/9 ≤ 1
for all x, y, z, t, x′, y′, z′, t′ ∈ R, we get

E


 n∑

i=1

Z(2)
i

2 ≤ n7.

Using similar arguments and Assertion (iii) of Lemma 2, we also find

E


 n∑

i=1

Z(6)
i

2 ≤ n7.

Calling on similar arguments as those used for bounding E{(
∑n

i=1 Z(2)
i )2} and by Assertion (ii) of Lemma 2,

we see that E {g(X,Y)g(Y,Z)} = −E {g(X,Y)g(Z,Y)} = −1/12. Hence,

E


 n∑

i=1

Z(4)
i

2 ≤ n7 and E


 n∑

i=1

Z(5)
i

2 ≤ n7.

Using Assertion (i) of Lemma 2, we obtain

E


 n∑

i=1

Z(3)
i

2 =

n∑
i=1

n∑
i′=1

E(Z(3)
i Z(3)

i′ )

=

n∑
i=1

n∑
i′=1

∑
n`+1≤ j, j′≤n`+1

∑
n`+1≤r,r′≤n`+1

E
[ {

g(Xi, j′ , Xi, j)g(Xi, j, Xi, j′ ) +
1
4

}

×

{
g(Xi′r′ , Xi′r)g(Xi′r, Xi′r′ ) +

1
4

} ]
= 0.

Finally,

E


 n∑

i=1

Z(7)
i

2 =

n∑
i=1

n∑
i′=1

E(Z(7)
i Z(7)

i′ )
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=

n∑
i=1

n∑
i′=1

∑
n`+1≤ j, j′≤n`+1

n∑
k=1
k, j
k, j′

n∑
k′=1
k′, j′
k′, j
k′,k

∑
n`+1≤r,r′≤n`+1

n∑
s=1
s,r
s,r′

n∑
s′=1
s′,r′
s′,r
s′,s

E{g(Xi,k, Xi, j)g(Xi,k′ , Xi, j′ )

g(Xi′ s, Xi′r)g(Xi′ s′ , Xi′r′ )}.

The above expectation is zero when the the cardinality of the set of indices {i, i′, j, j′, k, k′, r, r′, s, s′} is 8 or
more by Assertion (i) of Lemma 2. Observe moreover that |g(x, y)g(z, t)g(x′, y′)g(z′, t′)|| ≤ 1/16 ≤ 1, for
all x, y, z, t, x′, y′, z′, t′ ∈ R. Therefore, we get,

E


 n∑

i=1

Z(7)
i

2 ≤ n7.

Thus, we obtain that, for all M > 0,

Pr
[∣∣∣∣∣∣S n (n1, . . . , nL) − E {S n (n1, . . . , nL)}

√
n

∣∣∣∣∣∣ > M
]
≤

1
M

L∑
`=0

5 × 28(L + 1)n7/2

(n`+1 − n`)n5/2 .

Since for any `, n/(n`+1 − n`) converges to 1/(τ`+1 − τ`), the right-hand side of the above inequality tends
to 0 when M → ∞, which concludes the proof. �

7.3. Proof of Theorem 3

For all δ > 0, let us define Cn∗1,δ =
{
n1 ∈ {1, . . . , n − 1} : |n1 − n∗1| ≥ nδ

}
. Note that

Pr
(
|n̂1 − n∗1| ≥ nδ

)
≤ Pr

 max
n1∈Cn∗1 ,δ

{S n(n1) − S n(n∗1)} ≥ 0


≤ Pr

 max
n1∈Cn∗1 ,δ

[S n(n1) − S n(n∗1) − E
{
S n(n1) − S n(n∗1)

}
+ E

{
S n(n1) − S n(n∗1)

}
] ≥ 0


≤ Pr

 max
n1∈Cn∗1 ,δ

[S n(n1) − S n(n∗1) − E
{
S n(n1) − S n(n∗1)

}
] ≥ − max

n1∈Cn∗1 ,δ

{E
{
S n(n1) − S n(n∗1)

}
}

 .
By Proposition 1 given below,

Pr
(
|n̂1 − n∗1| ≥ nδ

)
≤ Pr

 max
n1∈Cn∗1 ,δ

[S n(n1) − S n(n∗1) − E
{
S n(n1) − S n(n∗1)

}
] ≥ κ′n2δ


for large enough n for some positive constant κ′. Hence,

Pr
(
|n̂1 − n∗1| ≥ nδ

)
≤ Pr

 max
n1∈Cn∗1 ,δ

|S n(n1) − S n(n∗1) − E
{
S n(n1) − S n(n∗1)

}
| ≥ κ′n2δ


≤ Pr

[
max

n1∈Cn∗1 ,δ

|S n(n1) − E {S n(n1)} | ≥
κ′

2
n2δ

]
+ Pr

[
|S n(n∗1) − E

{
S n(n∗1)

}
| ≥

κ′

2
n2δ

]
≤

∑
n1∈Cn∗1 ,δ

Pr
(∣∣∣∣∣S n(n1) − E {S n(n1)}

∣∣∣∣∣ ≥ κ′

2
n2δ

)

+ Pr
[∣∣∣∣∣S n(n∗1) − E{S n(n∗1)}

∣∣∣∣∣ ≥ κ′

2
n2δ

]
.

19



We mimic the proof of Theorem 1 to obtain∑
n1∈Cn∗1 ,δ

Pr
[
|S n(n1) − E {S n(n1)}| ≥

κ′

2
n2δ

]
≤

∑
n1∈Cn∗1 ,δ

2
κ′n2δ

E
[
|S n(n1) − E {S n(n1)}|2

]1/2

≤
∑

n1∈Cn∗1 ,δ

2n7/2

κ′n2δnn1(n − n1)
=

2
√

n
κ′δ

∑
n1∈Cn∗1 ,δ

1
n1(n − n1)

.

Observing that

∑
n1∈Cn∗1 ,δ

1
n1(n − n1)

≤
1
n

 n−1∑
n1=1

1
n1

+

n−1∑
n1=1

1
n − n1

 =
2
n

n−1∑
n1=1

1
n1
∼ 2

ln(n)
n

,

as n→ ∞, we can conclude. �

It remains to show Proposition 1, used above to prove Theorem 3.

Proposition 1. Under the assumptions of Theorem 3, there exists a positive constant κ, such that E{S n(n1)−
S n(n∗1)} = −κn|n∗1 − n1|{1 + εn(n1)}, where maxn1∈Cn∗1 ,δ

|εn(n1)| → 0, as n→ ∞.

Proof. We first compute the expectation of S n(n∗1), viz.

E
{
S n(n∗1)

}
=

n∑
i=1

E{U2
n,i(n

∗
1)} =

1
nn∗1(n − n∗1)

n∑
i=1

E




n∗1∑
j0=1

n∑
j1=n∗1+1

h(Xi, j0 , Xi, j1 )


2

=
1

nn∗1(n − n∗1)

n∑
i=1

∑
1≤ j0,k0≤n∗1

∑
n∗1+1≤ j1,k1≤n

E{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi,k1 )}.

Rewrite the latter expression as

1
nn∗1(n − n∗1)

n∑
i=1


n∗1∑

j0=1

n∑
j1=n∗1+1

E{h2(Xi, j0 , Xi, j1 )} +

n∗1∑
j0=1

∑
n∗1+1≤ j1,k1≤n

E{h(Xi, j0 , Xi, j1 )h(Xi, j0 , Xi,k1 )}

+
∑

1≤ j0,k0≤n∗1

n∑
j1=n∗1+1

E{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi, j1 )} +
∑

1≤ j0,k0≤n∗1

∑
n∗1+1≤ j1,k1≤n

E{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi,k1 )}


and decompose this expression in the form

E
{
S n(n∗1)

}
=

A + B
nn∗1(n − n∗1)

,

where A corresponds to the sum over i which goes from 1 to n∗1 and B to the sum from n∗1 +1 to n. Introduce
the independent random variables W, Y and Z, such that W ∼ P0

0, Y ∼ P0
1 = P1

0 and Z ∼ P1
1 and denote

W (1),W (2),W (3), Y (1),Y (2),Y (3), Z(1),Z(2),Z(3) their respective independent copies. Observe that

A =

n∗1∑
i=1


n∗1∑

j0=1

n∑
j1=n∗1+1

E{h2(Xi, j0 , Xi, j1 )} +
n∗1∑

j0=1

∑
n∗1+1≤ j1,k1≤n

E{h(Xi, j0 , Xi, j1 )h(Xi, j0 , Xi,k1 )}

+
∑

1≤ j0,k0≤n∗1

n∑
j1=n∗1+1

E{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi, j1 )} +
∑

1≤ j0,k0≤n∗1

∑
n∗1+1≤ j1,k1≤n

E{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi,k1 )}


= n∗1

[
n∗1(n − n∗1)E{h2(W,Y)} + n∗1(n − n∗1)(n − n∗1 − 1)E{h(W,Y)h(W,Y (1))}

+ n∗1(n∗1 − 1)(n − n∗1)E{h(W,Y)h(W (1),Y)} + n∗1(n∗1 − 1)(n − n∗1)(n − n∗1 − 1)E{h(W,Y)h(W (1),Y (1))}
]
.
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In the same manner, we can see that

B = (n − n∗1)
[
n∗1(n − n∗1)E{h2(Y,Z)} + n∗1(n − n∗1)(n − n∗1 − 1)E{h(Y,Z)h(Y,Z(1))}

+ n∗1(n∗1 − 1)(n − n∗1)E{h(Y,Z)h(Y (1),Z)} + n∗1(n∗1 − 1)(n − n∗1)(n − n∗1 − 1)E{h(Y,Z)h(Y (1),Z(1))}
]
.

Note that all the absolute values of the above expectations in A and B are bounded by 1 by the definition of
the function h. Then we compute the expectation of S n(n1) in the case where n1 < n∗1, viz.

E {S n(n1)} =
1

nn1(n − n1)

n∑
i=1

E




n1∑
j0=1

n∑
j1=n1+1

h(Xi, j0 , Xi, j1 )


2

=
1

nn1(n − n1)

n∑
i=1

∑
1≤ j0,k0≤n1

∑
n1+1≤ j1,k1≤n

E{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi,k1 )}.

Rewrite the latter expression as

1
nn1(n − n1)

n∑
i=1

 n1∑
j0=1

n∑
j1=n1+1

E{h2(Xi, j0 , Xi, j1 )} +

n1∑
j0=1

∑
n1+1≤ j1,k1≤n

E{h(Xi, j0 , Xi, j1 )h(Xi, j0 , Xi,k1 }

+
∑

1≤ j0,k0≤n1

n∑
j1=n1+1

E{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi, j1 )}

+
∑

1≤ j0,k0≤n1

∑
n1+1≤ j1,k1≤n

E{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi,k1 )}

 ,
and decompose this expression in the form

E {S n(n1)} =
C + D

nn1(n − n1)
,

where C corresponds to the sum over i which goes from 1 to n∗1 and D to the sum from n∗1 + 1 to n. Next,

C =

n∗1∑
i=1

 n1∑
j0=1

n∗1∑
j1=n1+1

E{h2(Xi, j0 , Xi, j1 )} +
n1∑

j0=1

n∑
j1=n∗1+1

E{h2(Xi, j0 , Xi, j1 )}

+

n1∑
j0=1

∑
n1+1≤ j1,k1≤n∗1

E{h(Xi, j0 , Xi, j1 )h(Xi, j0 , Xi,k1 )} +
n1∑

j0=1

∑
n∗1+1≤ j1,k1≤n

E{h(Xi, j0 , Xi, j1 )h(Xi, j0 , Xi,k1 )}

+ 2
n1∑

j0=1

n∗1∑
j1=n1+1

n∑
k1=n∗1+1

E{h(Xi, j0 , Xi, j1 )h(Xi, j0 , Xi,k1 )} +
∑

1≤ j0,k0≤n1

n∗1∑
j1=n1+1

E{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi, j1 )}

+
∑

1≤ j0,k0≤n1

n∑
j1=n∗1+1

E{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi, j1 )} +
∑

1≤ j0,k0≤n1

∑
n1+1≤ j1,k1≤n∗1

E{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi,k1 )}

+
∑

1≤ j0,k0≤n1

∑
n∗1+1≤ j1,k1≤n

E{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi,k1 )} +2
∑

1≤ j0,k0≤n1

n∗1∑
j1=n1+1

n∑
k1=n∗1+1

E{h(Xi, j0 , Xi, j1 )h(Xi,k0 , Xi,k1 )}


so that

C = n∗1
[
n1(n∗1 − n1)E{h2(W,W (1))} + n1(n − n∗1)E{h2(W,Y)} + n1(n∗1 − n1)(n∗1 − n1 − 1)E{h(W,W (1))h(W,W (2))}

+ n1(n − n∗1)(n − n∗1 − 1)E{h(W,Y)h(W,Y (1))} + 2n1(n∗1 − n1)(n − n∗1)E{h(W,W (1))h(W,Y)}
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+ n1(n1 − 1)(n∗1 − n1)E{h(W,W (1))h(W (2),W (1))} + n1(n1 − 1)(n − n∗1)E{h(W,Y)h(W (1),Y)}

+ n1(n1 − 1)(n∗1 − n1)(n∗1 − n1 − 1)E{h(W,W (1))h(W (2),W (3))}+

+ n1(n1 − 1)(n − n∗1)(n − n∗1 − 1)E{h(W,Y)h(W (1),Y (1))}

+ 2n1(n1 − 1)(n∗1 − n1)(n − n∗1)E{h(W,W (1))h(W (2),Y)}
]
.

In the same manner, we can see that

D = (n − n∗1)
[
n1(n∗1 − n1)E{h2(Y,Y (1)} + n1(n − n∗1)E{h2(Y,Z)} + n1(n∗1 − n1)(n∗1 − n1 − 1)E{h(Y,Y (1))h(Y,Y (2))}

+ n1(n − n∗1)(n − n∗1 − 1)E{h(Y,Z)h(Y,Z(1))} + 2n1(n∗1 − n1)(n − n∗1)E{h(Y,Y (1))h(Y,Z)}

+ n1(n1 − 1)(n∗1 − n1)E{h(Y,Y (1))h(Y (2),Y (1)} + n1(n1 − 1)(n − n∗1)E{h(Y,Z)h(Y (1),Z)}

+ n1(n1 − 1)(n∗1 − n1)(n∗1 − n1 − 1)E{h(Y,Y (1))h(Y (2),Y (3))}

+ n1(n1 − 1)(n − n∗1)(n − n∗1 − 1)E{h(Y,Z)h(Y (1),Z(1))}

+ 2n1(n1 − 1)(n∗1 − n1)(n − n∗1)E{h(Y,Y (1))h(Y (2),Z)}
]
,

where the absolute values of the above expectations are bounded by 1. From Lemma 1, we get that

E{S n(n1) − S n(n∗1)} =
C + D

nn1(n − n1)
−

A + B
nn∗1(n − n∗1)

=
(n∗1 − n1)(n∗1 − 2)

3(n − n1)
−

n∗1(n − n∗1 − 1)(n∗1 − n1)
n(n − n1)

E{h(W,Y)h(W,Y (1))}

+
2n∗1(n∗1 − n1)(n − n∗1)

n(n − n1)
E{h(W,W (1))h(W,Y)}

−
n∗1(n∗1 − n1)(n − 1)

n(n − n1)
E{h(W,Y)h(W (1),Y)}

−
n∗1(n − n∗1 − 1)(n∗1 − n1)(n − 1)

n(n − n1)
E{h(W,Y)h(W (1),Y (1))}

−
(n − n∗1)(n − n∗1 − 1)(n∗1 − n1)

n(n − n1)
E{h(Y,Z)h(Y,Z(1))}

+
2(n − n∗1)2(n∗1 − n1)

n(n − n1)
E{h(Y,Y (1))h(Y,Z)}

−
(n − n∗1)(n∗1 − n1)(n − 1)

n(n − n1)
E{h(Y,Z)h(Y (1),Z)}

−
(n − n∗1)(n − n∗1 − 1)(n∗1 − n1)(n − 1)

n(n − n1)
E{h(Y,Z)h(Y (1),Z(1))}.

Hence,

E
{
S n(n1) − S n(n∗1)

}
= −n(n∗1 − n1)

[n∗1(n − n∗1 − 1)(n − 1)
n2(n − n1)

E {h(W,Y)}2

+
(n − n∗1)(n − n∗1 − 1)(n − 1)

n2(n − n1)
E {h(Y,Z)}2

+
(2 − n∗1)

3n(n − n1)
+

n∗1(n − n∗1 − 1)
n2(n − n1)

E{h(W,Y)h(W,Y (1))}

− 2
n∗1(n − n∗1)
n2(n − n1)

E{h(W,W (1))h(W,Y)} +
n∗1(n − 1)
n2(n − n1)

E{h(W,Y)h(W (1),Y)}

+
(n − n∗1)(n − n∗1 − 1)

n2(n − n1)
E{h(Y,Z)h(Y,Z(1))} − 2

(n − n∗1)2

n2(n − n1)
E{h(Y,Y (1))h(Y,Z)}

+
(n − n∗1)(n − 1)

n2(n − n1)
E{h(Y,Z)h(Y (1),Z)}

]
.
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Note that E {h(W,Y)} , 0 or E {h(Y,Z)} , 0 by (9) since

E{h(W,Y)} = E
[
1{W≤Y} − 1{Y≤W}

]
= Pr(W ≤ Y) − Pr(Y ≤ W) = 2 Pr(W ≤ Y) − 1 , 0.

Hence, there exists a positive constant κ, such that E{S n(n1) − S n(n∗1)} = −κn(n∗1 − n1) {1 + εn(n1)}, where
maxn1∈Cn∗1 ,δ

|εn(n1)| → 0, as n→ ∞, since 1 − n∗1/n ≤ (n − n∗1)/(n − n1) ≤ 1 and n∗1/n→ τ∗1.
We conclude the proof using similar arguments in the case where n1 > n∗1.

7.4. Sketch of proof of Theorem 4
The proof of Theorem 4 is similar to that of Theorem 3. The main difference is the computation of the

following expectation:

E
{
S n

(
n∗1, . . . , n

∗
L
)
− S n (n1, . . . , nL)

}
=

2
n2

L∑
`=0

L∑
`1=0

L∑
`2=0

L∑
`4=0

n`,`1 n`,`2 |D
∗
`4
|

n`+1 − n`

 L∑
`3=0

|D∗`3
|E

{
F`4,`1 (X) − F`4,`2 (X)

}
2

{1 + ε (n1, . . . , nL)}, (23)

where |A| denotes the cardinality of the set A, X ∼ Pr`4
`3

, sup(n1,...,nL) ε (n1, . . . , nL)→ 0 and

n`,`′ = |{i ∈ {1, . . . , n} : n∗`′ + 1 ≤ i ≤ n∗`′+1 and n` + 1 ≤ i ≤ n`+1}|.

Let δ > 0. Define Cn∗,δ =
{
n = (n1, . . . , nL) : ‖n − n∗‖∞ ≥ nδ

}
. Using similar arguments as those given in

(iii) of Lemma 1 in [5], under Assumption (10), there exists κ > 0 such that

min
n∈Cn∗ ,δ

E
{
S n

(
n∗1, . . . , n

∗
L
)
− S n (n1, . . . , nL)

}
≥ κn2 (24)

for large enough n. The detailed proof of (23) and (24) is given in the Online Supplement. �

7.5. Proof of Eq. (12)
By (11), I0(p) = max1≤n1=p ∆(1 : n1) = ∆(1 : p) and

I1(p) = max
1≤n1<n2=p

{∆(1 : n1) + ∆(n1 + 1 : p)} = max
1≤n1<n2=p

{I0(n1) + ∆(n1 + 1 : p)},

which is (12) when L = 1. By (11),

I2(p) = max
1≤n1<n2<n3=p

{∆(1 : n1) + ∆(n1 + 1 : n2) + ∆(n2 + 1 : p)}.

Using the previous expression of I1(p), we get

I2(p) = max
1<n2<p

{I1(n2) + ∆(n2 + 1 : p)},

which is (12) when L = 2. Following the same lines of reasoning, we can derive (12) for L = 3, 4, . . . �

Appendix: Technical lemmas

Lemma 1. Let h be defined by h(x, y) = 1{x≤y} − 1{y≤x}. Then (i) E {h(X,Y)} = 0; (ii) h2(X,Y) = 1 a.s.; (iii)
E {h(X,Y)h(X,Z)} = 1/3; (iv) E {h(X,Y)h(Z,Y)} = 1/3; (v) E {h(X,Y)h(Z,T )} = 0; where X, Y, Z and T
are iid random variables whose common distribution is continuous.

Proof. (i) Let X and Y be iid random variables with cumulative distribution function F. We have E {h(X,Y)} =

E
(
1{X≤Y}

)
− E

(
1{Y≤X}

)
= E {1 − 2F(X)} = 0, where we used that F(X) is U[0, 1]. To prove (i), let, for all

x , y in R, h2(x, y) = (1{x≤y} − 1{y≤x})2 = 1{x≤y} + 1{y≤x} − 21{x≤y}1{y≤x} = 1. Consequently, h2(X,Y) = 1 a.s.
Turning to (iii), let X, Y and Z be iid random variables with cumulative distribution function F. We have

E {h(X,Y)h(X,Z)} = E
{(

1{X≤Y} − 1{Y≤X}
) (

1{X≤Z} − 1{Z≤X}
)}
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= E
(
1{X≤Y}1{X≤Z}

)
− E

(
1{X≤Y}1{Z≤X}

)
− E

(
1{Y≤X}1{X≤Z}

)
+ E

(
1{Y≤X}1{Z≤X}

)
= E[{1 − F(X)}2] − 2[E{F(X)} − E{(X)2}] + E{F(X)2}

= 1/3 − 2 (1/2 − 1/3) + 1/3 = 1/3,

where we used the fact that F(X) is U[0, 1]. Statement (iv) stems from (iii), since E {h(X,Y)h(Z,Y)} =

E {h(Y, X)h(Y,Z)} = 1/3. As for (v), by independence of (X,Y) with (Z,T ), we have E {h(X,Y)h(Z,T )} =

E {h(X,Y)}E {h(Z,T )} = 0.

Lemma 2. Let us define the function g as g(x, y) = 1{x≤y} − 1/2. Let X, Y and Z be iid random vari-
ables whose common distribution is continuous. Then (i) E {g(X,Y)} = 0; (ii) g(X,Y)2 = 1/4 a.s.; (iii)
E {g(X,Y)g(Z,Y)} = 1/12; (iv) E {g(X,Y)g(X,Z)} = 1/12.

Proof. To show (i), note that E {g(X,Y)} = E {F(Y)} − 1/2 = 0 because F(Y) is U[0, 1]. To show (ii),
observe that for all x, y in R, g(x, y)2 = (1{x≤y} − 1/2)2 = 1{x≤y} + 1/4 − 1{x≤y} = 1/4. Thus g2(X,Y) = 1/4
a.s. Turning to (iii), let X, Y and Z be iid random variables with distribution F. We have

E {g(X,Y)g(Z,Y)} = E
{(

1{X≤Y} −
1
2

) (
1{Z≤Y} −

1
2

)}
= E

(
1{X≤Y}1{Z≤Y}

)
−

1
2

E
(
1{Z≤Y}

)
−

1
2

E
(
1{X≤Y}

)
+

1
4

= E{F(Y)2} − E {F(Y)} +
1
4

=
1
3
−

1
2

+
1
4

=
1

12
,

where we used that F(X) isU[0, 1]. Finally, for (iv) note that, by (iii),

E {g(X,Y)g(X,Z)} = E
{(

1{X≤Y} −
1
2

) (
1{X≤Z} −

1
2

)}
= E

{(
1 − 1{Y≤X} −

1
2

) (
1 − 1{Z≤X} −

1
2

)}
= E

{(
1
2
− 1{Y≤X}

) (
1
2
− 1{Z≤X}

)}
= E {g(Y, X)g(Z, X)} =

1
12
.

This concludes the proof.
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