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We review recent advances in the control of diffusion processes in thermodynamics
and life sciences through geometric transforms in the Fourier and Fick equations,
which govern heat and mass diffusion, respectively. We propose to further encom-
pass transport properties in the transformed equations, whereby the temperature
is governed by a three-dimensional, time-dependent, anisotropic heterogeneous
convection-diffusion equation, which is a parabolic partial differential equation
combining the diffusion equation and the advection equation. We perform two
dimensional finite element computations for cloaks, concentrators and rotators of
a complex shape in the transient regime. We precise that in contrast to invisibility
cloaks for waves, the temperature (or mass concentration) inside a diffusion cloak
crucially depends upon time, its distance from the source, and the diffusivity of
the invisibility region. However, heat (or mass) diffusion outside cloaks, concen-
trators and rotators is unaffected by their presence, whatever their shape or posi-
tion. Finally, we propose simplified designs of layered cylindrical and spherical
diffusion cloaks that might foster experimental efforts in thermal and biochem-
ical metamaterials. C 2015 Author(s). All article content, except where otherwise
noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4917492]

I. INTRODUCTION

There is currently a keen interest in the control of heat flux using thermal metamaterials in
steady,1–7 transient8–12 and periodic13 regimes. In the present paper, we discuss the functionality
of diffusion cloaks for heat and mass, as well as concentrators and rotators,14 via transformed
Fourier8,15 and Fick16–18 equations.

Such designs are based upon the extension of metamaterials designed using tools of transfor-
mation optics to the fields of thermodynamics and biochemistry. Let us note that cloaking for diffu-
sion processes19,20 is more subtle than for waves21–28 wherein the field vanishes in the invisibility
region irrespective of its material constituent, time and its distance of the source. This appears to
be in sharp contrast with thermal cloaks wherein temperature inside the invisibility region (or mass
concentration in the context of diffusion of chemical species) appears to depend on its diffusivity,
upon time, and the distance from the source.

More precisely, in a way similar to the English physicist Pendry and his American colleagues
Schurig and Smith who proposed in 2006 to design an invisibility cloak by mapping Maxwell’s
equations on a curvilinear space with a hole in it (where an object can be hidden), one can make
coordinate changes in governing equations of thermodynamics and biochemistry8,16 with convec-
tion diffusion phenomena.

The plan of the paper is as follows: In section II, we apply a change of coordinates to the
diffusion-convection equation and show that the diffusivity becomes in general heterogeneous
(i.e. spatially varying) and anisotropic (i.e. matrix valued). In section III, we apply specific map-
pings in order to make a hole in the transformed coordinates so as to design a cloak (with a
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FIG. 1. Artistic representation of the potential use of a thermal cylindrical cloak for protection of a component on a computer
motherboard.

blow-up of a point), a concentrator (with a compression of a region) and a rotator (with a rotation
of axes) for heat flux or for mass concentration flux. We use finite element computations to validate
our hypothesis of control of heat or concentration flux in the transformed thermal or chemical
spaces. We also notably analyze the potential protection offered by diffusion cloaks, which could
have potential applications in microelectronics, see Fig. 1 for an artistic view. In section IV, we
propose a multilayered spherical device which approximates the functionality of a diffusion cloak
in the homogenization regime.13,29 In section V, we look at so-called diffusion carpet cloaks and we
conclude the paper in section VI.

II. TRANSFORMED CONVECTION-DIFFUSION EQUATION

Let us consider the convection-diffusion equation which is a parabolic partial differential equa-
tion combining the diffusion equation and the advection equation. This equation describes physical
phenomena where particles or energy (or other physical quantities) are transferred inside a physical
system due to two processes: diffusion and convection. Let us assume that the diffusion coefficient
and the convection velocity are constant and there are no sources or sinks in a bounded domain Ω
(the source lies outsideΩ). The convection-diffusion equation is then expressed as

ρ(x)c(x)∂u
∂t
= ∇ · (κ(x)∇u − v(x)u) + p(x, t) , (1)

where u denotes the distribution of temperature in thermodynamics (or mass concentration in
biochemistry) at each point x = (x, y, z) within the domain Ω. In the transient regime, u also
changes with time t > 0 (this is markedly different from the thermostatic case, where the left-hand
side of (1) vanishes). We note that the coefficient κ is the thermal conductivity (W.m−1.K−1 i.e. watt
per meter kelvin in SI units), ρ is the density (kg.m−3 i.e. kilogram per cubic meter in SI units)
and c the specific heat (or thermal) capacity (J.K−1.kg−1 i.e. joule per kilogram kelvin in SI units).
The bulk velocity v has the unit of length by time. Similar coefficients hold in the mass diffusion
case and they generally depend depend upon space and time variables. The diffusion flux −κ∇u
measures the amount of substance that will flow through a small volume during a small time interval
(mol .m−3.s−1).
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One can see at this point that if the medium has an anisotropic conductivity κ, heat will diffuse
in awkward directions. Moreover, if the medium is heterogeneous (e.g. when κ is piecewise con-
stant) the spatial derivatives of κ might suffer some jump, hence one could observe strong heat
gradient at interfaces. In fact, transmission conditions ensuring continuity of heat u and heat flux
κ∇u are encompassed in Eq. (1) since derivatives are taken in distributional sense. Let us finally
stress that in Eq. (1) the source term will be for our numerical purpose a time step (Heaviside)
variation and a singular (Dirac) spatial variation, that is: p(x, t) = p0H(t)δ(x − x0), with H the
Heaviside function and Delta the Dirac distribution. Physically speaking, the source term is constant
throughout time t > 0 and it is spatially localized on the line x = x0.

Let us now make the change of variable (x, y, z) → (x ′, y ′, z′) in Eq. (1). We find that the
transformed convection-diffusion equation has the form:

ρ(x′)c(x′)det(J)∂u
∂t
= ∇ ·

�
J−T κ(x′)J−1det(J)∇u

−J−Tdet(J)v(x′)u� + det(J)p(x′, t) ,
(2)

where J = ∂(x ′, y ′, z′)/∂(x, y, z) is the Jacobian matrix. One can see that Eq. (1) and (2) share the
same structure. This is better seen if we introduce the transformed diffusivity and velocity as

κ′ = J−T κJ−1det(J) = κJ−TJ−1det(J) = κT−1 , and v′ = J−Tdet(J)v . (3)

Clearly, κ′ is a matrix-valued field, whereas v′ is a (heterogeneous) vector field. It is interesting to
note that T is the metric tensor.

There are few ways to derive Eq. (2), but a simple one is to multiply (1) by a test function φ
which is smooth with a compact support on Ω (i.e. it vanishes on the boundary of Ω). One can then
integrate the resulting equation over Ω. After integration by parts, we are led to a weak form of
Eq. (1): 

Ω

ρc
(
∂u
∂t

φ

)
dxdydz +


Ω

(κ∇u · ∇φ) dxdydz

−

Ω

vu · ∇φdxdydz+ < p, φ >= 0 ,

(4)

where <,> denotes the duality product between the space of distributions and the space of smooth
functions (in which one integrates a distribution multiplied by a test function), see Ref. 29.

It is easy to make the coordinate change (x, y, z) → (x ′, y ′, z′) in (4). For this, one notes that
∇ = J−1∇′, where ∇′ is the gradient in the new coordinates and also one should keep in mind there is
a change in the infinitesimal volume dxdydz proportional to det(J):

Ω

(
ρcdet(J)∂u

∂t
φ

)
dx ′dy ′dz′ +


Ω

��
J−1∇′φ · κJ−1∇′u

�
det(J)	 dx ′dy ′dz′

−

Ω

��
J−1∇′φ · v∇′u

�
det(J)	 dx ′dy ′dz′+ < det(J)p, φ >= 0 .

(5)

Equation (5) is the weak form of (2). In order to see this, one should integrate by parts, and note
that J−1∇′φ · κJ−1∇′u = (∇′φ)TJ−T κJ−1∇′u. We further note that Fick’s equation which is used in
the context of mass diffusion is encompassed by the convection-diffusion equation (take the product
ρc to be equal to 1 and assume that the velocity field v vanishes. Thus, what we discuss in the sequel
applies straightforwardly to mass diffusion.

III. DIFFUSION INVISIBILITY CLOAK, CONCENTRATOR AND ROTATOR
OF AN ARBITRARY SHAPE

We now wish to implement the transformed diffusion-convection Eq. (2) in order to design
three heterogeneous anisotropic media with specific functionalities: an invisibility cloak, a concen-
trator and a rotator for heat flux (or mass diffusion). In order to describe boundaries of general
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shapes, a finite Fourier expansion

ρ(θ) = a0 +

n
k=1

(ak cos(kθ) + bk sin(kθ)) , (6)

may be used. Throughout this section, we consider a linear transform:

ρ′(ρ,θ) = αρ + β (7)

where α and β are θ dependent coefficients, with 0 < θ ≤ 2π. In this way, we can design some
cloak, concentrator and rotator of a complex shape. For the sake of illustration, we shall consider
three boundaries with up to three terms in the Fourier expansion:




R1(θ) = 0.4R(1 + 0.2 sin(3θ)) ; R2(θ) = 0.6R(1 + 0.2 sin(3θ))
R = 0.4 ; R3(θ) = R(1 + 0.2(sin(3θ) + cos(4θ))) (8)

A. Diffusion cloak

One can see in Figure 2 that heat flux (resp. mass in the context of biochemistry16 or chemical
engineering17) is smoothly detoured around the core of the cloak. Moreover, the cloak is itself trans-
parent for heat since the isothermal lines are unperturbed outside this metamaterial. More precisely,
we consider the geometric transform (7) with parameters

α =
R3(θ) − R1(θ)

R3(θ) , β = R1(θ) , R1(θ) ≤ r ≤ R3(θ) . (9)

FIG. 2. Diffusion cloak: (Left panel) Diffusion of heat (or mass) from the left on a cloak of complex shape of inner radius
R1(θ)= 0.4R(1+0.2sin(3θ)) and outer radius R3(θ)= R(1+0.2(sin(3θ)+cos(4θ))), with R = 0.4 10−4 m. The cloak is
placed close to the source (left), further away (middle) and removed (right). Snapshots of heat distribution at t = 0.001s
(a,b,c), t = 0.07s (d,e,f) and t = 0.21s (g,h,i) show that isovalues of temperature (resp. mass) are nearly unperturbed outside
the cloak. One notes the maximum temperature (resp. mass) in the core of the cloak is achieved for t ≥ 21s and depends
upon the distance between the center of the cloak to the source.

 © 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license. See:
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We obtain the following Jacobian and transformation matrices (R(θ) is the matrix of rotation
through an angle θ):

Jrr′ = *
,

1 0
−α c22

+
-
=⇒ T−1 = R(θ)

*...
,

(r − β)2 + c2
22.α

2

(r − β).r − c22.α

r − β

− c22.α

r − β

r
r − β

+///
-

R(θ)T (10)

with det(J) = (r − β)/(α2r) and

c22 =
−1

(R2(θ) − R1(θ))2

∂R1(θ)
∂θ

(R3(θ) − r)(R3(θ))


. (11)

The numerical results performed with the finite element package COMSOL are shown in
Figure 2. It is interesting to examine the thermal cloak parameter values at its non-reflecting
outer boundary R2(θ). This can be done through the analysis of the entries of the inverse of the
metric tensor T in the polar basis. We first notice that the off-diagonal terms (T−1)rθ = (T−1)θr are
generally nonzero unlike for the circular case when T−1 is diagonal. In general we observe that
−1 < (T−1)rθ < 1, which reflects the rotation of the tensor T−1 with respect to its eigenbasis. We
further note that (T−1)rr also varies with θ, unlike for circular thermal cloaks. Last, 0 < (T−1)rr < 1
and (T−1)θθ > 1.5, in agreement with the fact that the cloak ought to exhibit a strong azimuthal
anisotropy for heat to flow around the inner core.

It is illuminating to compare these numerical results carried out in the intense near-field limit,
to those obtained from an analytical approach, in order to better understand how this thermal cloak
works. The temperature (resp. mass) field u is given in the transformed coordinates by

u′(ρ′, θ ′) B u(ρ(ρ′, θ ′), θ(θ ′)) (12)

with ρ(ρ′, θ ′) and θ(θ ′) given by the inverse map of the map defined by Eq. (9). We used the
software Matlab to produce the map of isothermal values, see Fig. 3. Comparing this ideal thermal
(resp. mass diffusion) cloaking with that of Fig. 2, we notice that the temperature (resp. mass)
inside the invisibility region (inner core) of the cloak has the same value at any time step as the
temperature (resp. mass) at the point that we blow up in the original coordinate system. This form
of protection is markedly different from what is achieved with invisibility cloaks for waves. In the
latter case, the field vanishes inside the invisibility region, whereas in the former case the field is
uniform but not zero therein.

B. Diffusion concentrator

We now propose to extend the design of circular concentrators for heat8 to more complex
shapes. For the sake of simplicity, we consider a concentrator with the same boundaries as in (8).
One can see in Figure 4 that heat (resp. mass concentration) isovalues are smoothly squeezed (hence
the flux is enhanced) within the concentrator. Moreover, the concentrator is itself invisible for heat
(resp. mass) as the isothermal lines are unperturbed outside this metamaterial. More precisely, we
consider the geometric transform (7) with parameters:




α =
R1(θ)
R2(θ) β = 0 (0 ≤ r ≤ R1(θ))

α =
R3(θ) − R1(θ)
R3(θ) − R2(θ) β = R3(θ)R1(θ) − R2(θ)

R3(θ) − R2(θ) (R1(θ) ≤ r ≤ R3(θ))
(13)

We obtain the same Jacobian and transformation matrices as in (10). However, the expression
for entry c22 has changed:
• 0 ≤ r ≤ R1(θ) :

c22 =
∂r
∂θ ′
= − r

R1(θ)2
(
R2(θ)∂R1(θ)

∂θ
− R1(θ)∂R2(θ)

∂θ

)
(14)
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FIG. 3. Diffusion cloak: (Left panel) Diffusion of heat (or mass) from the left on a cloak of complex shape of inner
radius R1(θ)= 0.4R(1+0.2sin(3θ)) and outer radius R3(θ)= R(1+0.2(sin(3θ)+cos(4θ))), with R = 0.4 10−4 m. The cloak
is placed far from the source (top), closer (middle) and removed (bottom). Snapshots of heat (resp. mass) distribution
at t = 0.002s (a,d,g), t = 0.07s (b,e,h) and t = 0.21s (c,f,i) show that isovalues of temperature (resp. mass) are nearly
unperturbed outside the cloak. One notes the maximum temperature (resp. mass) in the core of the cloak is achieved for
t ≥ 21s and depends upon the distance between the center of the cloak to the source.

• R1(θ) ≤ r ≤ R3(θ) :

c22 =
−1

(R2(θ) − R1(θ))2

∂R1(θ)
∂θ

(R3(θ) − r)(R3(θ) − R2(θ))

+
∂R2(θ)
∂θ

(R1(θ) − R3(θ))(R3(θ) − r) − ∂R3(θ)
∂θ

(R2(θ) − R1(θ))(R1(θ) − r)


.

(15)

C. Diffusion rotator

We now extend the design of circular cylindrical rotators for heat15 to more complex geome-
tries. For the sake of simplicity, we consider a rotator with the same boundaries as the cloak and
concentrator, see (8). One can see in Figure 5 that heat (resp. mass) flux is smoothly rotated within
the rotator (through an angle π/4). Moreover, the rotator is itself invisible for heat (resp. mass) as
the isothermal values are unperturbed outside this metamaterial. It could be used to enhance thermal
(or mass) exchanges.

In order to design the rotator, we consider the geometric transform:




r ′ = r
θ ′ = α.r + β

with α =
θo

R1(θ) − R2(θ) ; β = θ +
R2(θ).θo

R2(θ) − R1(θ) (16)

where θ0 = π/4 denotes the tilt. We obtain the following Jacobian and transformation matrices:

Jrr′ = *
,

1 0
−α c22

+
-
=⇒ T−1 = R(θ) *..

,

c22 αr

α.r
1 + α2r2

c22

+//
-

R(θ)T (17)
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FIG. 4. Diffusion concentrator: Diffusion of heat (or mass) from the left on a concentrator of complex shape of inner radius
R1(θ)= 0.4R(1+0.2sin(3θ)) and outer radius R3(θ)= R(1+0.2(sin(3θ)+cos(4θ))), with R = 0.4 10−4 m. Snapshots of heat
(resp. mass) distribution at t = 0.001s (a), t = 0.004s (b), t = 0.007 s (c) and t = 0.01s (d) show that isovalues of temperature
(resp. mass) are nearly unperturbed outside the concentrator.

FIG. 5. Diffusion rotator: Diffusion of heat (or mass) from the left on a concentrator of complex shape of inner radius
R1(θ)= 0.4R(1+0.2sin(3θ)) and outer radius R3(θ)= R(1+0.2(sin(3θ)+cos(4θ))), with R = 0.4 10−4 m and tilt parameter
θ0= π/4. Snapshots of heat (resp. mass) distribution at t = 0.001s (a), t = 0.004s (b), t = 0.007 s (c) and t = 0.01s (d) show
that isovalues of temperature (resp. mass) are squeezed inside the core and nearly unperturbed outside the rotator.

 © 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license. See:
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with det(J) = r−β
α2r

. Also, we have

c22 =
∂θ

∂θ ′
= 1 − θo.r

(R2(θ) − R1(θ))2
.

(
∂R2(θ)
∂θ ′

− ∂R1(θ)
∂θ ′

)
− θo

(R2(θ) − R1(θ))2
(
R2(θ)∂R1(θ)

∂θ ′
− R1(θ)∂R2(θ)

∂θ ′

)
.

(18)

D. Three-dimensional diffusion cloak of a complex shape

A nontrivial question to ask is whether one can design thermal or mass diffusion cloaks of
non-spherical shapes. The extension of the previous section to the general three-dimensional case
requires to describe the inner and outer boundaries of the cloak with varying radii

ρ(θ,φ) = a0,0 + {


(m,n)∈N2\{(0,0)}
am,n cos(mθ + nφ) + bm,n sin(mθ + nφ)} (19)

We further assume there is some revolution for the design with an arbitrary cross-section
described by two functions R1(φ) and R2(φ) giving an angle dependent distance from the origin.
These functions correspond respectively to the interior and exterior boundary of the cloak. We shall
only assume that these two boundaries can be represented by a differentiable function. Their finite
Fourier expansions are thought in the form Rj(φ) = a j

0,0 +
p

n=1 a j
0,n cos(nφ), j = 1,2, where p can

be a small integer, and a j
0,n = 0 for n , p for computational easiness.

The geometric transformation which maps the field within the full domain ρ ≤ R2(φ) onto the
annular domain R1(φ) ≤ ρ′ ≤ R2(φ) can be expressed as:30

ρ′(ρ,φ) = R1(φ) + ρ
R2(φ) − R1(φ)

R2(φ) ,

θ ′ = θ , 0 < θ ≤ 2π ,

φ′ = φ , −π/2 < φ ≤ π

(20)

where 0 ≤ ρ ≤ R2(φ). Note that the transformation maps the field for ρ > R2(φ) onto itself through
the identity transformation.

This change of coordinates is characterized by the transformation of the differentials through
the Jacobian:

J(ρ′, φ′) = ∂(ρ(ρ′, φ′), θ, φ)
∂(ρ′, θ ′, φ′) . (21)

After some elementary algebra, we find that

T−1 =

*......
,

c2
13 + ρ2

c11ρ′
2 0 −c13

ρ′

0 c11 0

−c13

ρ′
0 c11

+//////
-

(22)

with det(J) = r−β
α2r

.
Also, we have
c11(φ′) = R2(φ′)/R2(φ′) − R1(φ′) and

c13 = R2(φ′) ρ′ − R2(φ′)
(R2(φ′) − R1(φ′))2

dR1(φ′)
dφ′

+ R1(φ′) R1(φ′) − ρ′

(R2(φ′) − R1(φ′))2
dR2(φ′)

dφ′
(23)

for R1(φ′) ≤ ρ′ ≤ R2(φ′). Elsewhere, T−1 reduces to the identity matrix (c11 = 1 and c13 = 0 for
ρ′ > R2(φ′)).
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FIG. 6. Layered diffusion cloaks: (Left panel) Diffusion of heat (or mass) from the left on a six-layer cloak of inner radius
R1= 1.5 10−4 m and outer radius R2= 3 10−4 m, consisting of 6 homogeneous layers alternating with interfaces at radii
1.575, 1.9125, 1.9875, 2.5125, and 2.5875 (in unit of 10−4m) and of respective diffusivities 80,0.2,40,0.4,10,0.8 in a bulk
material of diffusivity 1 (in unit of 10−5m2.s−1). (Right panel) Diffusion of heat (or mass) from the left on a two-layer cloak
of inner radius R1= 1.5 10−4 m and outer radius R2= 3 10−4 m, consisting of 2 homogeneous with interfaces at radii 1.575
and 2.5875 (in unit of 10−4m) and of respective diffusivities 80,0.8 in a bulk material of diffusivity 1 (in unit of 10−5m2.s−1).
Panels (a),(b) (resp. (c),(d)) are for a cloak in close proximity to the heat source at t = 0.004 s (resp. t = 0.01 s); Panels (e),
(f) (resp. (g),(h)) are for a cloak farther from the heat source at t = 0.004 s (resp. t = 0.01 s).

IV. A MULTILAYERED CLOAK WITH SIMPLIFIED ISOTROPIC PARAMETERS

It is interesting to simply the design of diffusion cloaks by considering layered cloaks with
homogeneous isotropic layers. As detailed in the introduction, a few papers have already proposed
such a route based upon well-known formulae derived notably in the homogenization literature.29

A. Two-dimensional layered diffusion cloak

Figure 6 shows snapshots of heat (or concentration in the context of mass diffusion) distribution
for a six-layer cloak and a two-layer cloak. At t = 0.02s (a,b,e,f) and t = 0.12s (c,d,g,h) isovalues
of temperature (or concentration in the context of mass diffusion) are nearly unperturbed for the
six-layer cloak, but not quite so for the two-layer cloak. However, normalized temperature (or
concentration) is nonvanishing inside the inner disc of both types of cloaks (and slightly higher
for the six-layer one) and depends upon the distance between the center of cloak to the source.
The left-hand side has a constant temperature (or concentration) of 1 and the right hand side
of 0.

B. Three-dimensional layered diffusion cloak

We now propose a design of a layered spherical cloak for diffusion of heat (resp. mass) based
on the homogenization approach. We show in Figure 7 snapshots of heat (resp. mass concentration)
for a twenty-layer diffusion cloak. Heat (resp. mass concentration) is clearly shown to be constant
inside the invisibility region at every time-step.
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FIG. 7. Layered spherical cloak: Diffusion of heat (or mass) from the left on a cloak of inner radius R1= 1.5 10−6 m and
outer radius R3= 3.0 10−6 m consisting of 20 homogeneous layers of equal thickness and of respective diffusivities (in unit
of 10−5.m2.s−1), which are 1700,0.25,81,0.25,30,0.25,16.5,0.25,11,0.25,8,0.25,6.5,0.25,5.5,0.25,4.5,0.25,4,0.25
(from inner to outer layer). Snapshots of heat distribution at t = 0.01 s (a,b,c), t = 0.015 s (d,e,f), t = 0.02 s (g,h,i) show
that isovalues of heat (resp. mass) are nearly unperturbed outside the cloak and the core has uniform heat (resp. mass
concentration).

V. DIFFUSION INVISIBILITY CARPET: MAPPING A CURVED SURFACE
ON A FLAT SURFACE

Another interesting application of transformational thermodynamics is the concept of carpet
cloaks, which is inspired by Li and Pendry’s original proposal of invisibility carpets in electromag-
netics.31 For this, let us consider the linear geometric transform:




x ′ = x , a < x < b ,

y ′ =
y2(x) − y1(x)

y2(x) y + y1(x) , 0 < y < y2(x) ,
z′ = z , −∞ < z < +∞ ,

(24)

where y ′ is a stretched vertical coordinate. It is easily seen that this linear geometric transform maps
the segment [a,b] within the horizontal axis y = 0 onto the curve y ′ = y1(x), and leaves the curve
y = y2(x) unchanged. Importantly, there is a one-to-one relationship between the segment and y1.
The curves y1 and y2 are assumed to be differentiable, and this ensures that the carpet won’t display
any singularity on its inner boundary.

A. Two-dimensional carpets

The linear transform (24) is expressed in a Cartesian basis as: Jxx′ =

(
1 0
∂y

∂x′
1
α

)
where α

= (y2 − y1)/y1 and from the chain rule

∂ y

∂x ′
= y2

y ′ − y2

(y2 − y1)2
∂ y1

∂x
− y1

y ′ − y1

(y2 − y1)2
∂ y2

∂x
. (25)
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FIG. 8. Thermal (resp. mass diffusion) carpet cloak: (a) carpet (20ms); (b) no carpet (20ms); (c) carpet (50ms); (d) no carpet
(50ms). One notes that Dirichlet boundary conditions are set on upper and lower boundaries, with normalised temperature
(resp. mass) u = 1 on top and u = 0 on bottom.

This leads to the inverse symmetric tensor T−1

(T−1)11 =
1
α

, (T−1)12 = (T−1)21 = −
∂ y

∂x ′
, (T−1)22 = *

,
1 +

(
∂ y

∂x ′

)2
+
-
α . (26)

We note that the transformed product of density and specific heat has the factor det(J) = α−1

= y1/(y2 − y1) which is spatially varying, but non-vanishing. When the carpet’s boundaries are
piecewise linear, which is the case in Fig. 8, one gets piecewise constant, anisotropic, coefficients.
Figure 8 clearly demonstrates the functionality of an invisibility carpet for heat (or mass) diffusion:
isothermal lines curved by the presence of a cold boundary, see Figs. 8(b) and 8(d) are straightened
by the carpet, see Figs. 8(a) and 8(c). It should be noted that the temperature (resp. mass concen-
tration) needs to be uniform all throughout the lower boundary of the computational domain for the
carpet to work properly. Moreover, when the protruding object is narrower, the required anisotropy
in the carpet is larger.

B. Three-dimensional carpets

It is also possible to hide protrusions on a surface. For this, let us consider the linear geometric
transform parameterized by t ∈ (0,2π):




x ′(t) = x(t) , a(t) < x(t) < b(t) ,
y ′(t) = y(t) , c(t) < y(t) < d(t) ,
z′(t) =

z2(x(t), y(t)) − z1(x(t), y(t))
z2(x(t), y(t)) z(t) + z1(x(t), y(t)) , 0 < z(t) < f2(x(t), y(t)) ,

(27)

where y ′ is a stretched vertical coordinate. It is easily seen that this linear geometric transform
maps the arbitrary domain D =


t ∈(0,2π){[a(t),b(t)] × [c(t),d(t)]} within the plane x y onto the sur-

face z′ = z1(x, y), and leaves the surface z = z2(x, y) unchanged. Importantly, there is a one-to-one
correspondence between the domain D and the surface z′ = z1. The surfaces z1 and z2 are assumed
to be differentiable, and this ensures that the carpet won’t display any singularity on its inner
boundary.
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The linear transform (27) is expressed in a Cartesian basis as: Jxx′ =
*..
,

1 0 0
0 1 0
∂z

∂x′
∂z

∂y′
1
α

+//
-

where

α = [z2(x(t), y(t)) − z1(x(t), y(t)]/z2(x(t), y(t)) and from the chain rule

∂z
∂x ′
= z2

z′ − z2

(z2 − z1)2
∂z1

∂x
− z1

z′ − z1

(z2 − z1)2
∂z2

∂x
,

∂z
∂ y ′
= z2

z′ − z2

(z2 − z1)2
∂z1

∂ y
− z1

z′ − z1

(z2 − z1)2
∂z2

∂ y
.

(28)

This leads to the inverse symmetric tensor T−1 which is fully described by seven nonvanishing
entries in a Cartesian basis:

(T−1)11 = (T−1)22
1
α

, (T (−1))13 = (T−1)31 = −
∂z
∂x ′

(T−1)23 = (T−1)32 = −
∂z
∂ y ′

, (T−1)33 = *
,
1 +

(
∂z
∂x ′

)2

+

(
∂z
∂ y ′

)2
+
-
α

We note that the transformed product of density and specific heat has the factor det(J) = α−1

= z1/(z2 − z1) which is spatially varying, but non-vanishing. In a way similar to two-dimensional
carpets, it can be seen that 3D carpets with flat boundaries consist of regions with piecewise
homogeneous anisotropic diffusivity.

VI. CONCLUDING REMARKS

In this review article, we have shown that one can control diffusion processes in the context
of heat or mass thanks to geometric transformations in the convection-diffusion equations. The
required heterogeneous anisotropic diffusivity inside the cloaks can be replaced by concentric layers
with isotropic homogeneous diffusivity which achieve a remarkably enhanced control of diffusion,
in the case of circular, or spherical, geometries. In the case of cloaks, concentrators and rotators of
an arbitrary shape, the path toward an approximate design remains a challenge. We have also dis-
cussed the possibility of designing invisibility carpets for diffusion processes. In this latter case, one
need only achieve a minimum level of control on isothermal values in order to reduce backscattered
diffusion, which makes the metamaterial parameters easier to achieve: there is no singularity in the
required tensor of diffusivity due to the fact that we use a one-to-one mapping.

ACKNOWLEDGMENTS

This work has been carried out thanks to the support of the A*MIDEX project (no ANR-11-
IDEX-0001-02) funded by the Investissements d’Avenir French Government program, managed by
the French National Research Agency (ANR). S.G. is also thankful for an ERC grant ANAMOR-
PHISM. D.P. acknowledges funding from CNRS/DGA and C.A., M.Z., S.G. acknowledge further
funding from ANR (project INPACT).
1 C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys.

Lett. 92, 251907 (2008).
2 J. Y. Li, Y. Gao, and J. P. Huang, “A bifunctional cloak using transformation media,” J. Appl. Phys. 108, 074504 (2010).
3 S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108, 214303 (2012).
4 F. Gomory, M. Solovyov, J. Souc, C. Nacau, J. Prat-Camps, and A. Sanchez, “Experimental realization of a magnetic cloak,”

Science 335, 1466 (2012).
5 T. Han, T. Yuan, B. Li, and C.-W. Qiu, “Homogeneous thermal cloaks with constant conductivity and tunable heat locali-

zation,” Sci. Rep. 3, 1593 (2013).
6 E. M. Dede, T. Nomura, P. Schmalenberg, and J. S. Lee, “Heat flux cloaking, focusing, and reversal in ultra-thin composites

considering conduction-convection effects,” Appl.Phys. Lett. 103, 063501 (2013).
7 H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112, 054301

(2014).
8 S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics : cloaking and concentrating heat flux,” Opt.

Express 20(7), 8207–8218 (2012).

 © 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license. See:

http://creativecommons.org/licenses/by/4.0/ Downloaded to IP:  195.220.68.236 On: Tue, 01 Dec 2015 09:21:10

http://dx.doi.org/10.1063/1.2951600
http://dx.doi.org/10.1063/1.2951600
http://dx.doi.org/10.1063/1.2951600
http://dx.doi.org/10.1063/1.3490226
http://dx.doi.org/10.1103/PhysRevLett.108.214303
http://dx.doi.org/10.1126/science.1218316
http://dx.doi.org/10.1063/1.4816775
http://dx.doi.org/10.1103/PhysRevLett.112.054301
http://dx.doi.org/10.1364/OE.20.008207
http://dx.doi.org/10.1364/OE.20.008207
http://dx.doi.org/10.1364/OE.20.008207


053404-13 Guenneau et al. AIP Advances 5, 053404 (2015)

9 R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: Molding the flow
of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).

10 H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Experimental demonstration of an ultra-thin three-dimensional thermal cloak,”
Phys. Rev. Lett. 112, 054301 (2014).

11 T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C.-W. Qiu, “Experimental demonstration of a bilayer thermal cloak,”
Phys. Rev. Lett. 112, 054302 (2014).

12 T. Han, X. Bai, J. T. Thong, B. Li, and C.-W. Qiu, “Full control and manipulation of heat signatures: Cloaking, camouflage
and thermal metamaterials,” Adv. Mater. 26, 1731–1734 (2014).

13 D. Petiteau, S. Guenneau, M. Bellieud, M. Zerrad, and C. Amra, “Spectral effectiveness of engineered thermal cloaks in the
frequency regime,” Sci. Rep. 4, 7386 (2014).

14 M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks
and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct. Fundam.
Appl. 6, 87–95 (2008).

15 S. Guenneau and C. Amra, “Anisotropic conductivity rotates heat fluxes in transient regimes,” Opt. Express 21(5),
6578–6583 (2013).

16 S. Guenneau and T. M. Puvirajesinghe, “Fick’s second law transformed : one path to cloaking in mass diffusion,” J. Roy.
Soc. Interface 10, 20130106 (2013).

17 Z. Lunwu and S. Runxia, “Controlling chloride ions diffusion in concrete,” Sci. Rep. 3, 3359 (2013).
18 R. Schittny, M. Kadic, T. Buckmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science

345(6195), 427–429 (2014).
19 U. Leonhardt, “Applied Physics: Cloaking of heat,” Nature 498, 440–441 (2013).
20 A. Alu, “Thermal cloaks get hot,” Physics 7, 12 (2014).
21 J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
22 U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
23 G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant

form,” New J. Physics 8 (2006).
24 A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Full-wave invisibility of active devices at all frequencies,” Comm.

Math. Phys. 275(3), 749–789 (2007).
25 S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
26 H. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518

(2007).
27 M. Brun, S. Guenneau, and A. B. Movchan, “Achieving control of in-plane elastic waves,” Appl. Phys. Lett. 94, 061903

(2009).
28 M. Maldovan, “Sound and heat revolutions in phononics,” Nature 503, 209–217 (2013).
29 V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer-

Verlag, New-York, 1994).
30 A. Nicolet, F. Zolla, Y. O. Agha, and S. Guenneau, “Geometrical transformations and equivalent materials in computa-

tional electromagnetism,” International Journal for Computation and Mathematics in Electrical and Electronic Engineering,
COMPEL 27, 806–819 (2008).

31 J. Li and J. B. Pendry, “Hiding under the Carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).

 © 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license. See:

http://creativecommons.org/licenses/by/4.0/ Downloaded to IP:  195.220.68.236 On: Tue, 01 Dec 2015 09:21:10

http://dx.doi.org/10.1103/PhysRevLett.110.195901
http://dx.doi.org/10.1103/PhysRevLett.112.054301
http://dx.doi.org/10.1103/PhysRevLett.112.054302
http://dx.doi.org/10.1002/adma.201304448
http://dx.doi.org/10.1038/srep07386
http://dx.doi.org/10.1016/j.photonics.2007.07.013
http://dx.doi.org/10.1016/j.photonics.2007.07.013
http://dx.doi.org/10.1016/j.photonics.2007.07.013
http://dx.doi.org/10.1364/OE.21.006578
http://dx.doi.org/10.1098/rsif.2013.0106
http://dx.doi.org/10.1098/rsif.2013.0106
http://dx.doi.org/10.1098/rsif.2013.0106
http://dx.doi.org/10.1126/science.1254524
http://dx.doi.org/10.1038/498440a
http://dx.doi.org/10.1103/Physics.7.12
http://dx.doi.org/10.1126/science.1125907
http://dx.doi.org/10.1126/science.1126493
http://dx.doi.org/10.1088/1367-2630/8/10/248
http://dx.doi.org/10.1007/s00220-007-0311-6
http://dx.doi.org/10.1007/s00220-007-0311-6
http://dx.doi.org/10.1007/s00220-007-0311-6
http://dx.doi.org/10.1088/1367-2630/9/3/045
http://dx.doi.org/10.1063/1.2803315
http://dx.doi.org/10.1063/1.3068491
http://dx.doi.org/10.1038/nature12608
http://dx.doi.org/10.1108/03321640810878216
http://dx.doi.org/10.1108/03321640810878216
http://dx.doi.org/10.1108/03321640810878216
http://dx.doi.org/10.1103/PhysRevLett.101.203901

