Density large deviations for multidimensional stochastic hyperbolic conservation laws - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Physics Année : 2017

Density large deviations for multidimensional stochastic hyperbolic conservation laws

Résumé

We investigate the density large deviation function for a multidimensional conservation law in the vanishing viscosity limit, when the probability concentrates on weak solutions of a hyperbolic conservation law conservation law. When the conductivity and dif-fusivity matrices are proportional, i.e. an Einstein-like relation is satisfied, the problem has been solved in [4]. When this proportionality does not hold, we compute explicitly the large deviation function for a step-like density profile, and we show that the associated optimal current has a non trivial structure. We also derive a lower bound for the large deviation function, valid for a general weak solution, and leave the general large deviation function upper bound as a conjecture.
Fichier principal
Vignette du fichier
draft5.pdf (289.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01465293 , version 1 (11-02-2017)
hal-01465293 , version 2 (15-08-2017)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Julien Barré, Cedric Bernardin, Raphaël Chetrite. Density large deviations for multidimensional stochastic hyperbolic conservation laws. Journal of Statistical Physics, 2017, Journal of Statistical Physics, 170 (3), pp.466-491. ⟨10.1007/s10955-017-1935-3⟩. ⟨hal-01465293v2⟩
430 Consultations
144 Téléchargements

Altmetric

Partager

More