Density large deviations for multidimensional stochastic hyperbolic conservation laws - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Density large deviations for multidimensional stochastic hyperbolic conservation laws

Résumé

We investigate the density large deviation function for a multidimensional conservation law in the vanishing viscosity limit, when the probability concentrates on weak solutions of a hyperbolic conservation law conservation law. When the conductivity and dif-fusivity matrices are proportional, i.e. an Einstein-like relation is satisfied, the problem has been solved in [4]. When this proportionality does not hold, we compute explicitly the large deviation function for a step-like density profile, and we show that the associated optimal current has a non trivial structure. We also derive a lower bound for the large deviation function, valid for a general weak solution, and leave the general large deviation function upper bound as a conjecture.
Fichier principal
Vignette du fichier
draft4.pdf (278.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01465293 , version 1 (11-02-2017)
hal-01465293 , version 2 (15-08-2017)

Identifiants

Citer

Julien Barré, Cedric Bernardin, Raphaël Chetrite. Density large deviations for multidimensional stochastic hyperbolic conservation laws. 2017. ⟨hal-01465293v1⟩
430 Consultations
144 Téléchargements

Altmetric

Partager

More