Nonparametric multiple change-point estimation for analyzing large Hi-C data matrices
Détection de ruptures dans un cadre non paramétrique pour l'analyse de matrices Hi-C de grandes tailles
Résumé
We propose a novel nonparametric approach to estimate the location of block boundaries (change-points) of non-overlapping blocks in a random symmetric matrix which consists of random variables whose distribution changes from block to block. Our change-point location estimators are based on nonparametric homogeneity tests for matrices. We first provide some theoretical results for these tests. Then, we prove the consistency of our change-point location estimators. Some numerical experiments are also provided in order to support our claims. Finally, our approach is applied to Hi-C data which are used in molecular biology to study the influence of chromosomal conformation on cell function.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...