Fast growing hough forest as a stable model for object detection - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Fast growing hough forest as a stable model for object detection

Résumé

Hough Forest is a framework combining Hough Transform and Random Forest for object detection. The purpose of the present paper is to improve the efficiency and reliability of the original framework by the mean of two contributions. First, instead of generating the image samples by drawing patches randomly from the training set, we bias this step toward the most relevant image content by selecting a proportion of patches from a geometrical criterion. Second, during the creation of non-leaf-nodes of the trees, instead of sampling uniformly the parameter space for choosing the binary tests aimed at splitting the set of image samples, we choose them according to a probability map constructed from the sample set. We aim to drastically reduce the training time without impacting the accuracy, and decreasing the variability of the produced detectors. The interest of this improved model is shown in the context of car and pedestrian detection by evaluating it on academic datasets.
Fichier principal
Vignette du fichier
ipta16.pdf (1.85 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01451140 , version 1 (31-01-2017)

Identifiants

Citer

Antoine Tran, Antoine Manzanera. Fast growing hough forest as a stable model for object detection. The sixth International Conference on Image Processing Theory, Tools and Applications (IPTA'16), 2016, Oulu, Finland. pp.1 - 6, ⟨10.1109/IPTA.2016.7820960⟩. ⟨hal-01451140⟩
51 Consultations
196 Téléchargements

Altmetric

Partager

More