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When (3𝑥)/3 and 3(𝑥/3) are not equal to 𝑥
Frédéric Goualard

Abstract

Rounding Error Analysis is routinely used to compute a worst-case error bound on the result of algorithms
that use floating-point arithmetic. However, for some applications (e.g., when it is necessary to prove some
inclusion of the result in a domain), the knowledge of both an upper-bound of the magnitude of the error and
of its sign is paramount. Using standard rounding error analysis together with a simple systematic approach,
we compute such information for the expressions 3𝑥 , 𝑥/3, 3(𝑥/3), and 3𝑥/3, which can be used, e.g., in the
proof of interval arithmetic operators.

CCS Concepts: Mathematics of computing→Interval arithmetic, Theory of computation→Rounding tech-
niques

Additional Key Words and Phrases: floating-point arithmetic, error analysis, roundoff, interval arithmetic
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1 Introduction

The implementation of Interval Arithmetic operators requires the evaluation of floating-point expressions,
which can be marred by rounding errors that jeopardize the very properties that Interval Arithmetic is sup-
posed to ensure [4]. Rounding error analysis [6] can be used to determine in a systematic way the magnitude
of these errors. It is usually, however, not concerned with their sign, a fatal flaw whenever the question of
the inclusion of a value into an interval is to be ascertained.

Some clever use of the binary floating-point number format properties as guaranteed by the IEEE 754
standard [7] allows in special cases to work out the conditions under which rounding errors cancel out in
such a way that the computed result is exactly equal to the true result. Several examples of such an approach
can be found in Goldberg’s survey [3] and Muller et al.’s book [9], to name a few sources. On the other
hand, few works concern themselves with determining both the magnitude and the sign of rounding errors
in computing arithmetic expressions.

In this paper, we investigate the case of the expressions 3𝑥/3 and 3(𝑥/3) for 𝑥 a binary floating-point num-
ber. Using a mixture of classical Rounding Analysis and systematic study of the elementary operations “3𝑥”
and “𝑥/3”, we determinate for each possible value of 𝑥 the sign and the magnitude of the error in computing
3𝑥/3 and 3(𝑥/3). This study is used in a forthcoming article [5] to prove inclusion properties of some inter-
val trisection operators. We expect it to be useful in the study of the many other algorithms that rely on a
multiplication or a division by 3 (see, e.g., de Dinechin et al.’s work [1]).

2 Binary floating-point numbers

In this study, we only concern ourselves with binary floating-point numbers as defined by the 1985 IEEE 754
standard [7], by far the most widespread standard in use today for floating-point numbers. This paper as-
sumes a prior knowledge of the basics of the IEEE 754 standard even though the most important points are
summarized hereafter as needed for the sake of completeness.

We consider binary floating-point numbers from a set 𝔽 represented with a significand of size 𝑝 bits:

𝑥 ∈ 𝔽, 𝑥 = ±𝑏0.𝑏1…𝑏𝑝−1 × 2𝑒
with an exponent 𝑒 in the range [𝐸min, 𝐸max].

For the purpose of the systematic study of the elementary operations, we assume 𝑝 ⩾ 5, not a strong
constraint considering that the smallest format presented in the IEEE 754 standard has 𝑝 = 24. We will not
take into account the possibility of overflow when performing the multiplication by 3; on the other hand, the
possibility of underflow will be fully adressed, albeit separately from the normal cases.

When the base 𝑏 used to represent a number 𝑥 is not unambiguously drawn from the context, we will
indicate it as such: 𝑥𝑏 .

All results are supposed to be rounded to nearest-even, the usual default rounding strategy. Given 𝑟 a
real number, we note fl(𝑟) the floating-point value corresponding to 𝑟 rounded to nearest-even. Given 𝑥 , a
floating-point number, we note 𝑥− the greatest floating-point number smaller than 𝑥 , and 𝑥+ the smallest
floating-point number greater than 𝑥 . For an expression of the form (𝑥 ◇ 𝑦) □ 𝑧—with (𝑥, 𝑦, 𝑧) ∈ 𝔽3 and
(◇, □) arithmetic operators—, we use the shorthand fl⟨(𝑥 ◇ 𝑦) □ 𝑧⟩1 to mean fl(fl(𝑥 ◇ 𝑦) □ 𝑧). Lastly, we will
extensively use in this paper the fact that rounding is order-preserving (rounding monotonicity [6, p. 38]):

∀(𝑟1, 𝑟2) ∈ ℝ2∶ 𝑟1 ⩾ 𝑟2 ⟹ fl(𝑟1) ⩾ fl(𝑟2) (1)

Note that if there is a strict inequality between 𝑟1 and 𝑟2 (i.e., 𝑟1 > 𝑟2), we still have fl(𝑟1) ⩾ fl(𝑟2).
With correctly rounded floating-point operators, as specified by the IEEE 754 standard, there is a simple

relationship between a computed value and the real result [6]:

fl(𝑥 ◇ 𝑦) = (𝑥 ◇ 𝑦)(1 + 𝛿) + 𝜂,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(𝑥, 𝑦) ∈ 𝔽2,
𝛿𝜂 = 0,
|𝛿 | ⩽ 𝑢,
|𝜂| ⩽ 𝜇/2
◇ ∈ {+, −, ×, ÷}

(2)

1Note the parentheses replaced by chevrons.
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where 𝑢 is the unit roundoff equal to 2−𝑝 and 𝜇 is the smallest positive subnormal number equal to 𝑢2𝐸min+1.
The bound on 𝛿 may be somewhat refined depending on the operator; in particular, we will make use of the
following improved bounds [8]:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

fl(𝑥𝑦) = 𝑥𝑦(1 + 𝛿) , |𝛿 | ⩽ 𝑢
1 + 𝑢

fl(
𝑥
𝑦) = 𝑥

𝑦 (1 + 𝛿) , |𝛿 | ⩽ 𝑢 − 2𝑢2
, (𝑥, 𝑦) ∈ 𝔽2, (3)

provided no underflow or overflow occurs.

3 Multiplying 𝑥 by three

Barring overflow, the multiplication of two binary floating-point numbers:

𝑥 = (−1)𝑠𝑥𝑚𝑥 × 2𝑒𝑥

and

𝑦 = (−1)𝑠𝑦𝑚𝑦 × 2𝑒𝑦

is given by [9]:
𝑥𝑦 = (−1)𝑠𝑥⊕𝑠𝑦𝑚𝑥𝑚𝑦 × 2𝑒𝑥+𝑒𝑦 (4)

The multiplication of a floating-point number 𝑥 by 3 (i.e., 1.1 × 21 in normal floating-point binary form)
is particularly easy to perform thanks to the simplicity of the representation of 3. We will consider first the
case for which no underflow occurs; denormal numbers will be considered next.

3.1 The normal case

In this section, 𝑥 is a normal number of the form 𝑥 = (−1)𝑠𝑥 1.𝑏1…𝑏𝑝−1 × 2𝑒𝑥 . From Eq. (4), we see that we
may consider 𝑥 > 0 only, as the results thus obtained need only be mirrored to obtain their counterpart when
𝑥 < 0.

Depending on 𝑥 , there are two possibilities: either 3𝑥 has a 𝑝 + 1 bits significand (Eq. (5a)), or it has a 𝑝 + 2
bits significand (Eq. (5b)).

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−3 𝑏𝑝−2 𝑏𝑝−1 ×2𝑒𝑥
× 1. 1 ×21

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−3 𝑏𝑝−2 𝑏𝑝−1
+ 1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−3 𝑏𝑝−2 𝑏𝑝−1

1. 𝑏′1 𝑏′2 ⋯ 𝑏′𝑝−3 𝑏′𝑝−2 𝑏′𝑝−1 𝑏′𝑝 ×2𝑒𝑥+1
(5a)

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−3 𝑏𝑝−2 𝑏𝑝−1 ×2𝑒𝑥
× 1. 1 ×21

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−3 𝑏𝑝−2 𝑏𝑝−1
+ 1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−3 𝑏𝑝−2 𝑏𝑝−1
1. 𝑏′1 𝑏′2 ⋯ 𝑏′𝑝−3 𝑏′𝑝−2 𝑏′𝑝−1 𝑏′𝑝 𝑏′𝑝+1 ×2𝑒𝑥+2

(5b)

From Eqs. (5a) and (5b), we can deduce conditions on 𝑥 for 𝑦 = 3𝑥 to have a 𝑝+1 bits significand; similarly,
we can deduce the value of 𝑏′1 depending on the number of bits of 3𝑥 :
Lemma 1. Given 𝑥 = 1.𝑏1…𝑏𝑝−1 × 2𝑒𝑥 a normal binary floating-point number. If 𝑦 = 3𝑥 has a 𝑝 + 1 bits
significand, then 𝑥 = 1.0𝑏2…𝑏𝑝−1 × 2𝑒𝑥 and 𝑦 = 1.1𝑏′2…𝑏′𝑝−1𝑏′𝑝 × 2𝑒𝑥+1
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Proof. Consider Eq. (5a) with the leftmost carries 𝑐0 and 𝑐1 added:

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−3 𝑏𝑝−2 𝑏𝑝−1 ×2𝑒𝑥
× 1. 1 ×21

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−3 𝑏𝑝−2 𝑏𝑝−1
+ 1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−3 𝑏𝑝−2 𝑏𝑝−1
+ 𝑐0 𝑐1 …

1. 𝑏′1 𝑏′2 ⋯ 𝑏′𝑝−3 𝑏′𝑝−2 𝑏′𝑝−1 𝑏′𝑝 ×2𝑒𝑥+1

We have:

1 + 𝑐0 = 1
1 + 𝑏1 + 𝑐1 = 𝑐0𝑏′1 (henceforth, “𝑏𝑖𝑏𝑗” is to be interpreted as 𝑏𝑖 × 2 + 𝑏𝑗 )

Hence, 𝑐0 = 0 and then 1 + 𝑏1 + 𝑐1 = 𝑏′1, which can hold only if 𝑏1 = 𝑐1 = 0 and 𝑏′1 = 1. ⊓⊔
Lemma 2. Given 𝑥 = 1.𝑏1…𝑏𝑝−1 × 2𝑒𝑥 a normal binary floating-point number. If 𝑦 = 3𝑥 has a 𝑝 + 2 bits
significand, then 𝑦 = 1.0𝑏′2…𝑏′𝑝−1𝑏′𝑝𝑏′𝑝+1 × 2𝑒𝑥+2.
Proof. Consider Eq. (5b) with the leftmost carries added:

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−3 𝑏𝑝−2 𝑏𝑝−1 ×2𝑒𝑥
× 1. 1 ×21

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−3 𝑏𝑝−2 𝑏𝑝−1
+ 1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−3 𝑏𝑝−2 𝑏𝑝−1
+ 𝑐0 𝑐1
1. 𝑏′1 𝑏′2 ⋯ 𝑏′𝑝−3 𝑏′𝑝−2 𝑏′𝑝−1 𝑏′𝑝 𝑏′𝑝+1 ×2𝑒𝑥+2

We have 1 + 𝑐0 = 1𝑏′1, from which we deduce 𝑐0 = 1 and 𝑏′1 = 0. ⊓⊔
When 𝑦 = 3𝑥 has a 𝑝 + 2 bits significand, we have to discard the last two bits to be able to represent

the result in 𝑝 bits format. If these two bits are “10”—that is, the real result is halfway between two rep-
resentable numbers—, we need to know the antepenultimate bit of 𝑦’s significand to decide the sign of the
error. Consequently, we must consider the three leftmost bits of 𝑥 . Appendix A presents all possible cases for
the multiplication by 3.

For each possible value of 𝑥 with respect to the five bits of its significand considered above (The implicit
’1’ bit before the radix point, the first bit to the right of the radix point, and the three rightmost bits), Tables 1
and 2 present all possible values for fl(3𝑥). For homogeneity—required later on when we will investigate the
expressions 3𝑥/3 and 3(𝑥/3)—, fl(3𝑥) is also displayed with the same five bits, the exponents being left implicit.
The third column “Error” gives the sign of the error:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

EQ∶ fl(3𝑥) = 3𝑥
GT∶ fl(3𝑥) > 3𝑥
LT∶ fl(3𝑥) < 3𝑥

3.2 The denormal case

Consider now the case in which 𝑥 = 0.𝑏1…𝑏𝑝−1 × 2𝐸min is a denormal number. There are two cases depending
on the value of 𝑏1. For 𝑏1 = 0, the following result holds:
Lemma 3. Given a denormal floating-point number of the form 𝑥 = 0.0𝑏2…𝑏𝑝−1 × 2𝐸min , we have:

fl(3𝑥) = 3𝑥 (6)

3



Table 1: Result and sign of the error for the multiplication by 3 of 𝑥 = 1.0𝑏2⋯𝑏𝑝−1 × 2𝑒𝑥

x fl(3x) Error
1.0𝑏2⋯𝑏𝑝−4000 1.1𝑏′2⋯𝑏′𝑝−4000 EQ

1.1𝑏′2⋯𝑏′𝑝−4100 EQ
1.0𝑏′2⋯𝑏′𝑝−4000 EQ
1.0𝑏′2⋯𝑏′𝑝−4010 EQ
1.0𝑏′2⋯𝑏′𝑝−4100 EQ
1.0𝑏′2⋯𝑏′𝑝−4110 EQ

1.0𝑏2⋯𝑏𝑝−4001 1.1𝑏′2⋯𝑏′𝑝−4010 GT
1.1𝑏′2⋯𝑏′𝑝−4110 GT
1.0𝑏′2⋯𝑏′𝑝−4001 GT
1.0𝑏′2⋯𝑏′𝑝−4011 GT
1.0𝑏′2⋯𝑏′𝑝−4101 GT
1.0𝑏′2⋯𝑏′𝑝−4111 GT

1.0𝑏2⋯𝑏𝑝−4010 1.1𝑏′2⋯𝑏′𝑝−4011 EQ
1.1𝑏′2⋯𝑏′𝑝−4111 EQ
1.0𝑏′2⋯𝑏′𝑝−4000 GT
1.0𝑏′2⋯𝑏′𝑝−4010 GT
1.0𝑏′2⋯𝑏′𝑝−4100 GT
1.0𝑏′2⋯𝑏′𝑝−4110 GT

1.0𝑏2⋯𝑏𝑝−4011 1.1𝑏′2⋯𝑏′𝑝−4000 LT
1.1𝑏′2⋯𝑏′𝑝−4100 LT
1.0𝑏′2⋯𝑏′𝑝−4000 LT
1.0𝑏′2⋯𝑏′𝑝−4010 LT
1.0𝑏′2⋯𝑏′𝑝−4100 LT
1.0𝑏′2⋯𝑏′𝑝−4110 LT

1.0𝑏2⋯𝑏𝑝−4100 1.1𝑏′2⋯𝑏′𝑝−4010 EQ
1.1𝑏′2⋯𝑏′𝑝−4110 EQ
1.0𝑏′2⋯𝑏′𝑝−4001 EQ
1.0𝑏′2⋯𝑏′𝑝−4011 EQ
1.0𝑏′2⋯𝑏′𝑝−4101 EQ
1.0𝑏′2⋯𝑏′𝑝−4111 EQ

1.0𝑏2⋯𝑏𝑝−4101 1.1𝑏′2⋯𝑏′𝑝−4000 GT
1.1𝑏′2⋯𝑏′𝑝−4100 GT
1.0𝑏′2⋯𝑏′𝑝−4000 GT
1.0𝑏′2⋯𝑏′𝑝−4010 GT
1.0𝑏′2⋯𝑏′𝑝−4100 GT
1.0𝑏′2⋯𝑏′𝑝−4110 GT

1.0𝑏2⋯𝑏𝑝−4110 1.1𝑏′2⋯𝑏′𝑝−4001 EQ
1.1𝑏′2⋯𝑏′𝑝−4101 EQ
1.0𝑏′2⋯𝑏′𝑝−4000 LT
1.0𝑏′2⋯𝑏′𝑝−4010 LT
1.0𝑏′2⋯𝑏′𝑝−4100 LT
1.0𝑏′2⋯𝑏′𝑝−4110 LT

1.0𝑏2⋯𝑏𝑝−4111 1.1𝑏′2⋯𝑏′𝑝−4010 LT
1.1𝑏′2⋯𝑏′𝑝−4110 LT
1.0𝑏′2⋯𝑏′𝑝−4001 LT
1.0𝑏′2⋯𝑏′𝑝−4011 LT
1.0𝑏′2⋯𝑏′𝑝−4101 LT
1.0𝑏′2⋯𝑏′𝑝−4111 LT
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Table 2: Result and sign of the error for the multiplication by 3 of 𝑥 = 1.1𝑏2⋯𝑏𝑝−1 × 2𝑒𝑥

x fl(3x) Error
1.1𝑏2⋯𝑏𝑝−4000 1.0𝑏′2⋯𝑏′𝑝−4000 EQ

1.0𝑏′2⋯𝑏′𝑝−4010 EQ
1.0𝑏′2⋯𝑏′𝑝−4100 EQ
1.0𝑏′2⋯𝑏′𝑝−4110 EQ

1.1𝑏2⋯𝑏𝑝−4001 1.0𝑏′2⋯𝑏′𝑝−4001 GT
1.0𝑏′2⋯𝑏′𝑝−4011 GT
1.0𝑏′2⋯𝑏′𝑝−4101 GT
1.0𝑏′2⋯𝑏′𝑝−4111 GT

1.1𝑏2⋯𝑏𝑝−4010 1.0𝑏′2⋯𝑏′𝑝−4000 GT
1.0𝑏′2⋯𝑏′𝑝−4010 GT
1.0𝑏′2⋯𝑏′𝑝−4100 GT
1.0𝑏′2⋯𝑏′𝑝−4110 GT

1.1𝑏2⋯𝑏𝑝−4011 1.0𝑏′2⋯𝑏′𝑝−4000 LT
1.0𝑏′2⋯𝑏′𝑝−4010 LT
1.0𝑏′2⋯𝑏′𝑝−4100 LT
1.0𝑏′2⋯𝑏′𝑝−4110 LT

1.1𝑏2⋯𝑏𝑝−4100 1.0𝑏′2⋯𝑏′𝑝−4001 EQ
1.0𝑏′2⋯𝑏′𝑝−4011 EQ
1.0𝑏′2⋯𝑏′𝑝−4101 EQ
1.0𝑏′2⋯𝑏′𝑝−4111 EQ

1.1𝑏2⋯𝑏𝑝−4101 1.0𝑏′2⋯𝑏′𝑝−4000 GT
1.0𝑏′2⋯𝑏′𝑝−4010 GT
1.0𝑏′2⋯𝑏′𝑝−4100 GT
1.0𝑏′2⋯𝑏′𝑝−4110 GT

1.1𝑏2⋯𝑏𝑝−4110 1.0𝑏′2⋯𝑏′𝑝−4000 LT
1.0𝑏′2⋯𝑏′𝑝−4010 LT
1.0𝑏′2⋯𝑏′𝑝−4100 LT
1.0𝑏′2⋯𝑏′𝑝−4110 LT

1.1𝑏2⋯𝑏𝑝−4111 1.0𝑏′2⋯𝑏′𝑝−4001 LT
1.0𝑏′2⋯𝑏′𝑝−4011 LT
1.0𝑏′2⋯𝑏′𝑝−4101 LT
1.0𝑏′2⋯𝑏′𝑝−4111 LT
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Proof. Trivial. Consider:

0. 0 𝑏2 ⋯ 𝑏𝑝−1 ×2𝐸min

× 1. 1 ×21
0. 0 𝑏2 𝑏3 ⋯ 𝑏𝑝−1

+ 0. 0 𝑏2 𝑏3 ⋯ 𝑏𝑝−1
0 𝑏′1. 𝑏′2 𝑏′3 ⋯ 𝑏′𝑝−1 𝑏′𝑝 ×2𝐸min

(7)

⊓⊔
On the other hand, if 𝑏1 ≠ 0, we have:

0. 1 𝑏2 ⋯ 𝑏𝑝−1 ×2𝐸min

× 1. 1 ×21
0. 1 𝑏2 ⋯ 𝑏𝑝−1

+ 0. 1 𝑏2 ⋯ 𝑏𝑝−1
𝑐0 𝑐1
𝑏′0. 𝑏′1 𝑏′2 𝑏′3 ⋯ 𝑏′𝑝−1 𝑏′𝑝 ×2𝐸min+1

where 𝑐0 and 𝑐1 are, as before, the leftmost carries.
It is easy to see that 𝑐0 and 𝑐1 must be equal. Furthermore:

{
if 𝑐0 = 𝑐1 = 0, then 𝑏′0 = 0 and 𝑏′1 = 1
if 𝑐0 = 𝑐1 = 1, then 𝑏′0 = 1 and 𝑏′1 = 0

Multiplying 𝑥 by 3 can then lead to a 𝑝 bits significand (when 𝑏′0 = 0) or to a 𝑝 + 1 bits significand (when
𝑏′0 = 1). Appendix B displays the different results for all possible values of the rightmost bits2.

From Appendix B and Eq. (7), we can deduce the value of fl(3𝑥) obtained from rounding 3𝑥 to nearest-even
(see Table 3).

4 Dividing 𝑥 by three

Similarly to the multiplication, we will first consider the case in which 𝑥 is a normal number and no underflow
occurs; we will then investigate what happens when 𝑥 is a denormal number or when the result underflows.

For 𝑥 = (−1)𝑠𝑥𝑚𝑥 × 2𝑒𝑥 and 𝑦 = (−1)𝑠𝑦𝑚𝑦 × 2𝑒𝑦 , the quotient 𝑥/𝑦 is given by [9]:

𝑥/𝑦 = (−1)𝑠𝑥⊕𝑠𝑦𝑚𝑥 /𝑚𝑦 × 2𝑒𝑥−𝑒𝑦 (8)

To determine the sign of the error of fl(𝑥/𝑦) relative to 𝑥/𝑦 , we may only consider the significands 𝑚𝑥
and 𝑚𝑦 . Consequently, we will only display the exponents when rendered necessary by the context. We also
restrict ourselves to positive values for 𝑥 , the negative case being easily deduced.

4.1 The normal case

As for the multiplication, we need only consider the first bit after the radix point and the last three bits of the
significand to determine the result of the division by 3. The following three lemmas tell us how many bits to
compute in order to obtain a 𝑝 bits significand correctly rounded to nearest-even.

Lemma 4. If 𝑥 = 1.1𝑏2…𝑏𝑝−1 × 2𝑒𝑥 is a normal floating-point number, then we need to compute 𝑝 + 1 bits to get
a correctly rounded 𝑝 bits significand for 𝑦 = fl(𝑥/3); in addition, we have:

fl(𝑦) = 1.0𝑏′2…𝑏′𝑝−1 × 2𝑒𝑥−1 (9)

provided no underflow occurs.
2Note that, even though only the last two bits need to be considered, we take into account the last three as in the previous section.
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Table 3: Result and sign of the error for the multiplication by 3 of 𝑥 = 0.𝑏1𝑏2⋯𝑏𝑝−1 × 2𝐸min

x fl(3x) Error
0.0𝑏2⋯𝑏𝑝−1 𝑏′0.𝑏′1⋯𝑏′𝑝−1 EQ
0.1𝑏2⋯𝑏𝑝−4000 1.1𝑏′2⋯𝑏′𝑝−4000 EQ

1.0𝑏′2⋯𝑏′𝑝−300 EQ
0.1𝑏2⋯𝑏𝑝−4001 1.1𝑏′2⋯𝑏′𝑝−4011 EQ

1.0𝑏′2⋯𝑏′𝑝−310 GT
0.1𝑏2⋯𝑏𝑝−4010 1.1𝑏′2⋯𝑏′𝑝−4110 EQ

1.0𝑏′2⋯𝑏′𝑝−3110 EQ
0.1𝑏2⋯𝑏𝑝−4011 1.1𝑏′2⋯𝑏′𝑝−4001 EQ

1.0𝑏′2⋯𝑏′𝑝−300 LT
0.1𝑏2⋯𝑏𝑝−4100 1.1𝑏′2⋯𝑏′𝑝−4100 EQ

1.0𝑏′2⋯𝑏′𝑝−310 EQ
0.1𝑏2⋯𝑏𝑝−4101 1.1𝑏′2⋯𝑏′𝑝−4111 EQ

1.0𝑏′2⋯𝑏′𝑝−300 GT
0.1𝑏2⋯𝑏𝑝−4110 1.1𝑏′2⋯𝑏′𝑝−4010 EQ

1.0𝑏′2⋯𝑏′𝑝−301 EQ
0.1𝑏2⋯𝑏𝑝−4111 1.1𝑏′2⋯𝑏′𝑝−4101 EQ

1.0𝑏′2⋯𝑏′𝑝−310 LT

Proof. Consider the process of dividing 𝑥 by 3 at its beginning:

0 1 0 ⋯
11) 1 1 𝑏2 … 𝑏𝑝−1

1 1
0 𝑏2

⋯
Due to the leading 0 of the quotient, we need to compute one bit more to get 𝑝 bits in the rounded significand.
Equation (9) is obvious from the division process shown above. ⊓⊔
Lemma 5. If 𝑥 = 1.0𝑏2…𝑏𝑝−1 × 2𝑒𝑥 is a normal floating-point number, then we need to compute 𝑝 + 2 bits to get
a 𝑝 bit significand for 𝑦 = 𝑥/3.
Proof. Consider the process of dividing 𝑥 by 3 at its beginning:

0 0 1 𝑏′1 ⋯
11) 1 0 𝑏2 𝑏3 … 𝑏𝑝−1

1 0 𝑏2
𝑟0 𝑟1 𝑏3

⋯
Due to the two leading 0 of the quotient, we need to compute two bits more to get 𝑝 bits in the significand of
the result. ⊓⊔
Lemma 6. Given 𝑥 = 1.𝑏1…𝑏𝑝−1 × 2𝑒𝑥 a normal floating-point number and 𝑦 = 𝑥/3. There are three possible
forms for the significand of 𝑦 :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1.𝑏′1…𝑏′𝑝−20
1.𝑏′1…𝑏′𝑝−201
1.𝑏′1…𝑏′𝑝−210
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where 𝑠 denotes an infinite repetition of the binary string 𝑠.
Proof. In the process of dividing 𝑥 by 3, there are only three possible remainders at each step: 02, 12, or
102. Consequently, when 𝑥 = 1.1𝑏2…𝑏𝑝−1 × 2𝑒𝑥 , we only have the following three situations (the case 𝑥 =
1.0𝑏2…𝑏𝑝−1 × 2𝑒𝑥 is analogous):

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−2 0 …
11) 1 1 𝑏2 … 𝑏𝑝−1

⋯ ↓
0 0

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−2 0 1 …
11) 1 1 𝑏2 … 𝑏𝑝−1

⋯ ↓ ↓
1 0 0

1
0 1 0 𝑏′2 ⋯ 𝑏′𝑝−2 1 0 …

11) 1 1 𝑏2 … 𝑏𝑝−1
⋯ ↓

10 0 ↓
1 0

(10)

⊓⊔
For each triplet of rightmost bits of the significand of 𝑥 , there are three cases to consider depending on

the remainder after having taken into account the bit 𝑏𝑝−4. All the cases are presented in Section C.
Tables 4 and 5 summarize the results for the whole section.

4.2 The denormal case

There are two possibilities for an underflow to occur when dividing 𝑥 by 3: either 𝑥 is already a denormal
number, or 𝑥 is normal but the rounded result of the division is a denormal number.

If 𝑥 is a denormal number, we have:

0. 0 𝑏′2 ⋯ 𝑏′𝑝−1 × 2𝐸min

1.1 × 21) 0. 𝑏1 … 𝑏𝑝−4 𝑏𝑝−3 𝑏𝑝−2 𝑏𝑝−1 × 2𝐸min

⋯
⋯

…
…

(11)

If 𝑥 is a normal number of the form 𝑥 = 1.𝑏1…𝑏𝑝−1 × 2𝐸min , we have, either:

0. 0 𝑏′2 ⋯ 𝑏′𝑝−1 × 2𝐸min

1.1 × 21) 1. 0 … 𝑏𝑝−4 𝑏𝑝−3 𝑏𝑝−2 𝑏𝑝−1 × 2𝐸min

⋯
⋯

…
…

(12)

or:
0. 1 𝑏′2 ⋯ 𝑏′𝑝−1 × 2𝐸min

1.1 × 21) 1. 1 … 𝑏𝑝−4 𝑏𝑝−3 𝑏𝑝−2 𝑏𝑝−1 × 2𝐸min

⋯
⋯

…
…

(13)

In all three cases, the result of the division cannot be scaled to the right since the exponent is the smallest
possible. As a consequence, we need only compute 𝑝 bits to obtain fl(𝑥/3) = 0.𝑏′1…𝑏′𝑝−3𝑏′𝑝−2𝑏′𝑝−1 × 2𝐸min .
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Table 4: Result and sign of the error for the division by 3 of 𝑥 = 1.0𝑏2⋯𝑏𝑝−1 × 2𝑒𝑥 with no underflow

x fl(x/3) Error
1.0𝑏2⋯𝑏𝑝−4000 1.0𝑏′2⋯𝑏′𝑝−4000 EQ

1.1𝑏′2⋯𝑏′𝑝−4000 EQ
1.0𝑏′2⋯𝑏′𝑝−4011 GT
1.1𝑏′2⋯𝑏′𝑝−4011 GT
1.0𝑏′2⋯𝑏′𝑝−4101 LT
1.1𝑏′2⋯𝑏′𝑝−4101 LT

1.0𝑏2⋯𝑏𝑝−4001 1.0𝑏′2⋯𝑏′𝑝−4001 LT
1.1𝑏′2⋯𝑏′𝑝−4001 LT
1.0𝑏′2⋯𝑏′𝑝−4100 EQ
1.1𝑏′2⋯𝑏′𝑝−4100 EQ
1.0𝑏′2⋯𝑏′𝑝−4111 GT
1.1𝑏′2⋯𝑏′𝑝−4111 GT

1.0𝑏2⋯𝑏𝑝−4010 1.0𝑏′2⋯𝑏′𝑝−4011 GT
1.1𝑏′2⋯𝑏′𝑝−4011 GT
1.0𝑏′2⋯𝑏′𝑝−4000 EQ
1.1𝑏′2⋯𝑏′𝑝−4000 EQ
1.0𝑏′2⋯𝑏′𝑝−4101 LT
1.1𝑏′2⋯𝑏′𝑝−4101 LT

1.0𝑏2⋯𝑏𝑝−4011 1.0𝑏′2⋯𝑏′𝑝−4100 EQ
1.1𝑏′2⋯𝑏′𝑝−4100 EQ
1.0𝑏′2⋯𝑏′𝑝−4111 GT
1.1𝑏′2⋯𝑏′𝑝−4111 GT
1.0𝑏′2⋯𝑏′𝑝−4001 LT
1.1𝑏′2⋯𝑏′𝑝−4001 LT

1.0𝑏2⋯𝑏𝑝−4100 1.0𝑏′2⋯𝑏′𝑝−4101 LT
1.1𝑏′2⋯𝑏′𝑝−4101 LT
1.0𝑏′2⋯𝑏′𝑝−4000 EQ
1.1𝑏′2⋯𝑏′𝑝−4000 EQ
1.0𝑏′2⋯𝑏′𝑝−4011 GT
1.1𝑏′2⋯𝑏′𝑝−4011 GT

1.0𝑏2⋯𝑏𝑝−4101 1.0𝑏′2⋯𝑏′𝑝−4111 GT
1.1𝑏′2⋯𝑏′𝑝−4111 GT
1.0𝑏′2⋯𝑏′𝑝−4001 LT
1.1𝑏′2⋯𝑏′𝑝−4001 LT
1.0𝑏′2⋯𝑏′𝑝−4100 EQ
1.1𝑏′2⋯𝑏′𝑝−4100 EQ

1.0𝑏2⋯𝑏𝑝−4110 1.0𝑏′2⋯𝑏′𝑝−4000 EQ
1.1𝑏′2⋯𝑏′𝑝−4000 EQ
1.0𝑏′2⋯𝑏′𝑝−4011 GT
1.1𝑏′2⋯𝑏′𝑝−4011 GT
1.0𝑏′2⋯𝑏′𝑝−4101 LT
1.1𝑏′2⋯𝑏′𝑝−4101 LT

1.0𝑏2⋯𝑏𝑝−4111 1.0𝑏′2⋯𝑏′𝑝−4001 LT
1.1𝑏′2⋯𝑏′𝑝−4001 LT
1.0𝑏′2⋯𝑏′𝑝−4100 EQ
1.1𝑏′2⋯𝑏′𝑝−4100 EQ
1.0𝑏′2⋯𝑏′𝑝−4111 GT
1.1𝑏′2⋯𝑏′𝑝−4111 GT
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Table 5: Result and sign of the error for the division by 3 of 𝑥 = 1.1𝑏2⋯𝑏𝑝−1 × 2𝑒𝑥 with no underflow.

x fl(x/3) Error
1.1𝑏2⋯𝑏𝑝−4000 1.0𝑏′2⋯𝑏′𝑝−4000 EQ

1.0𝑏′2⋯𝑏′𝑝−4101 LT
1.0𝑏′2⋯𝑏′𝑝−4011 GT

1.1𝑏2⋯𝑏𝑝−4001 1.0𝑏′2⋯𝑏′𝑝−4001 GT
1.0𝑏′2⋯𝑏′𝑝−4110 EQ
1.0𝑏′2⋯𝑏′𝑝−4011 LT

1.1𝑏2⋯𝑏𝑝−4010 1.0𝑏′2⋯𝑏′𝑝−4001 LT
1.0𝑏′2⋯𝑏′𝑝−4100 EQ
1.0𝑏′2⋯𝑏′𝑝−4111 GT

1.1𝑏2⋯𝑏𝑝−4011 1.0𝑏′2⋯𝑏′𝑝−4010 EQ
1.0𝑏′2⋯𝑏′𝑝−4111 LT
1.0𝑏′2⋯𝑏′𝑝−4101 GT

1.1𝑏2⋯𝑏𝑝−4100 1.0𝑏′2⋯𝑏′𝑝−4011 GT
1.0𝑏′2⋯𝑏′𝑝−4000 EQ
1.0𝑏′2⋯𝑏′𝑝−4101 LT

1.1𝑏2⋯𝑏𝑝−4101 1.0𝑏′2⋯𝑏′𝑝−4011 LT
1.0𝑏′2⋯𝑏′𝑝−4001 GT
1.0𝑏′2⋯𝑏′𝑝−4110 EQ

1.1𝑏2⋯𝑏𝑝−4110 1.0𝑏′2⋯𝑏′𝑝−4100 EQ
1.0𝑏′2⋯𝑏′𝑝−4001 LT
1.0𝑏′2⋯𝑏′𝑝−4111 GT

1.1𝑏2⋯𝑏𝑝−4111 1.0𝑏′2⋯𝑏′𝑝−4101 GT
1.0𝑏′2⋯𝑏′𝑝−4010 EQ
1.0𝑏′2⋯𝑏′𝑝−4111 LT
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One can easily check that, for 𝑥 = 0.𝑏1⋯𝑏𝑝−1 × 2𝐸min and 𝑥 = 1.0𝑏2⋯𝑏𝑝−1 × 2𝐸min , the bits 𝑏′𝑝−3, 𝑏′𝑝−2,
𝑏′𝑝−1 must be equal to, respectively, 𝑏′𝑝−5, 𝑏′𝑝−4, 𝑏′𝑝−3 as obtained when dividing a normal number of the form
1.0𝑏2…𝑏𝑝−1 × 2𝑒—with 𝑒 > 𝐸min—by 3. When 𝑥 = 1.1𝑏2⋯𝑏𝑝−1 × 2𝐸min , the bits 𝑏′𝑝−3, 𝑏′𝑝−2, 𝑏′𝑝−1 must be equal
to, respectively, 𝑏′𝑝−4, 𝑏′𝑝−3, and 𝑏′𝑝−2 when dividing by 3 a normal number of the form 𝑥 = 1.1𝑏2⋯𝑏𝑝−1 × 2𝑒 ,
with 𝑒 > 𝐸min.

For an underflow to occur when dividing a normal number 𝑥 by 3, 𝑥 must be smaller or equal to (3𝜆)−—
with (3𝜆)− = 1.01⋯ 111×2𝐸min+1—, where 𝜆 = 1.0×2𝐸min is the smallest positive normal floating-point number.
The case in which the exponent of 𝑥 is 𝐸min has already been dealt with above. When 𝑥 is of the form
1.0𝑏2…𝑏𝑝−1 × 2𝐸min+1, it is easy to see in Eq. (14):

0 0. 1 ⋯ 𝑏′𝑝−3 𝑏′𝑝−2 𝑏′𝑝−1 ×2𝐸min

1.1 × 21) 1. 0 𝑏2 … 𝑏𝑝−4 𝑏𝑝−3 𝑏𝑝−2 𝑏𝑝−1 ×2𝐸min+1

⋯
⋯

…
…

(14)

that we need to compute 𝑝 +1 bits in order to get a 𝑝 bits significand (barring the rounding process), and that
the last three bits of the result are obtained following the same rules as for the case in which 𝑥 is of the form
1.1𝑏2…𝑏𝑝 × 2𝑒 with 𝑒 > 𝐸min + 1.

Table 6: Result and sign of the error for the division by 3 of 𝑥 = 1.𝑏1⋯𝑏𝑝−1 × 2𝐸min or 𝑥 = 0.𝑏1…𝑏𝑝−1 × 2𝐸min

with underflow. As shown in Eqs. (11), (12) and (13), 𝑏′1 = 1 if and only if 𝑥 = 1.1𝑏2⋯𝑏𝑝−1 × 2𝐸min

x fl(x/3) Error
𝑏0.𝑏1𝑏2⋯𝑏𝑝−4000 0.𝑏′1⋯𝑏′𝑝−4000 EQ

0.𝑏′1⋯𝑏′𝑝−4011 GT
0.𝑏′1⋯𝑏′𝑝−4101 LT

𝑏0.𝑏1𝑏2⋯𝑏𝑝−4001 0.𝑏′1⋯𝑏′𝑝−4000 LT
0.𝑏′1⋯𝑏′𝑝−4011 EQ
0.𝑏′1⋯𝑏′𝑝−4110 GT

𝑏0.𝑏1𝑏2⋯𝑏𝑝−4010 0.𝑏′1⋯𝑏′𝑝−4001 GT
0.𝑏′1⋯𝑏′𝑝−4110 EQ
0.𝑏′1⋯𝑏′𝑝−4011 LT

𝑏0.𝑏1𝑏2⋯𝑏𝑝−4011 0.𝑏′1⋯𝑏′𝑝−4001 EQ
0.𝑏′1⋯𝑏′𝑝−4100 GT
0.𝑏′1⋯𝑏′𝑝−4110 LT

𝑏0.𝑏1𝑏2⋯𝑏𝑝−4100 0.𝑏′1⋯𝑏′𝑝−4001 LT
0.𝑏′1⋯𝑏′𝑝−4100 EQ
0.𝑏′1⋯𝑏′𝑝−4111 GT

𝑏0.𝑏1𝑏2⋯𝑏𝑝−4101 0.𝑏′1⋯𝑏′𝑝−4010 GT
0.𝑏′1⋯𝑏′𝑝−4100 LT
0.𝑏′1⋯𝑏′𝑝−4111 EQ

𝑏0.𝑏1𝑏2⋯𝑏𝑝−4110 0.𝑏′1⋯𝑏′𝑝−4010 EQ
0.𝑏′1⋯𝑏′𝑝−4101 GT
0.𝑏′1⋯𝑏′𝑝−4111 LT

𝑏0.𝑏1𝑏2⋯𝑏𝑝−4111 0.𝑏′1⋯𝑏′𝑝−4010 LT
0.𝑏′1⋯𝑏′𝑝−4101 EQ
0.𝑏′1⋯𝑏′𝑝−4000 GT

Tables 6 and 7 summarize all the previous results for the denormal case.
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Table 7: Result and sign of the error for the division by 3 of 𝑥 = 1.0𝑏2⋯𝑏𝑝−1 × 2𝐸min+1 with underflow

x fl(x/3) Error
1.0𝑏2⋯𝑏𝑝−4000 0.1⋯ 𝑏′𝑝−4000 EQ

0.1⋯ 𝑏′𝑝−4101 LT
0.1⋯ 𝑏′𝑝−4011 GT

1.0𝑏2⋯𝑏𝑝−4001 0.1⋯ 𝑏′𝑝−4001 GT
0.1⋯ 𝑏′𝑝−4110 EQ
0.1⋯ 𝑏′𝑝−4011 LT

1.0𝑏2⋯𝑏𝑝−4010 0.1⋯ 𝑏′𝑝−4001 LT
0.1⋯ 𝑏′𝑝−4100 EQ
0.1⋯ 𝑏′𝑝−4111 GT

1.0𝑏2⋯𝑏𝑝−4011 0.1⋯ 𝑏′𝑝−4010 EQ
0.1⋯ 𝑏′𝑝−4111 LT
0.1⋯ 𝑏′𝑝−4101 GT

1.0𝑏2⋯𝑏𝑝−4100 0.1⋯ 𝑏′𝑝−4011 GT
0.1⋯ 𝑏′𝑝−4000 EQ
0.1⋯ 𝑏′𝑝−4101 LT

1.0𝑏2⋯𝑏𝑝−4101 0.1⋯ 𝑏′𝑝−4011 LT
0.1⋯ 𝑏′𝑝−4001 GT
0.1⋯ 𝑏′𝑝−4110 EQ

1.0𝑏2⋯𝑏𝑝−4110 0.1⋯ 𝑏′𝑝−4100 EQ
0.1⋯ 𝑏′𝑝−4001 LT
0.1⋯ 𝑏′𝑝−4111 GT

1.0𝑏2⋯𝑏𝑝−4111 0.1⋯ 𝑏′𝑝−4101 GT
0.1⋯ 𝑏′𝑝−4010 EQ
0.1⋯ 𝑏′𝑝−4111 LT
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5 Composing the multiplication and division

As seen in Section 2, the correctness of the floating-point multiplication and division are precisely defined by
IEEE 754. From Eq. (2) and Eq. (3), wemay compute theworst case error for the composition of amultiplication
and a division. In theory, there are eight cases depending on the order of the operations and on the outcome
of each operation (underflow or not). Tables 8 and 9 summarize the error analysis when computing either
fl⟨(3𝑥)/3⟩ or fl⟨3(𝑥/3)⟩. The crossed out cells in the tables correspond to cases that cannot occur: Consider, for
example, Table 8; if there is an underflow when multiplying 𝑥 by 3, there will surely be an underflow when
dividing 3𝑥 by 3.

Table 8: Worst case error analysis for fl⟨3𝑥3 ⟩, with: |𝜂1| ⩽ 𝜇/2, |𝜂2| ⩽ 𝜇/2, |𝛿1| ⩽ 𝑢/(1 + 𝑢), |𝛿2| ⩽ 𝑢 − 2𝑢2.
XXXXXXXXXX𝑦 = 3𝑥

𝑧 = 𝑦/3 Underflow No underflow

Underflow
3𝑥 + 𝜂1

3 + 𝜂2
XXXXXXX�������3𝑥 + 𝜂1

3 (1 + 𝛿2)

No underflow
3𝑥(1 + 𝛿1)

3 + 𝜂2
3𝑥
3 (1 + 𝛿1)(1 + 𝛿2)

Table 9: Worst case error analysis for fl⟨3𝑥3 ⟩, with: |𝜂1| ⩽ 𝜇/2, |𝜂2| ⩽ 𝜇/2, |𝛿1| ⩽ 𝑢 − 2𝑢2, |𝛿2| ⩽ 𝑢/(1 + 𝑢).
XXXXXXXXXX𝑦 = 𝑥/3

𝑧 = 3𝑦 Underflow No underflow

Underflow 3 (
𝑥
3 + 𝜂1) + 𝜂2 3 (

𝑥
3 + 𝜂1) (1 + 𝛿2)

No underflow
XXXXXXXX��������3(

𝑥
3 (1 + 𝛿1)) + 𝜂2 3𝑥3 (1 + 𝛿1)(1 + 𝛿2)

5.1 Multiplication and division with no underflow

Considering first the case in which no underflow occurs, we get, irrespective of the order of the operations
considered:

fl⟨3𝑥3 ⟩ = fl⟨3𝑥3 ⟩ = 𝑥(1 + 𝛿𝑎)(1 + 𝛿𝑏)
with |𝛿𝑎 | ⩽ 𝑢/(1 + 𝑢) and |𝛿𝑏 | ⩽ 𝑢 − 2𝑢2. Equivalently, we have:

fl⟨3𝑥3 ⟩ = fl⟨3𝑥3 ⟩ = 𝑥(1 + 𝛿) (15)

with 𝛿 = 𝛿𝑎 +𝛿𝑏 +𝛿𝑎𝛿𝑏 , which means that |𝛿 | ⩽ 2(𝑢−2𝑢3)/(1+𝑢), that is |𝛿 | < 2𝑢. The relative distance between
two consecutive floating-point numbers is contained in the range [𝑢, 2𝑢]; Consequently, the rounded value
of 3𝑥/3 or 3(𝑥/3) may not round to 𝑥 exactly, but we have the guarantee that it must be at worst one of the
immediate floating-point neighbors of 𝑥 (See Fig. 1).

5.2 Multiplication and division with underflow

As can be seen in Table 8 and Table 9, the worst case errors are different for fl⟨(3𝑥)/3⟩ and fl⟨3(𝑥/3)⟩ whenever
an underflow occurs. We must, therefore, consider separately the two computations.
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…
[𝑢,2𝑢]
⏞

[𝑢,2𝑢]
⏞

[𝑢,2𝑢]
⏞

3𝑥/3
3(𝑥/3)

[𝑢,2𝑢]
⏞ …

Figure 1: Orange disks representing the possible values for fl⟨3𝑥/3⟩ or fl⟨3(𝑥/3)⟩with rounding to nearest-even
in the absence of underflow.

5.2.1 The case of fl⟨(3𝑥)/3⟩
Underflow on multiplication and division. When both the multiplication and division underflow, we get:

fl⟨3𝑥3 ⟩ = 3𝑥 + 𝜂1
3 + 𝜂2 = 𝑥 + (

𝜂1
3 + 𝜂2) , with |𝜂1| ⩽

𝜇
2 , |𝜂2| ⩽

𝜇
2

Hence,

fl⟨3𝑥3 ⟩ = 𝑥 + 𝜂, with |𝜂| ⩽ 2𝜇
3 (16)

For the multiplication to underflow, 𝑥 must be a subnormal number. As shown in Figure 2, the absolute
distance between two consecutive subnormals is 𝜇. Consequently, we deduce from Eq. (16) that

fl⟨3𝑥3 ⟩ = 3𝑥
3 = 𝑥

if both the multiplication and the division underflow.

0
…

𝜇
⏞

𝜇
⏞

…
𝜇

⏞

𝜆− 𝜆

𝜇
⏞

𝜆+
…

𝜇
⏞

(2𝜆)−

2𝜇
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

2𝜆 (2𝜆)+
…

(3𝜆)−

2𝜇
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

3𝜆

2𝜇
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(3𝜆)+
Subnormal numbers Normal numbers

Figure 2: Absolute distance between small positive floating-point numbers

Underflow on division but not on multiplication. If the multiplication does not underflow but the division
does, we get:

fl⟨3𝑥3 ⟩ = 3𝑥(1 + 𝛿1)
3 + 𝜂2, with |𝛿1| ⩽

𝑢
1 + 𝑢 , |𝜂2| ⩽

𝜇
2 .

It is easy to check that for 𝑥 = 𝜆, we have fl⟨(3𝑥)/3⟩ = 𝜆. By monotonicity of rounding, we get that for all
𝑦 greater than 𝑥 , we have fl⟨(3𝑦)/3⟩ ⩾ 𝜆. Hence, 𝑥 must be a subnormal number for the division to underflow
when computing (3𝑥)/3. Therefore, the absolute distance between 3𝑥 and fl(3𝑥) must be smaller or equal to
𝜇 (See Figure 2), which leads to:

fl⟨3𝑥3 ⟩ = 3𝑥 + 𝜂3
3 + 𝜂2, with |𝜂3| ⩽ 𝜇, |𝜂2| ⩽

𝜇
2

= 𝑥 + 5
6𝜇

As in the previous case, we deduce:

fl⟨3𝑥3 ⟩ = 3𝑥
3 = 𝑥

if the multiplication does not underflow but the division does.
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5.2.2 The case of fl⟨3(𝑥/3)⟩
Underflow on division and multiplication. If both the division and the multiplication underflow, we get:

fl⟨3𝑥3 ⟩ = 3 (
𝑥
3 + 𝜂1) + 𝜂2, with |𝜂1| ⩽ 𝜇/2, |𝜂2| ⩽ 𝜇/2 (17)

Using monotonicity of rounding, if fl⟨3(𝑥/3)⟩ underflows, we must have 𝑥 ⩽ 𝜆. Therefore, fl(𝑥/3) is of the form
0.0𝑏′2⋯𝑏′𝑝−1×2𝐸min . According to Table 3, themultiplication is then without error, that is: 𝜂2 = 0. Equation (17)
simplifies to:

fl⟨3𝑥3 ⟩ = 𝑥 + 3𝜂1, with |𝜂1| ⩽ 𝜇/2
Hence,

|fl⟨3𝑥3 ⟩ − 𝑥| ⩽ 3𝜇
2

Since the absolute distance between subnormal numbers is 𝜇, we have:

fl⟨3𝑥3 ⟩ ∈ {𝑥−, 𝑥, 𝑥+}

Underflow on division but not on multiplication. If the division underflows but the multiplication does
not, we get:

fl⟨3𝑥3 ⟩ = 3 (
𝑥
3 + 𝜂1) (1 + 𝛿2), with |𝜂1| ⩽ 𝜇/2, |𝛿2| ⩽ 𝑢/(1 + 𝑢) (18)

It is trivial to check that we must have 𝑥 ∈ [𝜆+, (3𝜆)−], using monotonicity of rounding. For convenience,
we will investigate the actual worst case error on three disjoint domains for 𝑥 :

• If 𝑥 ∈ [𝜆+, ( 32𝜆)
−] (i.e., 𝑥 ∈ [1.00⋯ 001 × 2𝐸min , 1.011⋯ 111 × 2𝐸min]).

According to Table 6, we have:

𝑥 ∈ [𝜆+, ( 32𝜆)
−
] ⟹ fl(

𝑥
3) = 0.0𝑏′2⋯𝑏′𝑝−1 × 2𝐸min

According to Table 3, we therefore have:

fl(3fl(
𝑥
3)) = 3fl(

𝑥
3)

which means:
fl⟨3𝑥3 ⟩ = 3(𝑥3 + 𝜂1), |𝜂1| ⩽ 𝜇/2

Therefore:

|fl⟨3𝑥3 ⟩ − 𝑥| ⩽ 3𝜇
2

Since, the absolute distance between floating-point numbers is 𝜇 in the domain [𝜆+, ( 32𝜆)
−], we have:

∀𝑥 ∈ [𝜆+, (3𝜆/2)−]∶ fl⟨3𝑥3 ⟩ ∈ {𝑥−, 𝑥, 𝑥+} (19)

• If 𝑥 ∈ [3𝜆/2, (2𝜆)−] (i.e. 𝑥 ∈ [1.10⋯ 000 × 2𝐸min , 1.11⋯ 111 × 2𝐸min])
It is easy to check, using monotonicity of rounding, that:

𝑥 ∈ [3𝜆/2, (2𝜆)−] ⟹ fl⟨3𝑥3 ⟩ ∈ [3𝜆/2, ((2𝜆)−)−]

From Table 3, we get for 𝑦 a subnormal number:

fl(3𝑦) = 1.1𝑏′2⋯𝑏′𝑝−1 × 2𝐸min ⟹ fl(3𝑦) = 3𝑦
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Hence:
∀𝑥 ∈ [3𝜆/2, (2𝜆)−]∶ fl⟨3𝑥3 ⟩ = 3(𝑥3 + 𝜂1) = 𝑥 + 3𝜂1, |𝜂1| ⩽ 𝜇/2

From which we get:

|fl⟨3𝑥3 ⟩ − 𝑥| ⩽ 3𝜇
2

Consequently, we have:

∀𝑥 ∈ [3𝜆/2, (2𝜆)−]∶ fl⟨3𝑥3 ⟩ ∈ {𝑥−, 𝑥, 𝑥+} (20)

• If 𝑥 ∈ [2𝜆, (3𝜆)−] (i.e., 𝑥 ∈ [1.0 × 2𝐸min+1, 1.01⋯ 111 × 2𝐸min+1]).
It is trivial to show, using monotonicity of rounding, that:

𝑥 ∈ [2𝜆, (3𝜆)−] ⟹ fl⟨3𝑥3 ⟩ ∈ [2𝜆, ((3𝜆)−)−]

In the interval [2𝜆, ((3𝜆)−)−], the absolute distance between two consecutive floating-point numbers is
2𝜇 (See Figure 2), which means that:

∀𝑦 ∶ fl(3𝑦) ∈ [2𝜆, ((3𝜆)−)−] ⟹ |fl(3𝑦) − 3𝑦| ⩽ 𝜂3, |𝜂3| ⩽ 𝜇
Therefore, for 𝑥 ∈ [2𝜆, (3𝜆)−]:

fl⟨3𝑥3 ⟩ = 3(𝑥3 + 𝜂1) + 𝜂3, |𝜂1| ⩽ 𝜇/2, |𝜂3| ⩽ 𝜇
= 𝑥 + 𝜂, |𝜂| ⩽ 5𝜇/2

Then:

|fl⟨3𝑥3 ⟩ − 𝑥| ⩽ 5𝜇
2

The distance between consecutive floating-point numbers in the domain involved being 2𝜇, we eventu-
ally get:

∀𝑥 ∈ [2𝜆, (3𝜆)−]∶ fl⟨3𝑥3 ⟩ ∈ {𝑥−, 𝑥, 𝑥+} (21)

From Equations (19), (20), (21), we deduce that for 𝑥 ∈ [𝜆+, (3𝜆)−], fl⟨3(𝑥/3)⟩ is equal to 𝑥 itself or one of
its immediate predecessor or successor:

∀𝑥 ∈ [𝜆+, (3𝜆)−]∶ fl⟨3𝑥3 ⟩ ∈ {𝑥−, 𝑥, 𝑥+} (22)

5.3 Putting it all together

Knowing the worst case error for each operation, and armed with the tables from Sections 3 and 4, we may
now determine the possible signs of the error when computing fl⟨(3𝑥)/3⟩ and fl⟨3(𝑥/3)⟩. Consider for example
the floating-point number 𝑥 of the form 1.1𝑏2…𝑏𝑝−4001×2𝑒𝑥 and the expression (3𝑥)/3. Using Table 2, we get
all the possible forms for the significand of 𝑦 = fl(3𝑥). They are—in the absence of underflow:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1.0𝑏′2…𝑏′𝑝−4001
1.0𝑏′2…𝑏′𝑝−4011
1.0𝑏′2…𝑏′𝑝−4101
1.0𝑏′2…𝑏′𝑝−4111

(23)
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Table 10: Result and sign of the error when computing fl⟨(3𝑥)/3⟩ without underflow.

x fl⟨(3x)/3⟩ Error
1.0𝑏2⋯𝑏𝑝−4000 1.0𝑏′2⋯𝑏′𝑝−4000 EQ
1.0𝑏2⋯𝑏𝑝−4001 1.0𝑏′2⋯𝑏′𝑝−4001 EQ
1.0𝑏2⋯𝑏𝑝−4010 1.0𝑏′2⋯𝑏′𝑝−4011 GT

1.0𝑏′2⋯𝑏′𝑝−4010 EQ
1.0𝑏2⋯𝑏𝑝−4011 1.0𝑏′2⋯𝑏′𝑝−4011 EQ
1.0𝑏2⋯𝑏𝑝−4100 1.0𝑏′2⋯𝑏′𝑝−4100 EQ
1.0𝑏2⋯𝑏𝑝−4101 1.0𝑏′2⋯𝑏′𝑝−4101 EQ
1.0𝑏2⋯𝑏𝑝−4110 1.0𝑏′2⋯𝑏′𝑝−4110 EQ

1.0𝑏′2⋯𝑏′𝑝−4101 LT
1.0𝑏2⋯𝑏𝑝−4111 1.0𝑏′2⋯𝑏′𝑝−4111 EQ
1.1𝑏2⋯𝑏𝑝−4000 1.1𝑏′2⋯𝑏′𝑝−4000 EQ
1.1𝑏2⋯𝑏𝑝−4001 1.1𝑏′2⋯𝑏′𝑝−4001 EQ
1.1𝑏2⋯𝑏𝑝−4010 1.1𝑏′2⋯𝑏′𝑝−4011 GT
1.1𝑏2⋯𝑏𝑝−4011 1.1𝑏′2⋯𝑏′𝑝−4011 EQ
1.1𝑏2⋯𝑏𝑝−4100 1.1𝑏′2⋯𝑏′𝑝−4100 EQ
1.1𝑏2⋯𝑏𝑝−4101 1.1𝑏′2⋯𝑏′𝑝−4101 EQ
1.1𝑏2⋯𝑏𝑝−4110 1.1𝑏′2⋯𝑏′𝑝−4101 LT
1.1𝑏2⋯𝑏𝑝−4111 1.1𝑏′2⋯𝑏′𝑝−4111 EQ

For each of these four forms, we get from Table 4 all the possible forms for the significand of fl(𝑦/3). For
example, for the first form 1.0𝑏′2…𝑏′𝑝−4001, we get:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.0𝑏″2 …𝑏″𝑝−4001
1.1𝑏″2 …𝑏″𝑝−4001
1.0𝑏″2 …𝑏″𝑝−4100
1.1𝑏″2 …𝑏″𝑝−4100
1.0𝑏″2 …𝑏″𝑝−4111
1.1𝑏″2 …𝑏″𝑝−4111

(24)

However, from Eq. (15), we know that fl⟨(3𝑥)/3⟩ for 𝑥 = 1.1𝑏2…𝑏𝑝−4001 × 2𝑒𝑥 must be one of the following
floating-point numbers:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1.1𝑏2…𝑏𝑝−4000 × 2𝑒𝑥
1.1𝑏2…𝑏𝑝−4001 × 2𝑒𝑥
1.1𝑏2…𝑏𝑝−4010 × 2𝑒𝑥

We can then discard from Eq. (24) all forms but the second one: 1.1𝑏2…𝑏𝑝−4001. If we do the same work for
all forms in Eq. (23), we will find that the only possible significand for fl⟨(3𝑥)/3⟩ is 1.1𝑏2…𝑏𝑝−4001, that is the
one of 𝑥 itself.

Doing the work exemplified above for all possible significands for 𝑥 that do not lead to an underflow in
either the division or the multiplication, we get Table 10. As proved in Section 5.2.1, should an underflow arise
during the computation of fl⟨(3𝑥)/3⟩, it is not necessary to compute such a table since we then always have
fl⟨(3𝑥)/3⟩ = 𝑥 .

Computing the same table for the expression fl⟨3(𝑥/3)⟩ results in a table with 96—that is, 25 × 3—entries:
given 𝑥 = 𝑏0.𝑏1𝑏2⋯𝑏𝑝−3𝑏𝑝−2𝑏𝑝−1 × 2𝑒𝑥 , fl⟨3(𝑥/3)⟩ may always be 𝑥 or one of its two immediate neighbours,
whatever the values of 𝑏0, 𝑏1, 𝑏𝑝−3, 𝑏𝑝−2, and 𝑏𝑝−1. Therefore, it is useless to display the resulting table as it
is uninformative.
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6 Conclusion

Using both traditional error analysis and the tables computed in Sections 3 and 4, we have been able to
compute refined error bounds in Section 5 for fl⟨3𝑥/3⟩ and fl⟨3(𝑥/3)⟩. At first sight (See Tables 11 and 12), it
seems that the expression 3𝑥/3 gives overall more accurate results than the expression 3(𝑥/3) whenever an
underflow occurs, and that no expression is better than the other when no underflow occurs.

Table 11: Refined worst case error analysis for fl⟨3𝑥3 ⟩, with |𝛿 | < 2𝑢.
XXXXXXXXXX𝑦 = 3𝑥

𝑧 = 𝑦/3 Underflow No underflow

Underflow 𝑥 —

No underflow 𝑥 𝑥(1 + 𝛿)

Table 12: Refined worst case error analysis for fl⟨3𝑥3 ⟩, with: |𝜂| ⩽ 𝜇, |𝛿 | < 2𝑢.
XXXXXXXXXX𝑦 = 𝑥/3

𝑧 = 3𝑦 Underflow No underflow

Underflow {𝑥−, 𝑥, 𝑥+} {𝑥−, 𝑥, 𝑥+}

No underflow — 𝑥(1 + 𝛿)

This is only part of the story, however. Our detailed analysis reveals that only when the last three bits of
the significand of 𝑥 are “010” or “110” may the expression 3𝑥/3 be rounded to a value different from 𝑥 (see
Table 10), while the same situation may occur whatever the value of 𝑥 ’s significand with the expression 3(𝑥/3)
(refer to the end of the previous section). The expression 3𝑥/3 is therefore to be prefered to 3(𝑥/3) in all cases.

Tables 1, 2, 3, 4, 5, 6, and 7 are all interesting and useful in their own right whenever one needs to ob-
tain more information on the division and multiplication by three of a floating-point number than merely a
worst-case error bound. We expect to reuse the method used here to prove properties regarding the expres-
sions 3𝑥/3 and 3(𝑥/3), which combines traditional error analysis with systematic study of the behaviour of
equivalence classes of floating-point numbers, in proving the correctness of polyadic splitting operators for
interval analysis [5].

The question of multiplying and dividing a number by another in floating-point arithmetic has been ad-
dressed several times already in slightly different settings: Kahan [3, thm. 7] showed that fl⟨(𝑚/𝑛) × 𝑛⟩ = 𝑚
for integers 𝑚 and 𝑛 such that |𝑚| < 2𝑝−1 and 𝑛 is the sum of two powers of 2. Edelman [2] investigated the
problem of finding the smallest positive floating-point 𝑥 such that 𝑥(1/𝑥) ≠ 1.

Obviously, the next step for us is to address the problem presented in this paper for other integer values
than 3. That might prove indeed necessary for our work on polyadic splitting operators. Once the preliminary
worst case error analysis of an expression is performed manually, a large part of the proofs can be performed
programmatically, which departs from the more involved—though more powerful and flexible—approaches
used by, e.g., Kahan and Edelman. Generalizing the approach to other similar problems of interest is a direc-
tion of future research.
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A Multiplication by 3 involving no denormal number

The two columns below present the results of the multiplication by 3 of a positive floating-point number 𝑥
depending on the last three bits of its significand. Thanks to Lemmas 1 and 2, we know that we also need to
consider the first bit after the radix point to know how many bits from the result to discard. The left column
(resp. right column) corresponds to the cases for which we need to discard the last bit (resp. the last two bits)
underlined. For convenience, we display only the significands and leave the exponents implicit.

1. 0 𝑏2 ⋯ 𝑏𝑝−4 0 0 0
× 1. 1

1. 0 𝑏2 ⋯ 𝑏𝑝−4 0 0 0
+ 1. 0 𝑏2 ⋯ 𝑏𝑝−4 0 0 0

1. 1 𝑏′2 ⋯ 𝑏′𝑝−4 𝑏′𝑝−3 0 0 0

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 0 0 0
× 1. 1

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 0 0 0
+ 1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 0 0 0

1. 0 𝑏′2 ⋯ 𝑏′𝑝−3 𝑏′𝑝−2 0 0 0

1. 0 𝑏2 ⋯ 𝑏𝑝−4 0 0 1
× 1. 1

1. 0 𝑏2 ⋯ 𝑏𝑝−4 0 0 1
+ 1. 0 𝑏2 ⋯ 𝑏𝑝−4 0 0 1

1. 1 𝑏′2 ⋯ 𝑏′𝑝−4 𝑏′𝑝−3 0 1 1

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 0 0 1
× 1. 1

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 0 0 1
+ 1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 0 0 1

1. 0 𝑏′2 ⋯ 𝑏′𝑝−3 𝑏′𝑝−2 0 1 1

1. 0 𝑏2 ⋯ 𝑏𝑝−4 0 1 0
× 1. 1

1. 0 𝑏2 ⋯ 𝑏𝑝−4 0 1 0
+ 1. 0 𝑏2 ⋯ 𝑏𝑝−4 0 1 0

1. 1 𝑏′2 ⋯ 𝑏′𝑝−4 𝑏′𝑝−3 1 1 0

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 0 1 0
× 1. 1

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 0 1 0
+ 1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 0 1 0

1. 0 𝑏′2 ⋯ 𝑏′𝑝−3 𝑏′𝑝−2 1 1 0

1. 0 𝑏2 ⋯ 𝑏𝑝−4 0 1 1
× 1. 1

1. 0 𝑏2 ⋯ 𝑏𝑝−4 0 1 1
+ 1. 0 𝑏2 ⋯ 𝑏𝑝−4 0 1 1

1. 1 𝑏′2 ⋯ 𝑏′𝑝−4 𝑏′𝑝−3 0 0 1

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 0 1 1
× 1. 1

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 0 1 1
+ 1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 0 1 1

1. 0 𝑏′2 ⋯ 𝑏′𝑝−3 𝑏′𝑝−2 0 0 1

1. 0 𝑏2 ⋯ 𝑏𝑝−4 1 0 0
× 1. 1

1. 0 𝑏2 ⋯ 𝑏𝑝−4 1 0 0
+ 1. 0 𝑏2 ⋯ 𝑏𝑝−4 1 0 0

1. 1 𝑏′2 ⋯ 𝑏′𝑝−4 𝑏′𝑝−3 1 0 0

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 1 0 0
× 1. 1

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 1 0 0
+ 1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 1 0 0

1. 0 𝑏′2 ⋯ 𝑏′𝑝−3 𝑏′𝑝−2 1 0 0

1. 0 𝑏2 ⋯ 𝑏𝑝−4 1 0 1
× 1. 1

1. 0 𝑏2 ⋯ 𝑏𝑝−4 1 0 1
+ 1. 0 𝑏2 ⋯ 𝑏𝑝−4 1 0 1

1. 1 𝑏′2 ⋯ 𝑏′𝑝−4 𝑏′𝑝−3 1 1 1

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 1 0 1
× 1. 1

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 1 0 1
+ 1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 1 0 1

1. 0 𝑏′2 ⋯ 𝑏′𝑝−3 𝑏′𝑝−2 1 1 1

1. 0 𝑏2 ⋯ 𝑏𝑝−4 1 1 0
× 1. 1

1. 0 𝑏2 ⋯ 𝑏𝑝−4 1 1 0
+ 1. 0 𝑏2 ⋯ 𝑏𝑝−4 1 1 0

1. 1 𝑏′2 ⋯ 𝑏′𝑝−4 𝑏′𝑝−3 0 1 0

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 1 1 0
× 1. 1

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 1 1 0
+ 1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 1 1 0

1. 0 𝑏′2 ⋯ 𝑏′𝑝−3 𝑏′𝑝−2 0 1 0
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1. 0 𝑏2 ⋯ 𝑏𝑝−4 1 1 1
× 1. 1

1. 0 𝑏2 ⋯ 𝑏𝑝−4 1 1 1
+ 1. 0 𝑏2 ⋯ 𝑏𝑝−4 1 1 1

1. 1 𝑏′2 ⋯ 𝑏′𝑝−4 𝑏′𝑝−3 1 0 1

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 1 1 1
× 1. 1

1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 1 1 1
+ 1. 𝑏1 𝑏2 ⋯ 𝑏𝑝−4 1 1 1

1. 0 𝑏′2 ⋯ 𝑏′𝑝−3 𝑏′𝑝−2 1 0 1

B Multiplication by 3 involving denormal numbers

List of the two different results for all possible values of the rightmost bits, on the left for a 𝑝 bits significand,
and on the right for a 𝑝 + 1 bits significand, where the bit to discard is underlined.

0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 0 0
× 1. 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 0 0
+ 0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 0 0

0. 1 𝑏′2 ⋯ 𝑏′𝑝−4 𝑏′𝑝−3 0 0 0

0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 0 0
× 1. 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 0 0
+ 0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 0 0

1. 0 𝑏′2 ⋯ 𝑏′𝑝−2 0 0 0

0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 0 1
× 1. 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 0 1
+ 0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 0 1

0. 1 𝑏′2 ⋯ 𝑏′𝑝−4 𝑏′𝑝−3 0 1 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 0 1
× 1. 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 0 1
+ 0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 0 1

1. 0 𝑏′2 ⋯ 𝑏′𝑝−2 0 1 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 1 0
× 1. 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 1 0
+ 0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 1 0

0. 1 𝑏′2 ⋯ 𝑏′𝑝−4 𝑏′𝑝−3 1 1 0

0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 1 0
× 1. 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 1 0
+ 0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 1 0

1. 0 𝑏′2 ⋯ 𝑏′𝑝−2 1 1 0

0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 1 1
× 1. 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 1 1
+ 0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 1 1

0. 1 𝑏′2 ⋯ 𝑏′𝑝−4 𝑏′𝑝−3 0 0 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 1 1
× 1. 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 1 1
+ 0. 1 𝑏2 ⋯ 𝑏𝑝−4 0 1 1

1. 0 𝑏′2 ⋯ 𝑏′𝑝−2 0 0 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 0 0
× 1. 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 0 0
+ 0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 0 0

0. 1 𝑏′2 ⋯ 𝑏′𝑝−4 𝑏′𝑝−3 1 0 0

0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 0 0
× 1. 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 0 0
+ 0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 0 0

1. 0 𝑏′2 ⋯ 𝑏′𝑝−4 𝑏′𝑝−2 1 0 0

0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 0 1
× 1. 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 0 1
+ 0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 0 1

0. 1 𝑏′2 ⋯ 𝑏′𝑝−3 1 1 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 0 1
× 1. 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 0 1
+ 0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 0 1

1. 0 𝑏′2 ⋯ 𝑏′𝑝−2 1 1 1
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0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 1 0
× 1. 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 1 0
+ 0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 1 0

0. 1 𝑏′2 ⋯ 𝑏′𝑝−4 𝑏′𝑝−3 0 1 0

0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 1 0
× 1. 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 1 0
+ 0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 1 0

1. 0 𝑏′2 ⋯ 𝑏′𝑝−2 0 1 0

0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 1 1
× 1. 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 1 1
+ 0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 1 1

0. 1 𝑏′2 ⋯ 𝑏′𝑝−4 𝑏′𝑝−3 1 0 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 1 1
× 1. 1

0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 1 1
+ 0. 1 𝑏2 ⋯ 𝑏𝑝−4 1 1 1

1. 0 𝑏′2 ⋯ 𝑏′𝑝−2 1 0 1

C Division by 3 involving no denormal number

The leftmost column considers 𝑥 = 1.0𝑏2⋯𝑏𝑝−1×2𝑒𝑥 and the rightmost column considers 𝑥 = 1.1𝑏2⋯𝑏𝑝−1×2𝑒𝑥 .
For each triplet of possible last three bits of the significand of 𝑥 , we consider the three possible remainders
on 𝑏𝑝−4.

When 𝑥 ends in “000”
0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 0 0 0 0 0

11) 1 0 … 𝑏𝑝−4 0 0 0
⋯ ↓ ↓ ↓ ↓ ↓

0 0 0 0 0 0

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 0 0 0 0
11) 1 1 … 𝑏𝑝−4 0 0 0

⋯ ↓ ↓ ↓ ↓
0 0 0 0 0

0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 0 1 0 1 0
11) 1 0 … 𝑏𝑝−4 0 0 0

⋯ ↓ ↓
1 0 0 ↓ ↓

1 0 0 ↓
1 0
…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 0 1 0 1
11) 1 1 … 𝑏𝑝−4 0 0 0

⋯ ↓ ↓
1 0 0 ↓ ↓

1 0 0
1
…

0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 1 0 1 0 1
11) 1 0 … 𝑏𝑝−4 0 0 0

⋯ ↓
10 0 ↓ ↓

1 0 0 ↓ ↓
1 0 0

…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 1 0 1 0
11) 1 1 … 𝑏𝑝−4 0 0 0

⋯ ↓
10 0 ↓ ↓

1 0 0 ↓
1 0
…

When 𝑥 ends in “001”
0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 0 0 0 0 1

11) 1 0 … 𝑏𝑝−4 0 0 1
⋯ ↓ ↓ ↓ ↓ ↓

0 0 0 1 0 0
1
…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 0 0 0 0
11) 1 1 … 𝑏𝑝−4 0 0 1

⋯ ↓ ↓ ↓ ↓
0 0 0 1 0

…
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0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 0 1 1 0 0
11) 1 0 … 𝑏𝑝−4 0 0 1

⋯ ↓ ↓
1 0 0 ↓

1 1 ↓ ↓
0 0 0

…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 0 1 0 1
11) 1 1 … 𝑏𝑝−4 0 0 1

⋯ ↓ ↓
1 0 0 ↓

1 1 ↓
0 0

…

0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 1 0 1 1 0
11) 1 0 … 𝑏𝑝−4 0 0 1

⋯ ↓
10 0 ↓ ↓

1 0 1 ↓
10 0 ↓

1 0
…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 1 0 1 1
11) 1 1 … 𝑏𝑝−4 0 0 1

⋯ ↓
10 0 ↓ ↓

1 0 1 ↓
10 0

1
…

When 𝑥 ends in “010”
0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 0 0 0 1 0

11) 1 0 … 𝑏𝑝−4 0 1 0
⋯ ↓ ↓ ↓ ↓

0 0 1 0 0 ↓
1 0

…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 0 0 0 1
11) 1 1 … 𝑏𝑝−4 0 1 0

⋯ ↓ ↓ ↓ ↓
0 0 1 0 0

…

0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 0 1 1 0 1
11) 1 0 … 𝑏𝑝−4 0 1 0

⋯ ↓ ↓
1 0 1 ↓

1 0 0 ↓ ↓
1 0 0

…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 0 1 1 0
11) 1 1 … 𝑏𝑝−4 0 1 0

⋯ ↓ ↓
1 0 1 ↓

1 0 0 ↓
1 0

…

0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 1 1 0 0 0
11) 1 0 … 𝑏𝑝−4 0 1 0

⋯ ↓
10 0 ↓

1 1 ↓
0 0 ↓ ↓

0 0 0
…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 1 1 0 0
11) 1 1 … 𝑏𝑝−4 0 1 0

⋯ ↓
10 0 ↓

1 1 ↓
0 0 ↓

0 0
…
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When 𝑥 ends in “011”

0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 0 0 1 0 0
11) 1 0 … 𝑏𝑝−4 0 1 1

⋯ ↓ ↓ ↓
0 0 1 1 ↓ ↓

0 0 0
…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 0 0 1 0
11) 1 1 … 𝑏𝑝−4 0 1 1

⋯ ↓ ↓ ↓
0 0 1 1 ↓

0 0
…

0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 0 1 1 1 0
11) 1 0 … 𝑏𝑝−4 0 1 1

⋯ ↓ ↓
1 0 1 ↓

1 0 1 ↓
1 0 0 ↓

1 0
…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 0 1 1 1
11) 1 1 … 𝑏𝑝−4 0 1 1

⋯ ↓ ↓
1 0 1 ↓

1 0 1 ↓
1 0 0

…

0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 1 1 0 0 1
11) 1 0 … 𝑏𝑝−4 0 1 1

⋯ ↓
10 0 ↓

1 1 ↓ ↓ ↓
0 1 0 0

1
…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 1 1 0 0
11) 1 1 … 𝑏𝑝−4 0 1 1

⋯ ↓
10 0 ↓

1 1 ↓ ↓
0 1 0

…

When 𝑥 ends in “100”
0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 0 0 1 0 1

11) 1 0 … 𝑏𝑝−4 1 0 0
⋯ ↓ ↓ ↓

0 1 0 0 ↓ ↓
1 0 0

…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 0 0 1 0
11) 1 1 … 𝑏𝑝−4 1 0 0

⋯ ↓ ↓ ↓
0 1 0 0 ↓

1 0
…

0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 1 0 0 0 0
11) 1 0 … 𝑏𝑝−4 1 0 0

⋯ ↓ ↓
1 1 ↓ ↓ ↓ ↓

0 0 0 0 0
…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 1 0 0 0
11) 1 1 … 𝑏𝑝−4 1 0 0

⋯ ↓
1 1 ↓ ↓

0 0 0 0
…
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0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 1 1 0 1 0
11) 1 0 … 𝑏𝑝−4 1 0 0

⋯ ↓
10 1 ↓
1 0 0 ↓ ↓

1 0 0 ↓
1 0
…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 1 1 0 1
11) 1 1 … 𝑏𝑝−4 1 0 0

⋯ ↓
10 1 ↓
1 0 0 ↓ ↓

1 0 0
1

…

When 𝑥 ends in “101”
0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 0 0 1 1 0

11) 1 0 … 𝑏𝑝−4 1 0 1
⋯ ↓ ↓ ↓

0 1 0 1 ↓
1 0 0 ↓

1 0
…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 0 0 1 1
11) 1 1 … 𝑏𝑝−4 1 0 1

⋯ ↓ ↓ ↓
0 1 0 1 ↓

1 0 0
1

…

0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 1 0 0 0 1
11) 1 0 … 𝑏𝑝−4 1 0 1

⋯ ↓ ↓
1 1 ↓ ↓ ↓ ↓

0 0 1 0 0
…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 1 0 0 0
11) 1 1 … 𝑏𝑝−4 1 0 1

⋯ ↓
1 1 ↓ ↓

0 0 1 0
…

0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 1 1 1 0 0
11) 1 0 … 𝑏𝑝−4 1 0 1

⋯ ↓
10 1 ↓
1 0 0 ↓ ↓

1 1 ↓ ↓
0 0 0

…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 1 1 1 0
11) 1 1 … 𝑏𝑝−4 1 0 1

⋯ ↓
10 1 ↓
1 0 0 ↓ ↓

1 1 ↓
0 0
…

When 𝑥 ends in “110”
0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 0 1 0 0 0

11) 1 0 … 𝑏𝑝−4 1 1 0
⋯ ↓ ↓

0 1 1 ↓ ↓ ↓
0 0 0 0

…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 0 1 0 0
11) 1 1 … 𝑏𝑝−4 1 1 0

⋯ ↓ ↓
0 1 1 ↓ ↓

0 0 0
…
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0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 1 0 0 1 0
11) 1 0 … 𝑏𝑝−4 1 1 0

⋯ ↓
1 1 ↓ ↓ ↓

0 1 0 0 ↓
1 0
…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 1 0 0 1
11) 1 1 … 𝑏𝑝−4 1 1 0

⋯ ↓
1 1 ↓ ↓ ↓

0 1 0 0
1
…

0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 1 1 1 0 1
11) 1 0 … 𝑏𝑝−4 1 1 0

⋯ ↓
10 1 ↓
1 0 1 ↓

1 0 0 ↓ ↓
1 0 0

1
…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 1 1 1 0
11) 1 1 … 𝑏𝑝−4 1 1 0

⋯ ↓
10 1 ↓
1 0 1 ↓

1 0 0 ↓
1 0
…

When 𝑥 ends in “111”
0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 0 1 0 0 1

11) 1 0 … 𝑏𝑝−4 1 1 1
⋯ ↓ ↓

0 1 1 ↓ ↓ ↓
0 1 0 0

1
…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 0 1 0 0
11) 1 1 … 𝑏𝑝−4 1 1 1

⋯ ↓ ↓
0 1 1 ↓ ↓

0 1 0
…

0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 1 0 1 0 0
11) 1 0 … 𝑏𝑝−4 1 1 1

⋯ ↓
1 1 ↓ ↓

0 1 1 ↓ ↓
0 0 0

…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 1 0 1 0
11) 1 1 … 𝑏𝑝−4 1 1 1

⋯ ↓
1 1 ↓ ↓

0 1 1 ↓
0 0
…

0 0 1 𝑏′1 ⋯ 𝑏′𝑝−6 1 1 1 1 0
11) 1 0 … 𝑏𝑝−4 1 1 1

⋯ ↓
10 1 ↓
1 0 1 ↓

1 0 1 ↓
1 0 0 ↓

1 0
…

0 1 0 𝑏′2 ⋯ 𝑏′𝑝−5 1 1 1 1
11) 1 1 … 𝑏𝑝−4 1 1 1

⋯ ↓
10 1 ↓
1 0 1 ↓

1 0 1 ↓
1 0 0

1
…
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D Division by 3 involving denormal numbers

.
As explained in Section 4.2, the rules for the division involving denormal numbers may be inferred from

the ones for the division involving normal numbers (Refer to Section C above).
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