On the complexity of the Lickteig-Roy subresultant algorithm - Archive ouverte HAL
Article Dans Une Revue Journal of Symbolic Computation Année : 2019

On the complexity of the Lickteig-Roy subresultant algorithm

Résumé

In their 1996 article, Lickteig and Roy introduced a fast divide and conquer variant of the subresultant algorithm which avoids coefficient growth in defective cases. The present article concerns the complexity analysis of their algorithm over effective rings endowed with the partially defined division routine. This leads to new convenient complexity bounds for gcds, especially when coefficients are in abstract polynomial rings where evaluation/interpolation schemes are not supposed to be available.
Fichier principal
Vignette du fichier
hsubres.pdf (399.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01450869 , version 1 (31-01-2017)

Identifiants

  • HAL Id : hal-01450869 , version 1

Citer

Grégoire Lecerf. On the complexity of the Lickteig-Roy subresultant algorithm. Journal of Symbolic Computation, 2019, 92, pp.243-268. ⟨hal-01450869⟩
292 Consultations
462 Téléchargements

Partager

More