Transformed Fourier and Fick equations for the control of heat and mass diffusion - Archive ouverte HAL
Article Dans Une Revue AIP Advances Année : 2015

Transformed Fourier and Fick equations for the control of heat and mass diffusion

Sebastien Guenneau
D Petiteau
  • Fonction : Auteur
Myriam Zerrad
Claude Amra

Résumé

We review recent advances in the control of diffusion processes in thermodynamics and life sciences through geometric transforms in the Fourier and Fick equations, which govern heat and mass diffusion, respectively. We propose to further encom- pass transport properties in the transformed equations, whereby the temperature is governed by a three-dimensional, time-dependent, anisotropic heterogeneous convection-diffusion equation, which is a parabolic partial differential equation combining the diffusion equation and the advection equation. We perform two dimensional finite element computations for cloaks, concentrators and rotators of a complex shape in the transient regime. We precise that in contrast to invisibility cloaks for waves, the temperature (or mass concentration) inside a diffusion cloak crucially depends upon time, its distance from the source, and the diffusivity of the invisibility region. However, heat (or mass) diffusion outside cloaks, concen- trators and rotators is unaffected by their presence, whatever their shape or posi- tion. Finally, we propose simplified designs of layered cylindrical and spherical diffusion cloaks that might foster experimental efforts in thermal and biochem- ical metamaterials.
Fichier principal
Vignette du fichier
TransformedFourierandFickequationsfor thecontrol ofheat and massdiffusionsize.pdf (604.5 Ko) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

hal-01451386 , version 1 (01-02-2017)

Identifiants

Citer

Sebastien Guenneau, D Petiteau, Myriam Zerrad, Claude Amra, Tania Puvirajesinghe. Transformed Fourier and Fick equations for the control of heat and mass diffusion. AIP Advances, 2015, 5, pp.53404 - 400. ⟨10.1063/1.4917492⟩. ⟨hal-01451386⟩
226 Consultations
120 Téléchargements

Altmetric

Partager

More