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† IRIT laboratory, University of Toulouse, France

{rita.ammanouil, andre.ferrari, cedric.richard}@unice.fr, jean-yves.tourneret@enseeiht.fr

ABSTRACT

This communication introduces a new framework for incorporating

spatial regularization into a nonlinear unmixing procedure dedicated

to hyperspectral data. The proposed model promotes smooth spa-

tial variations of the nonlinear component in the mixing model. The

spatial regularizer and the nonlinear contributions are jointly mod-

eled by a vector-valued function that lies in a reproducing kernel

Hilbert space (RKHS). The unmixing problem is strictly convex and

reduces to a quadratic programming (QP) problem. Simulations on

synthetic data illustrate the effectiveness of the proposed approach.

Index Terms— Hyperspectral images, nonlinear unmixing, spa-

tial regularization, vector-valued RKHS.

1. INTRODUCTION

Spectral unmixing (SU) is one of the most prominent tools for an-

alyzing hyperspectral data [1]. This is partly due to the fact that

hyperspectral sensors have a low spatial resolution. Hence, the area

covered by a pixel usually encloses more than one material. The goal

of SU is to identify the pure spectra (endmembers) in the scene, and

to estimate their proportions (abundances) in each pixel.

Most of the SU algorithms proposed in the literature consider

the linear mixing model (LMM), which represents the spectrum of a

pixel as a linear combination of the endmembers weighted by their

abundances [2]. The LMM is a simple yet very representative model,

which was extensively studied in the literature [3]. However, some

scenes such as vegetated and urban areas exhibit strong nonlinear

effects [4, 5], which can be detected with statistical hypothesis test-

ing [6]. This has led to the refinement of the LMM through the

development of nonlinear mixing models [7]. Most of these models

incorporate a new term in addition to the prevailing linear term. For

example, bilinear models [8–12] incorporate the contributions of the

pairwise products of the endmembers. The authors of [13] present a

multilinear mixing model as an extension of bilinear models, that in-

corporates higher order products between the endmembers. In con-

trast with the previously cited models, the authors of [14] propose

a non-parametric nonlinear model that lies in an RKHS [15]. This

model does not require a specific expression for the nonlinear term

but is defined in a rather general manner through a kernel function.

Another strategy for nonlinear unmixing is proposed in [16], where

the authors use a Gaussian process latent variable model (GPLVM).

This work was partly supported by the Agence Nationale pour la

Recherche, France, (Hypanema project, ANR-12-BS03-003), and the re-

gional council of Provence-Alpes-Côte d’Azur.

Similarly to [14], the GPLVM framework is able to incorporate many

forms of nonlinearities.

In this paper, we introduce a new spatial regularizer acting on

the nonlinear contributions. We adopt the same strategy as in [14],

i.e., we resort to a kernel-based nonlinear mixing model. Compared

to [14], we go one step further by using an RKHS of vector-valued

functions rather than scalar-valued functions [17, 18]. More pre-

cisely, each output of the vector-valued function represents the non-

linear contribution of the mixing model at a given pixel. We con-

sider a special class of kernels, known as separable kernels [18]. In

particular, these kernels are defined as the product of two terms, a

scalar-valued kernel acting on the input, and a matrix-valued kernel

encoding the closeness between the outputs. The first and the second

term play a central role in defining the nonlinearity and the spatial

regularization, respectively. The closeness between the outputs of

the function, i.e. the nonlinear contributions at different pixels, is

defined using a graph, see [19–21] and references therein for appli-

cation of graph-based regularizations in image processing. In par-

ticular, the proposed spatial regularization consists of penalizing the

ℓ2-norm of the difference between the outputs that appear as con-

nected in the graph and hence promotes smoothness. Being solely

defined by an appropriate design of the kernel, the spatial regulariza-

tion is relatively transparent from the optimization problem point of

view, which is then shown to reduce to a quadratic problem. To the

best of our knowledge, there is no nonlinear model in the literature

that promotes smooth nonlinear contributions. Nevertheless, several

works considered other types of prior information for nonlinear un-

mixing. The authors of [22] incorporated a total variation over the

abundances, which promotes piecewise smooth abundances in the

scene. The authors of [23] introduced a robust nonlinear matrix fac-

torization unmixing algorithm that promotes sparse nonlinear con-

tributions. In contrast with the previously cited models, we promote

smooth nonlinear contributions over the scene. This prior is justified

by the spatial smoothness inherently present in natural scenes.

This paper is organized as follows. Section 2 introduces the non-

linear mixing model. Section 3 details the kernel design and the un-

derlying spatial regularization. Section 4 presents the proposed un-

mixing algorithm. Finally, experimental results investigated in sec-

tion 5 show the effectiveness of the proposed approach.

2. VECTOR-VALUED FORMULATION

Consider an hyperspectral image with N pixels, estimated over L

spectral bands. According to the LMM [2], the spectrum of the n-th

pixel is modeled as:

sn =
∑M

i=1
ai,nri + en, ∀n = 1, . . . N, (1)



where sn = [s1,n, . . . , sL,n]
⊤ is the L-dimensional spectrum of the

n-th pixel, M is the number of endmembers, ai,n is the abundance

of the i-th endmember in the n-th pixel, ri is the L-dimensional

spectrum of the i-th endmember, and en is a vector of white Gaus-

sian noise. All vectors are column vectors. The abundances, being

the relative contributions of the endmembers, are positive and usu-

ally sum to one [2], namely: ai,n ≥ 0 and
∑M

i=1
ai,n = 1. As

mentioned previously, most nonlinear mixing models incorporate an

additional term within the LMM (1). In this work, we consider the

nonlinear mixing model, known as khype, that was proposed in [14]:

sℓ,n = r⊤
λℓ
an + fn(rλℓ

) + eℓ,n, (2)

where R = [r1, . . . , rM ] is the L × M matrix of endmembers,

rλℓ
is an M × 1 vector formed with the elements of the ℓ-th row

of R, an = [a1,n, . . . , aM,n]
⊤ is the abundance vector of the n-th

pixel, and fn is a scalar-valued function in an RKHS modelling the

nonlinearity at any band. Let f = [f1, . . . , fN ]⊤ be a vector-valued

function. Equation (2) can be rewritten as follows:

sλℓ
= A⊤rλℓ

+ f(rλℓ
) + eλℓ

, (3)

where sλℓ
and eλℓ

denote the ℓ-th rows of S = [s1, . . . , sN ] and

E = [e1, . . . , eN ] respectively. The aim of the next section is to

show the relevance of the vector-valued formulation (3). In partic-

ular, we demonstrate the ability of vector-valued functions to incor-

porate prior information about the similarities between f1, . . . , fN ,

the outputs of f , through an appropriate kernel design.

3. KERNEL DESIGN AND REGULARIZATION

We will assume that the nonlinear function f in (3) lies in an RKHS

of vector-valued functions, denoted by H̄k, associated with the fol-

lowing separable kernel function [17, 18]:

k̄ : R
M × R

M → R
N×N

(rλℓ
, rλ

ℓ′
) → k̄(rλℓ

, rλ
ℓ′
),

(4)

with

k̄(rλℓ
, rλ

ℓ′
) = k(rλℓ

, rλ
ℓ′
)E. (5)

The function k(·, ·) is a scalar-valued kernel such as the polynomial

or Gaussian kernel, and E is an N ×N symmetric nonnegative ma-

trix. Let K be the L × L Gram matrix associated with the scalar-

valued kernel k, namely, kℓ,ℓ′ = k(rλℓ
, rλ

ℓ′
), and let K̄ be the

NL×NL Gram matrix associated with the matrix-valued kernel k̄,

namely, k̄ℓ,ℓ′ = k̄(rλℓ
, rλ

ℓ′
). Given equation (5), we have:

K̄ = K ⊗ E. (6)

Moreover, the norm of f in H̄k [17] is given by:

‖f‖2H̄k
=

N∑

n,n′=1

E†
n,n′〈fn, fn′〉Hk

, (7)

where E
† is the pseudo inverse of E . The above expression shows

that the norm of f is equal to the weighted sum of the pairwise in-

ner products between the individual functions. From a regulariza-

tion point of view, equation (7) can be used to promote structured

similarities between the different functions through the design of E .

Hereafter, we investigate the so-called “graph regularizer” [17] and

provide the corresponding structure for the matrix E . Note that the

authors of [17] provided other examples of regularizers with the cor-

responding design of E .

Due to the inherent spatial correlation present in real images,

spatially neighboring pixels usually have similar spectra. As a con-

sequence, we assume that they are characterized by similar nonlinear

contributions. This prior about the closeness between adjacent pix-

els can be modeled by a graph. We denote by W ∈ R
N×N the

adjacency matrix of this graph [24]. When two pixels are adjacent,

the corresponding nodes are connected by an edge and associated

with a positive similarity weight wn,n′ > 0, otherwise wn,n′ is set

to zero. In accordance with the prior, the graph regularizer promotes

similarity between the estimated nonlinearities at adjacent pixels in

the image, hence connected nodes in the graph. It is defined as:

‖f‖2H̄k
=

N∑

n=1

‖fn‖
2

Hk
wn,n +

1

2

N∑

n=1

N∑

n′=1

‖fn − fn′‖2Hk
wn,n′ .

(8)

Note that, (8) penalizes the norms of the individual functions in addi-

tion to the differences between each pair of functions, hence forcing

them to be similar. Moreover, the strength of the similarity between

each pair of functions is determined by the corresponding weight.

More precisely, a high value of wn,n′ promotes a strong similarity

between fn and fn′ , and conversely, a low value of wn,n′ promotes a

weak similarity between the two functions. Using (7) and (8), some

calculations show that E† is related to W as follows:
{

E†
n,n′ = −wn,n′ , if n -= n′,

E†
n,n =

∑N

n′=1
wn,n′ , otherwise.

(9)

Finally, note that when E = IN , the norm of f reduces to the sum

of the individual norms of its components fn. This corresponds to

processing all the functions independently without exploiting any

regularization between them as in the khype model [14].

4. ESTIMATION ALGORITHM

In order to estimate the abundances and the nonlinear function, we

propose to consider the following optimization problem:

min
{eλℓ

}L
ℓ=1

,f∈Hk,A

1

2

∑L

ℓ=1
‖eλℓ

‖2 + λ
2
‖f‖2H̄k

+ µ

2
‖A‖2F

subject to eλℓ
= sλℓ

−A⊤rλℓ
− f(rλℓ

)

ai,n . 0 ∀ i = 1, · · ·M ,n = 1, · · ·N,
∑M

i=1
ai,n = 1 ∀n = 1, · · · , N,

(10)

where A = [a1, . . . ,aN ], and λ, µ are tuning parameters. The

first term in the objective function (10) measures the square error

between the observations and the estimated model. The second term

in the objective function (10) is the ℓ2-norm of f in H̄k. This term

incorporates the norms of its individual outputs in addition to their

weighted differences (8). As a result, it constrains the regularity

of the estimated functions and their pairwise differences depending

on the kernel design. The third term in (10) is the Frobenius norm

of A which constrains the norm of the estimated abundances. The

relevance of having simultaneously two strictly convex regularizers

is that it ensures the strict convexity of the objective function. The

Lagrangian associated with problem (10) is:

L(E,f ,A,V ,Λ,u) = 1

2

∑L

ℓ=1
‖eλℓ

‖2 + λ
2
‖f‖2H̄k

+

µ

2
‖A‖2F +

∑L

ℓ=1
v⊤
λℓ
(sλℓ

−A⊤rλℓ
− f(rλℓ

)− eλℓ
)

− tr(Λ⊤A)− u⊤(A⊤
1M − 1N )

(11)
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Fig. 1. True and estimated nonlinear parts in s1 and s2 obtained

using the various settings for the bilinear coefficients and for E .

where V = [vλ1
, . . . ,vλL

]⊤, Λ, and u are the Lagrange multipli-

ers associated with the constraints in (10). Given that problem (10)

is strictly convex, its solution can be found by solving the Lagrange

dual problem [25]. Setting the derivatives of the Lagrangian w.r.t.

the primal variables to zero yields:






E⋆ = V

f⋆(·) =
∑L

ℓ=1
k(·, rλℓ

)
vλℓ

λ

A⋆ = 1

µ
(R⊤V +Λ+ 1Mu⊤)

(12)

Replacing the optimal variables in (11) by their expressions in (12),

gives the Lagrangian dual function. Some calculations show that

the Lagrange dual function can be written as a quadratic form (see

equation (13)). The vectors v̂, Λ̂ in (13) are shorthand notations for

vec(V ⊤) and vec(Λ⊤), where vec(·) is an operator that stacks the

columns of its input matrix on top of each other. The Lagrange dual

problem consists of maximizing the Lagrange dual function (13),

with the additional constraint Λ ≥ 0 where the inequality is applied

element wise. In other words, the dual problem reduces to solving a

positively constrained quadratic problem. In the experiments, prob-

lem (13) is solved using a quadratic solver. When E = IN , i.e. no

proximity between the functions is assumed, problem (13) separable

and reduces to N quadratic subproblems.

5. EXPERIMENTS ON SYNTHETIC DATA

5.1. Toy example

The proposed approach is first illustrated using a toy example. Eight

endmembers were randomly selected from the ENVI software li-

brary. The endmembers spectra consist of L = 210 spectral bands

uniformly sampled in the range from 395 to 2560 nm. Two nonlin-

early mixed spectra, namely, s1 and s2, were generated such that:
{

s1 = Ra1 + u (α1,1 Ra1 ⊙Ra1 + α1,2 Ra2 ⊙Ra2) + e1,
s2 = Ra2 + u (α2,1 Ra1 ⊙Ra1 + α2,2 Ra2 ⊙Ra2) + e2,

(15)

where “⊙” is the element wise product between two vectors, u is an

attenuation coefficient set to 0.5 in the experiments, and αi,j ∈ [0 1]
is the contribution of the bilinear term depending on aj in si. Note

that the second term on the right hand side of the first equation in (15)

corresponds to the nonlinear contribution [f1(rλ1
) . . . f1(rλL

)]⊤,

and similarly for the second equation. Two cases are considered:

• MM 1: α1,1 = α2,2 = 1 and α1,2 = α2,1 = 0

• MM 2: α1,1 = α2,2 = 0.5 and α1,2 = α2,1 = 0.5

MM1 corresponds to the well-known polynomial post nonlinear

mixing model (PPNM) [11]. MM2 corresponds to a bilinear model

where the bilinear contributions simultaneously depend on both

abundance vectors. In particular, setting all bilinear coefficients to

0.5 yields the same nonlinear contribution for s1 and s2. Finally,

the two following cases were considered for the matrix E
†:

• E
†
1
: w1,1 = w2,2 = 1, w1,2 = w2,1 = 0,

• E
†
2
: w1,1 = w2,2 = 1, w1,2 = w2,1 = 10.

The first case (E† = E
†
1
) does not promote any a priori similar-

ity. The resulting norm of f given by (8) reduces in this case to

the sum of the norms of the individual functions. The second case

(E† = E
†
2
) promotes similarity between f1 and f2. In addition to

the sum of norms of the individual functions f1 and f2, the norm of

f incorporates the difference between f1 and f2 weighted by w2,1.

As for the scalar kernel, a second order polynomial kernel is used:

k(rλℓ
, rλ

ℓ′
) = (r⊤

λℓ
rλ

ℓ′
)2. (16)

The feature map of the kernel as defined by (16) incorporates the

pairwise products between the endmembers, which motivates its use

with the bilinear model. Gaussian noise was added in order to reach

the desired signal to noise ratio (SNR). For each case, 100 Monte

Carlo runs were performed. The performance of the proposed ap-

proach is evaluated using the root mean square error (RMSE):

RMSE(A,A⋆) =

√
‖A−A

⋆‖2F
MN

. (17)

The parameters λ and µ were tested among the values [10−3, 5 ×
10−3, 10−2, 10−1, 1, 10 ]. The endmembers are assumed to be

known in the experiments. Table 1 reports the RMSEs of the esti-

mated abundances and the nonlinear parts obtained in each scenario

with several values of the SNR and M. Table 2 reports the optimal

tuning parameters for each case. As expected, penalizing the dis-

crepancy between f1 and f2, that is, using E
†
2
, gives better results

when the nonlinear parts are equal. On the other hand, using E
†
2

for

different functions f1 and f2 deteriorates the results. More impor-

tantly, improving the estimation of the nonlinear part also yields an

improved estimation of the abundances. This shows the importance

of the estimation of f , and the use of a correct prior. Figure 1 shows

the true and estimated functions f1 and f2 for each case. Figures 1

(a) and (b) correspond to the case where f1 and f2 are different, they

are represented by two solid lines. Whereas Figures 1 (c) and (d) cor-

respond to the case where f1 and f2 are equal, hence they are both

represented by one solid line. The estimated nonlinear contributions

are represented using blue and green dashed lines respectively. Fig-

ures 1 (b) and (d) show how penalizing the difference between f1
and f2 yields closer estimations compared to Figures 1 (a) and (c).

5.2. Spatial data set

The proposed approach was tested on a synthetic image known as the

spatial image [22]. The abundance maps for this image are the same

as those used for the image IM2 in [22]. The image has 100 × 100
pixels, and is composed of 8 endmembers. As in the previous ex-

periment, a bilinear mixing model was used where the bilinear co-

efficients depend on neighboring abundances. The attenuation pa-

rameter was set to u = 0.5. The endmembers spectra used in the
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 , (13)

where

Kv̂ = (ILN +
1

λ
K̄ +

1

µ
(RR

⊤)⊗ IN ). (14)

Table 1. RMSEs (×10−2) for the abundances and the nonlinear

part (left and right term in brackets respectively) obtained with the

toy example.

E
†
1

SNR = 40 SNR = 30 SNR = 20

M=3
MM 1 (1.28, 0.78) (2.07, 1.05) (4.55, 1.97)
MM 2 (2.16, 0.78) (2.54, 1.09) (5.33, 2.17)

M=5
MM 1 (3.07, 1.46) (2.60, 1.74) (5.30, 3.34)
MM 2 (2.32, 0.91) (2.84, 1.25) (4.72, 1.93)

M=8
MM 1 (2.12, 1.51) (2.73, 1.81) (5.59, 3.34)
MM 2 (2.09, 0.80) (3.21, 1.56) (6.82, 3.43)

E
†
2

SNR = 40 SNR = 30 SNR = 20

M=3
MM 1 (2.36, 0.85) (4.24, 1.97) (5.42, 2.40)
MM 2 (1.12, 0.63) (1.68, 0.81) (4.27, 1.65)

M=5
MM 1 (3.07, 1.46) (2.60, 1.74) (5.30, 3.34)
MM 2 (1.53,0.67) (2.10, 1.00) (4.48, 1.73)

M=8
MM 1 (4.74, 2.33) (3.67, 2.11) (5.97, 3.10)
MM 2 (1.37, 0.77) (2.86, 1.21) (5.99, 2.85)

previous experiment were used in this experiment. A white Gaus-

sian noise was added to the observations in order to get an SNR

of 30 dB. The image was unmixed using three methods. The first

method is the extended endmember matrix method (ExtM) [26]. It

consists of extending the endmember matrix artificially with cross-

spectra of pure materials. The second method is khype [14]. It was

obtained by simply setting E to the identity matrix in our algorithm.

The third method is the proposed approach used with E -= I , i.e.,

with prior information regarding the similarity between the nonlin-

earities. For the latter method, the image was decomposed into 3×3
patches in order to reduce the computational complexity. In each

patch, nonlinear parts at adjacent pixels are assumed to be similar.

The similarity weights were tested among the values [10, 50, 100].
After preliminary tests, they were set to 50 in all experiments. Table

3 reports the RMSEs of the abundances and the nonlinear contribu-

tions for the three methods. The best scores in terms of the RMSEs

are obtained with the proposed approach. Figure 2 shows the true

and estimated nonlinear contributions at band #100 obtained with

each method. Figure 2 (d) shows that incorporating the spatial prior

resulted in visually smoother variations.

6. CONCLUSION

This communication proposed a new framework for incorporating

spatial regularization in nonlinear unmixing. The proposed model

promotes smooth spatial variations of the nonlinear components in

the mixing model. Vector-valued RKHS make this algorithm com-

putationally efficient as it reduces to a QP problem. The performance

of the proposed approach was validated on synthetic data.

Table 2. Optimal parameters (λ, µ) used with each algorithm in the

toy example.

E
†
1

SNR = 40 SNR = 30 SNR = 20

M=3
MM 1 (1, 0.1) (1, 0.1) (1, 0.1)
MM 2 (0.1, 0.01) (1, 0.1) (1, 0.1)

M=5
MM 1 (1, 0.1) (1, 0.1) (10, 1)
MM 2 (0.1, 0.01) (1, 0.1) (10, 1)

M=8
MM 1 (1, 0.1) (1, 0.1) (1, 0.1)
MM 2 (1, 0.01) (1, 0.01) (1, 0.1)

E
†
2

SNR = 40 SNR = 30 SNR = 20

M=3
MM 1 (0.005, 0.005) (1, 0.1) (1, 0.1)
MM 2 (1, 0.1) (1, 0.1) (1, 0.1)

M=5
MM 1 (0.01, 0.001) (1, 0.1) (10, 1)
MM 2 (0.1, 0.01) (1, 0.1) (10, 1)

M=8
MM 1 (0.1, 0.01) (1, 0.1) (1, 0.1)
MM 2 (0.1, 0.01) (1, 0.01) (1, 0.1)

Table 3. Unmixing performance and optimal tuning parameters ob-

tained with the spatial data set.

Ext khype Prop.

RMSE(A,A⋆) 0.0507 0.0380 0.0276
RMSE(F, F ⋆) 0.0507 0.0213 0.0138

(λ, µ) − (1, 0.01) (1, 0.01)
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Fig. 2. True and estimated nonlinear contributions at band #100
obtained with the spatial data set using the extended endmember

method (Ext), khype , and the proposed approach.



7. REFERENCES

[1] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE

Transactions on Signal Processing, vol. 19, no. 1, pp. 44–57,

2002.

[2] D. C. Heinz and C. I. Chang, “Fully constrained least squares

linear spectral mixture analysis method for material quantifi-

cation in hypersectral imagery,” IEEE Transactions on Geo-

science and Remote Sensing, vol. 39, no. 3, pp. 529–545, 2001.

[3] J. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du,

P. Gader, and J. Chanussot, “Hyperspectral unmixing

overview: Geometrical, statistical, and sparse regression-based

approaches,” IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 5, no. 2, pp. 354–379,

2012.

[4] N. Dobigeon, L. Tits, B. Somers, Y. Altmann, and P. Coppin,

“A comparison of nonlinear mixing models for vegetated areas

using simulated and real hyperspectral data,” IEEE Journal

of Selected Topics in Applied Earth Observations and Remote

Sensing, vol. 7, no. 6, pp. 1869–1878, 2014.

[5] I. Meganem, P. Deliot, X. Briottet, Y. Deville, and S. Hosseini,

“Linear–quadratic mixing model for reflectances in urban en-

vironments,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 52, no. 1, pp. 544–558, 2014.

[6] Tales Imbiriba, Jose-Carlos M. Bermudez, Cédric Richard, and

Jean-Yves Tourneret, “Nonparametric detection of nonlinearly

mixed pixels and endmember estimation in hyperspectral im-

ages,” Image Processing, IEEE Transactions on, vol. 25, no. 3,

pp. 1136–1151, 2016.

[7] N. Dobigeon, J.-Y. Tourneret, C. Richard, J. C. Bermudez,

S. McLaughlin, and A. Hero, “Nonlinear unmixing of hyper-

spectral images: Models and algorithms,” IEEE Signal Pro-

cessing Magazine, vol. 31, no. 1, pp. 82–94, 2014.

[8] J. Nascimento and J. Bioucas-Dias, “Nonlinear mixture model

for hyperspectral unmixing,” in SPIE, 2009.

[9] W. Fan, B. Hu, J. Miller, and M. Li, “Comparative study be-

tween a new nonlinear model and common linear model for

analysing laboratory simulated-forest hyperspectral data,” In-

ternational Journal of Remote Sensing, vol. 30, no. 11, pp.

2951–2962, 2009.

[10] A. Halimi, Y. Altmann, N. Dobigeon, and J-Y Tourneret,

“Nonlinear unmixing of hyperspectral images using a gener-

alized bilinear model,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 49, no. 11, pp. 4153–4162, 2011.

[11] Y. Altmann, A. Halimi, N. Dobigeon, and J-Y Tourneret, “Su-

pervised nonlinear spectral unmixing using a postnonlinear

mixing model for hyperspectral imagery,” IEEE Transaction

on Image Processing, vol. 21, no. 6, pp. 3017–3025, 2012.

[12] O. Eches and M. Guillaume, “A bilinear–bilinear nonnega-

tive matrix factorization method for hyperspectral unmixing,”

IEEE Geoscience and Remote Sensing Letters, vol. 11, no. 4,

pp. 778–782, 2014.

[13] R. Heylen and P. Scheunders, “A multilinear mixing model

for nonlinear spectral unmixing,” IEEE Transactions on Geo-

science and Remote Sensing, vol. 54, no. 1, pp. 240–251, 2016.

[14] J. Chen, C. Richard, and P. Honeine, “Nonlinear unmix-

ing of hyperspectral data based on a linear-mixture/nonlinear-

fluctuation model,” IEEE Transactions on Signal Processing,

vol. 61, no. 2, pp. 480–492, 2013.

[15] J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern

analysis, Cambridge university press, 2004.

[16] Y. Altmann, N. Dobigeon, S. McLaughlin, and J.-Y. Tourneret,

“Nonlinear spectral unmixing of hyperspectral images using

gaussian processes,” IEEE Transactions on Signal Processing,

vol. 61, no. 10, pp. 2442–2453, 2013.

[17] T. Evgeniou, C. Micchelli, and M. Pontil, “Learning multiple

tasks with kernel methods,” in Journal of Machine Learning

Research, 2005, pp. 615–637.

[18] M. Alvarez, L. Rosasco, and N. Lawrence, “Kernels for vector-

valued functions: A review,” Foundations and Trends in Ma-

chine Learning, vol. 4, no. 3, pp. 195–266, 2012.

[19] C. Couprie, L. Grady, L. Najman, J.-C. Pesquet, and H. Talbot,

“Dual constrained tv-based regularization on graphs,” SIAM

Journal on Imaging Sciences, vol. 6, no. 3, pp. 1246–1273,

2013.

[20] G. Chierchia N., Pustelnik, B. Pesquet-Popescu, and J.-C. Pes-

quet, “A nonlocal structure tensor-based approach for multi-

component image recovery problems,” IEEE Transactions on

Image Processing, vol. 23, no. 12, pp. 5531–5544, 2014.

[21] R. Ammanouil, A. Ferrari, and C. Richard, “A graph laplacian

regularization for hyperspectral data unmixing,” arXiv preprint

arXiv:1410.3699, 2014.

[22] J. Chen, C. Richard, and P. Honeine, “Nonlinear estimation

of material abundances in hyperspectral images with l1-norm

spatial regularization,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 52, no. 5, pp. 2654 – 2665, 2014.

[23] C. Févotte and N. Dobigeon, “Nonlinear hyperspectral unmix-

ing with robust nonnegative matrix factorization,” IEEE Trans-

actions on Image Processing, vol. 24, no. 12, pp. 4810–4819,

2015.

[24] L. J. Grady and J. R. Polimeni, Discrete calculus, Springer,

2010.

[25] S. Boyd and L. Vandenberghe, Convex Optimization, Cam-

bridge University Press, 2008.

[26] N. Raksuntorn and Q. Du, “Nonlinear spectral mixture analysis

for hyperspectral imagery in an unknown environment,” IEEE

Geoscience and Remote Sensing Letters, vol. 7, no. 4, pp. 836–

840, 2010.




