Spatial regularization for nonlinear unmixing of hyperspectral data with vector-valued kernel functions - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Spatial regularization for nonlinear unmixing of hyperspectral data with vector-valued kernel functions

Rita Ammanouil
André Ferrari
Cédric Richard

Résumé

This communication introduces a new framework for incorporating spatial regularization into a nonlinear unmixing procedure dedicated to hyperspectral data. The proposed model promotes smooth spatial variations of the nonlinear component in the mixing model. The spatial regularizer and the nonlinear contributions are jointly modeled by a vector-valued function that lies in a reproducing kernel Hilbert space (RKHS). The unmixing problem is strictly convex and reduces to a quadratic programming (QP) problem. Simulations on synthetic data illustrate the effectiveness of the proposed approach.
Fichier principal
Vignette du fichier
ammanouil_17179.pdf (301.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01466645 , version 1 (13-02-2017)

Identifiants

  • HAL Id : hal-01466645 , version 1
  • OATAO : 17179

Citer

Rita Ammanouil, André Ferrari, Cédric Richard, Jean-Yves Tourneret. Spatial regularization for nonlinear unmixing of hyperspectral data with vector-valued kernel functions. IEEE Workshop on statistical signal processing (SSP 2016), Aug 2016, Palma de Mallorca, Spain. pp. 1-5. ⟨hal-01466645⟩
254 Consultations
228 Téléchargements

Partager

More