On the minimizing movement with the 1-Wasserstein distance - Archive ouverte HAL
Article Dans Une Revue ESAIM: Control, Optimisation and Calculus of Variations Année : 2018

On the minimizing movement with the 1-Wasserstein distance

Résumé

We consider a class of doubly nonlinear constrained evolution equations which may be viewed as a nonlinear extension of the growing sandpile model of [15]. We prove existence of weak solutions for quite irregular sources by a semi-implicit scheme in the spirit of the seminal works of [13] and [14] but with the 1-Wasserstein distance instead of the quadratic one. We also prove an L 1-contraction result when the source is L 1 and deduce uniqueness and stability in this case.
Fichier principal
Vignette du fichier
w1grad-jko-complet-v5.pdf (172.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01467979 , version 1 (15-02-2017)

Identifiants

  • HAL Id : hal-01467979 , version 1

Citer

Martial Agueh, Guillaume Carlier, Noureddine Igbida. On the minimizing movement with the 1-Wasserstein distance. ESAIM: Control, Optimisation and Calculus of Variations, 2018. ⟨hal-01467979⟩
621 Consultations
422 Téléchargements

Partager

More