When (3x/3) and 3(x/3) are not equal to x - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

When (3x/3) and 3(x/3) are not equal to x

Résumé

Rounding Error Analysis is routinely used to compute a worst-case error bound on the result of algorithms that use floating-point arithmetic. However, for some applications (e.g., when it is necessary to prove some inclusion of the result in a domain), the knowledge of both an upper-bound of the magnitude of the error and of its sign is paramount. Using standard rounding error analysis together with a simple systematic approach, we compute such information for the expressions $3x$, $x/3$, $3(x/3)$, and $3x/3$, which can be used, e.g., in the proof of interval arithmetic operators.
Fichier principal
Vignette du fichier
muldiv3.pdf (228.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01451457 , version 1 (01-02-2017)

Identifiants

  • HAL Id : hal-01451457 , version 1

Citer

Frédéric Goualard. When (3x/3) and 3(x/3) are not equal to x. 2016. ⟨hal-01451457⟩
321 Consultations
90 Téléchargements

Partager

More