
HAL Id: hal-01451140
https://hal.science/hal-01451140

Submitted on 31 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast growing hough forest as a stable model for object
detection

Antoine Tran, Antoine Manzanera

To cite this version:
Antoine Tran, Antoine Manzanera. Fast growing hough forest as a stable model for object detection.
The sixth International Conference on Image Processing Theory, Tools and Applications (IPTA’16),
2016, Oulu, Finland. pp.1 - 6, �10.1109/IPTA.2016.7820960�. �hal-01451140�

https://hal.science/hal-01451140
https://hal.archives-ouvertes.fr


Fast Growing Hough Forest as a
Stable Model for Object Detection

Antoine Tran, Antoine Manzanera
U2IS, ENSTA ParisTech

Université de Paris-Saclay
828, Bd des Maréchaux

91762 Palaiseau CEDEX - France
Email: antoine.[tran,manzanera]@ensta-paristech.fr

Abstract—Hough Forest is a framework combining Hough
Transform and Random Forest for object detection. The purpose
of the present paper is to improve the efficiency and reliability
of the original framework by the mean of two contributions.
First, instead of generating the image samples by drawing patches
randomly from the training set, we bias this step toward the most
relevant image content by selecting a proportion of patches from
a geometrical criterion. Second, during the creation of non-leaf-
nodes of the trees, instead of sampling uniformly the parameter
space for choosing the binary tests aimed at splitting the set of
image samples, we choose them according to a probability map
constructed from the sample set. We aim to drastically reduce
the training time without impacting the accuracy, and decreasing
the variability of the produced detectors. The interest of this
improved model is shown in the context of car and pedestrian
detection by evaluating it on academic datasets.

I. INTRODUCTION

Object detection is a fundamental and difficult problem of
computer vision. In our context it consists in localising objects
of a certain class in an input image. Typical applications of
object detection are video-surveillance and image retrieval.
For one given object class (such as cars or humans), the
variability of all instances, due to pose, shape, and appearance
changes within this class, makes the object representation very
challenging. Moreover, even for a single instance, occlusions,
illumination and point of view changes also make the object
localisation a difficult task.

The principle of the Hough Transform is to consider a
set of elements from an image (such as pixels, patches or
interest points), and to make them vote for a set of parameters
(related to position, scale or orientation). Historically, Hough
[1] used contour points to detect lines, circles or ellipses. In
object detection context, Leibe and al. [2] used a keypoint
representation in their Implicit Shape Model (ISM) algorithm.
During the training step, keypoints from example objects are
collected and quantised into a codebook. Every keypoint is
also associated to a displacement vector corresponding to
its position with respect to the object centroid. During the
detection step, all keypoints found in the image are matched
with an entry from the codebook, and then vote for all
displacements stored in the entry. Finally, a peak detection in
the vote collecting map (the Hough transform) is used to detect
objects. This detector has proven effective against occlusion

and illumination change; it can cope with scale and appearance
variations. However, the object representation is sparse, and to
be effective, a codebook requires a large number of entries,
which implies a time-consuming matching process.

On the other hand, Random Forest classifier [3] is popular
in object detection. Moosmann [4] used it for multi-class
detection, using visual descriptor vectors to train the random
trees. Then, he used it to generate class-specific saliency maps
on unknown images, obtained from sampling patches from the
image.

Gall [5] proposed a patch-based appearance method, pro-
viding a denser level of representation. By using a Random
Forest [3] framework associated to a sequence of binary tests
related to local geometry, his algorithm is capable to detect
different kinds of objects (pedestrian, cars, horse) with a
low time-consuming detection step. His training step consists
in generating decision trees, which recursively partition an
input set of positive and negative patches. Each non-leaf
node contains a binary test, while each leaf node contains
displacement vectors built according to positive patches po-
sitions. During the detection step, each pixel of the image
is described by its neighbouring patch, which goes through
every decision tree, until it reaches a leaf. The patch then casts
votes according to the displacements stored in the leaf. Hough
Forest has proven a solid algorithm, giving good results on
several academic datasets. It is also a strong basis for diverse
enhancements: Ciolini [6] proposed different simplifications
during the training and detection steps to be able to process the
algorithm in embedded systems, while maintaining accuracy
performances. Murai [7] proposed a method to add a weight on
patches during training step, reducing the weights of positive
patches which are too similar to negative ones, during the
training step, in order to improve the accuracy of detection.
Gall [8] also extended his original Hough Forest algorithm to
multi-class and multi-view object detection.

Even though Hough Forest is a strong and versatile al-
gorithm, training a whole forest currently lasts a couple
of days following the recommended parameters in a mid-
range desktop machine, which makes the parametric study
and evaluation of the algorithm a complicated task. Simply
decreasing some parameters may reduce the training time,
however, due to the high level of randomness, the variance



of the resulting performance can increase dramatically. In this
paper, we propose a one-class object detector based on Hough
Forest, providing the following contributions:

• During the sampling step, to generate the positive and
negative patch set for the training step, we use a geo-
metric criterion to draw some patches in a deterministic
way.

• For the construction of the Hough trees, we propose a
way to drastically reduce the number of potential nodes
by considering all patches used to train the non-leaf node,
and generate probability maps from them.

The main objective of our contribution is to reduce the
variance of the object models, while keeping accuracy close
to the baseline Hough Forest, and with low time-consuming
operations.

This paper is organised in three sections: after recalling the
baseline Hough Forest algorithm, we present our contributions.
Finally, experimentations on academic datasets will be pre-
sented and discussed.

II. HOUGH FOREST

Random Forests [3] belong to the random decision tree
classification techniques. For classic random decision trees,
bagging (generating a subset of training data by randomly
sampling with replacement from the full training set) is applied
to increase the representativeness of the model. The difference
between classic random decision trees and random forest is the
use of attribute bagging (randomly choosing the feature from
the full feature set).

The Hough Forest is made of binary decision trees, built
from a set P of training patches of a constant size W × H ,
sampled from the learning (positive and negative) images using
a uniform random process. P is recursively partitioned during
the training phase, and its resulting subsets, corresponding to
the leaves of the tree, form the input of the voting process.
Given a patch set P, let P+ and P− denote the subsets of P
coming from the positive and negative images respectively.

Each patch is sampled from a colour image, described with
these feature channels:

• 3 components from the Lab colour space
• 2 absolute first derivatives: |∂L∂x | and |∂L∂y |
• 2 absolute second derivatives: |∂

2L
∂x2 |, |∂

2L
∂y2 |

• 9 bins from the HOG [9] descriptor.

Every channel is additionally spatially enhanced by a min
(erosion) and a max (dilation) filter, which finally provides
2 · (3 + 2 + 2 + 9) = 32 features. Each positive patch π is
also described with the displacement dπ from its centre to the
object’s centroid.

Each non-leaf node is identified to a binary test T using as
input a patch π, and defined from these four parameters:

• 2 pixels (pl, pr) ∈ π2

• 1 feature channel c
• 1 threshold value τ

Fig. 1. Vote on one image from TUD-Pedestrian dataset [9]. The two peaks
correspond to the two pedestrians.

with the following expression:

T (π) =

{
0 if c(pl) > c(pr) + τ

1 otherwise
(1)

A test T will be specified as {pl, pr, c, τ} for the remaining
of this paper.

The creation of a test (i.e. a non-leaf node) T works as
follows. Let PT denote the subset of P, input of the node
T . The purpose is to find the test T that realises an optimal
partition of PT into two subsets. The training step starts by
generating N binary tests {Ti}i∈{1,...,N}, with, for each i, pli,
pri , ci drawn randomly (uniform process), and τi drawn using
a random uniform process in the range formed by the min and
the max of {ci(pli)− ci(pri )}i∈{1,...,N}.

Each potential binary test Ti generates two disjoint subsets
PtTi

= {π ∈ PT |Ti(π) = t} with t ∈ {0, 1}. A score



evaluating the quality of the test is then calculated, using either
of the two following criteria, chosen randomly:
• One related to the class (positive or negative) repartition

of the patches in the two subsets, based on the Shannon
entropy H:

Ue(Ti) = |P0
Ti
| ·H(P0

Ti
) + |P1

Ti
| ·H(P1

Ti
) (2)

where H(P) = − |P
+|
|P| log

(
|P+|
|P|

)
− |P

−|
|P| log

(
|P−|
|P|

)
,

and |S| denotes the cardinal of set S.
• One related to the variance of displacements associated

to positive patches within the two subsets:

Ud(Ti) =
∑

t∈{0,1}

∑
π∈(Pt

Ti
)+

(dπ − d(Pt
Ti

)+)2 (3)

where dS is the average displacement on set S.
Finally, the best test Topt is the one with the lowest score,
whatever the chosen criterion.

A node is declared as a leaf if it reaches the maximal tree
depth (Dmax = 15) or if the number of positive input patches
is too small (Nmin = 20). A leaf contains all the displacements
from the positive patches, and a weight given by ωL =

|P+
L |
|PL| ,

i.e. the proportion of positive patches in the leaf L.
During the detection step, given an image test I , patches are

densely extracted from I . Each patch goes through all trees
of the forest, and when it reaches a leaf node, votes for all
displacements stored in the leaf, with a vote weight equal to
ωL/|P+

L | = 1/|PL|, such that the cumulative weight for all the
votes casted from a leaf L is finally ωL. Finally, the detection
output is provided by the set of maxima into the vote map
smoothed by a Gaussian filter as in [5], or by using Mean-
Shift [10] algorithm, as in [11]. To handle scale variations,
Gall also proposed [5] to rescale I to different sizes, and then
perform the maxima search in the scale-space dimension.

III. OUR CONTRIBUTION

Hough Forest has proven an effective and versatile frame-
work for object detection. However, considering parameters in
[5] (forest composed of 15 trees, and 20 000 candidate binary
tests to create a non-leaf node), the training step is extremely
time consuming. Our goal is to evaluate the performance of the
algorithm with those critical parameters significantly lower (9
trees and 500 binary tests), and to propose modifications in the
original Hough Forest to reduce variance in these conditions.
Our two contributions provide improvements at the following
levels:
• During the patch sampling step, instead of using a

spatially uniform random process, a proportion of the
patches is chosen in a deterministic way, using a multi-
scale saliency map [12]. This guarantees the presence
of relevant samples, whatever the content of the training
image set.

• During the node training step, we improve the efficiency
of the patch partition by drawing the binary tests accord-
ing to a probability map constructed from the current
patch collection, instead of choosing them by uniform
random selection.

A. Patch sampling

In the baseline method [5], the patches are randomly drawn
using a uniform probability on the training set. The weakness
of this method is the possibility to draw patches in irrelevant
(e.g. homogeneous) areas. Such patches are hard to classify
using binary tests defined in (Eq. 1), and are sensitive to noise.

Based on this remark, we propose a method to guarantee
a minimal number of interesting patches, chosen in a de-
terministic way. As a saliency measure, we use the multi-
scale junction-ness function [12], defined as follows: for an
image I , let Iσx (resp. Iσy ) denote the estimated first derivatives
at scale σ, i.e. the image I convolved with the derivative
of the Gaussian kernel with variance σ2, with respect to x
(resp. y). The second derivatives Iσxx, Iσxy , and Iσyy are defined
accordingly. The junction-ness map of image I at scale σ is:

JσI = Iσxx(Iσy )2 − 2Iσx I
σ
y I

σ
xy + Iσyy(Iσx )2 (4)

Let N be the number of patches to be selected to train one
tree. We set the level of determinism to a rate α ∈ [0, 1], as
the proportion of patches to be selected with respect to their
saliency, the remaining part being chosen randomly, as in the
original method. In order to get structured patches at different
sizes, we choose to work with Ns different scales. Then, for
a given image, and for each scale, starting from the smallest
one, we take the Np = α·N

Ns
pixels with the highest absolute

junction-ness as patch centres. To avoid patches spatially too
close, we perform non-maximum suppression for each scale,
by setting to 0 all pixels at a distance from the selected centre
lower than the square of the current scale.

To promote the variety in the different trees of the Hough
forest, the non-maximum suppression operations done for one
tree remain for the next trees.

The rationale for using the multiscale junction-ness as
a saliency measure for choosing the patches is that, as a
second order geometric measure, it makes all the involved
feature channels significant and it allows to focus on the
most discriminant points while representing a negligible time
overhead, once the channels calculated. Fig. 2 shows examples
of junctions.

Fig. 2. Junctions shown by circles for one landscape image and two pedestrian
images. The radius corresponds to the scale, and the colour to the absolute
value of junction-ness (the red corresponding to the highest values).

B. Node training

In this part, we focus on the non-leaf node training
process, which consists in choosing the optimal parameters



{pl, pr, c, τ} of the binary test (Eq. 1). As mentioned earlier,
Gall’s method [5] consists in drawing uniformly a high number
(Gall mentioned 20 000) of tests, and choosing the best one.
However, the number of candidate tests can only be negligible
compared to the number of potential tests. Indeed, by using
a unique patch size of 16 × 16 pixels, and considering 32
feature channels, there are 162

2 × 32 = 2 097 152 potential
binary tests, without mentioning the threshold, which is also
randomly chosen.

Our method consists in constructing, for each node level,
a particular probability law for drawing the binary tests,
using the current patch collection as an input. Our goal is
to dramatically reduce the number of potential binary tests
required to create a node, while improving the quality of the
partition with respect to the two criteria (Eq. 2 and 3).

Following the notations of Sec. II, T denotes a binary test
(or a non-leaf node), which has to be created, using a patch set
PT . Let us consider a deterministic partition of PT into two
subsets P�

T and P�
T . The binary label denoted by the white or

black square will be instanciated later: its nature depends on
the criterion to optimise (entropy vs spatial deviation).

The first step is to create global patches (let us call them
superpatches), summarising information about P�

T and P�
T .

For any patch π let π̂ denote the binarised version - valued
in {−1,+1} - of π using Otsu’s adaptive threshold method
[13]. The role of π̂ is to provide contrast invariance, by merely
indicating, for a given feature and patch, which pixels belong
to the ”upper” or ”lower” part of the patch. Then, for a ∈
{�,�}, we define:

Πa =
∑
π∈Pa

T

π̂ (5)

For a given label a, Πa can be interpreted as a probability
map indicating, for each feature, which pixel is more likely
to be a ”upper” (resp. ”lower”) pixel for all patches from PaT .
However, directly using as probability density the normalised
Πa, whose dynamics can be high, may turn the process too
deterministic. We chose instead to drastically quantise the
density by using the binary superpatch Π̂a, resulting from the
threshold operation of Πa by 0 and valued in {−1,+1}.

Finally, for a binary test T , and a prior partition P�
T and

P�
T , we define the two superpatches Πl

T and Πr
T as follows:

• Πl
T = 1 + 1

2 (1 + Π̂�) + 1
2 (1− Π̂�)

• Πr
T = 1 + 1

2 (1 + Π̂�) + 1
2 (1− Π̂�)

Πl
T and Πr

T are superpatches valued in {1, 2, 3}, whose
purpose is twofold:
• For a given feature channel, normalised Πl

T (resp. Πr
T )

is used as a probability map to draw the left (resp. right)
pixel member pl (resp. pr) used in Eq. 1.

• To select the most relevant feature channel, the (nor-
malised) sum of the standard deviations of Πl

T and Πr
T

is used as a probability map to draw the feature channel.
To conclude with the random selection process of the binary

test, the parameters {pl, pr, c} are drawn as explained above,
and only the threshold τ is set the same way as in the original
Gall’s method.

Now the missing step consists in determining the two
subsets P�

T and P�
T , depending on the criterion to minimise:

• When the entropy criterion is chosen, {�,�} = {−,+},
meaning that we are using directly the labels from neg-
ative and positive example patches of PT .

• With the spatial deviation criterion, considering the equa-
tion (3) to minimise, we apply a k-means (with k = 2)
clustering of the patch set P+

T with respect to the dis-
placement vector dπ . Indeed, the k-means algorithm is
obviously a better way to minimise the spatial deviation
criterion than Gall’s random method. In this case, P�

T and
P�
T are the two sets resulting of the 2-means of P+

T .

IV. EXPERIMENTS

This section deals with the impact of our contributions by
evaluating the improved models in two academic datasets:
• The UIUC-Cars dataset [14]. The training dataset is com-

posed of 550 images of cars, approximatively of the same
size (about 100×40 pixels), and 440 negative images. For
the detection step, it proposes two datasets: one with 210
single scale cars in 170 images, and one with 139 cars
of different scales in 108 images. All cars are taken from
side viewpoints. Difficulties are due to partial occlusion,
low contrast and complex backgrounds. Images are in
grayscale. This dataset is only used for evaluating the
impact of the patch selection; we reduce the feature
channels to absolute first and second derivatives only.

• The TUD-Pedestrians dataset [15]. Its training set is
composed of 400 images of people walking in different
urban backgrounds, with silhouette based ground truth.
Following the protocol used in [5] to compensate for
the low variability of the background (4 different back-
grounds), we picked negative images from the INRIA-
Person dataset [9] to train our forest. We also added
pedestrians images generated by y-axis symmetry from
all positive images of the training set. For the detection
step, the test data set is made of 250 images containing
311 pedestrians. Difficulties are due to partial occlusions,
scale, pose, aspect and illumination changes.

Our objective is to show how our improved models perform
with a much smaller number of potential binary tests generated
for a node creation (compared to the 20 000 used for the
original version). Such drastic reduction of the node parameter
space sampling does not affect much the results for the UIUC-
Cars dataset (all objects being similar in shape and pose).
However for the TUD-Pedestrian dataset, performances can
vary a lot from one experiment to the other. In this section,
experiments are made following the protocols proposed by the
owners of the datasets, and the results are displayed using ROC
curves, with error percentage (100 - precision) in abscissa and
recall percentage in ordinate.

A. Results on UIUC-Cars

For this dataset, we use a forest of 9 trees, and select 50
patches per image. Three versions of the Hough Forest were
evaluated:



Fig. 3. ROC-curves for the UIUC-multiscale dataset. In black, the Equal-Error
Rate line (EER, Precision = Recall). Green: V1, Blue: V2, Red: V3.

• V1: feature channels reduced to absolute first derivative
(as Gall suggested [5])

• V2: feature channels reduced to absolute first and second
derivative features

• V3: same as previous, plus our deterministic patch selec-
tion process (α = 0.1)

Fig. 3 shows the resulting ROC-curves for the three versions
on the multi-scale test dataset. It can be seen that adding the
absolute second order derivative slightly improves the detector.
Our model (V3) obtains the best results. However, comparing
to results provided by Gall [5], particularly EER = 98.5%
with 20 000 binary tests, while in our case, EER = 96%
with 2 000 tests, and considering that results are very close to
100%, it turns out that this dataset is not relevant enough to
evaluate our improved model.

Fig. 4. Example of false and correct detections in UIUC-Cars and TUD-
Pedestrian data sets. In the top-left image, the pedestrian on the left is detected
after the false detection, in the middle. In the lop-right one, the scale of
the pedestrian detected in the middle is wrong. Below, examples of correct
detection.

B. Results on TUD-Pedestrians

The TUD-Pedestrians data set is much more challenging
than the previous one, as it contains deformable objects
(pedestrians) with variable aspects, sizes, and illuminations.

Fig. 5. Stability of Hough Forest with and without our contributions on
the TUD-Pedestrian dataset. The three versions were run 10 times. Each
ROC curve corresponds to the average values, while the crosses indicate the
standard deviation in precision and recall for each threshold level. Va (Gall):
Red, Vb (Partially improved): Green, Vc (Fully improved): Blue. Black: EER
line.

Considering our set of parameters and the variability of pedes-
trian’s aspects, performances can vary a lot. Three versions of
the Hough Forest were evaluated:
• Va: Original Gall’s method
• Vb: Improved model with superpatches approach (Part.

III-B) but without sampling enhancement (Part. III-A)
• Vc: Improved model with both superpatches and sam-

pling enhancement (α = 0.10)
For each version, 9 trees per forest were constructed (instead
of 15 for [5]), 25 000 negative and positive patches, and
500 generated binary tests for each non-leaf node (instead of
20 000 for [5]). Junction-ness defined by Eq. 4 is measured
at three scales: 1.0, 2.0 and 4.0. For each version, we ran 10
simulations, corresponding to 10 different Hough forests. Fig.
5 and Fig. 6 summarise those simulations.

Even though our results are slightly less accurate than the
one obtained by the original Hough Forest with the same
parameters, the main interest of our model lies on the stability
of the produced detectors in degraded parameter conditions.
Indeed, considering standard deviation in Fig. 5, it can be
noticed that the red curve, corresponding to the original Hough
Forest is slightly the highest one from the three curves, but it
is also the one with the highest variance, all along the ROC
curve. Additionally, Fig. 6 displays the best and the worst
ROC curves obtained within the 10 simulations. While the
best results are obtained with the original Hough Forest, this
method is also the one with the largest margin between the
best and worst results.

If we focus on our methods, Vc provides better results than
Vb, but both are more stable than the original Hough Forest
Va, and the loss of performance is still very low (the average
EER passes from 84.5% in Va to 84.0% in Vc). Finally, Vc
results are more stable than Vb, and its accuracy is also closer
to Va.

The benefits on the training time, and then on the tractability
of the parameter setting, is easy to quantify, as the complexity



Fig. 6. Best and worst ROC-curves for each version. Colour code is the same
as in Fig. 5.

of the learning phase is linear with respect to the number of
sampled tests. Besides, the computational overheads of our two
improvements are negligible. Thus, using 500 tests instead of
20 000 typically decreases the training phase of one tree on
the TUD-Pedestrians dataset from 8 hours to 15 minutes on a
standard desktop PC. With our set of parameters, our training
step is slightly slower than the original one. It is mainly due
to the superpatches calcutation at each node, requiring to sum
every patches from one set. This operation is as slow as the
number of patch is high, which is the case for nodes at low
depth. Finally, the impact is limited, the time required to train
the forest in our case and Gall’s case are in the same order of
magnitude

In term of memory consumption, we need to store one
scalar saliency map for one scale and one image. Each scalar
saliency map needs as much memory as one feature channel.
Consequently, for one image, we pass from 32 maps for the
original algorithm to 35 in ours (3 scales), which is still low.

V. CONCLUSION

In this paper, two contributions to improve the Hough
Forest models were presented. Our goal was to drastically
reduce the training time, while keeping an accuracy equivalent
to the original algorithm, and reducing the variance of the
model. Compared to the original Hough Forest, with the same
parameters, our algorithm is slightly slower, and need a bit
more memory, but is more stable. Our contributions focused
on enhancing patch sampling and non-leaf node training, by
reducing the randomness to the benefit of the most relevant
image content. First, we proposed a method to select some
patches based on the multiscale junction-ness measure [12].
Second, for a non-leaf node creation, we generated a prob-
ability map whose purpose is to summarise the landscapes
corresponding to the patch subset used to create this node, and
optimise the node quality criterion. These two contributions
are simple and computationnally efficient. They allow to
reduce the variance of the models in degraded parameters
conditions, and then provide a faster and easier way to evaluate
the impact of the different parameters on the detection.

Compared to the original parameters [5], we dramatically
reduced the size of the forest and the number of generated
tests used for creating each node. At short term, our objective

is to see how our algorithm behaves when reducing another
parameter which has a strong impact on the training time: the
size of the patch set. We will also work on methods to enhance
the way to draw the threshold τ used in Eq. 1. Then, we
plan to look for the parameters providing the best results and
testing our algorithm on different academic datasets, compared
to the state-of-the-art. Finally, as Gall suggested [16], we will
extend our contribution to different applications, such as object
tracking or action recognition.

ACKNOWLEDGMENT

The research was supported by a DGA-MRIS scholarship.

REFERENCES

[1] P.V.C. Hough. Method and means for recognizing complex patterns,
Dec 1962.

[2] Bastian Leibe and Bernt Schiele. Interleaving object categorization and
segmentation. Springer, 2006.

[3] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[4] Frank Moosmann, Eric Nowak, and Frederic Jurie. Randomized clus-

tering forests for image classification. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(9):1632–1646, 2008.

[5] Juergen Gall and Victor Lempitsky. Class-specific hough forests for
object detection. In Decision forests for computer vision and medical
image analysis, pages 143–157. Springer, 2013.

[6] Andrea Ciolini, Lorenzo Seidenari, Svebor Karaman, and Alberto
Del Bimbo. Efficient hough forest object detection for low-power
devices. In Multimedia & Expo Workshops (ICMEW), 2015 IEEE
International Conference on, pages 1–6. IEEE, 2015.

[7] Yusuke Murai, Yuji Yamauchi, Takayoshi Yamashita, and Hironobu
Fujiyoshi. Weighted hough forest for object detection. In Machine
Vision Applications (MVA), 2015 14th IAPR International Conference
on, pages 122–125. IEEE, 2015.

[8] Juergen Gall, Nima Razavi, and Luc Van Gool. An introduction to
random forests for multi-class object detection. In Outdoor and Large-
Scale Real-World Scene Analysis, pages 243–263. Springer, 2012.

[9] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, volume 1, pages
886–893. IEEE, 2005.

[10] Yizong Cheng. Mean shift, mode seeking, and clustering. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 17(8):790–
799, 1995.

[11] Bastian Leibe, Aleš Leonardis, and Bernt Schiele. Robust object de-
tection with interleaved categorization and segmentation. International
journal of computer vision, 77(1-3):259–289, 2008.

[12] Tony Lindeberg. Feature detection with automatic scale selection.
International journal of computer vision, 30(2):79–116, 1998.

[13] Nobuyuki Otsu. A threshold selection method from gray-level his-
tograms. Automatica, 11(285-296):23–27, 1975.

[14] Shivani Agarwal, Aatif Awan, and Dan Roth. Learning to detect objects
in images via a sparse, part-based representation. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 26(11):1475–1490, 2004.

[15] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele. People-tracking-
by-detection and people-detection-by-tracking. In Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8.
IEEE, 2008.

[16] Juergen Gall, Angela Yao, Nima Razavi, Luc Van Gool, and Victor
Lempitsky. Hough forests for object detection, tracking, and action
recognition. IEEE transactions on pattern analysis and machine intel-
ligence, 33(11):2188–2202, 2011.


