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In their 1996 article, Lickteig and Roy introduced a fast �divide and conquer� variant
of the subresultant algorithm which avoids coe�cient growth in defective cases. The
present article concerns the complexity analysis of their algorithm over e�ective rings
endowed with the partially de�ned division routine. This leads to new convenient
complexity bounds for gcds, especially when coe�cients are in abstract polynomial
rings where evaluation/interpolation schemes are not supposed to be available.

1. Introduction

Euclidean polynomial remainder sequences are a cornerstone of computer algebra for gcd,
lcm, modular inversion, Berlekamp�Massey algorithm, Padé approximant, etc. This article
brings new complexity results for computing subresultant polynomials over commutative
rings endowed with the partially de�ned division routine. We design a �divide and conquer�
algorithm with a bounded coe�cient growth even in defective cases. In particular, this
leads to new deterministic complexity bounds for bivariate gcds.

1.1. Notations and de�nitions

Until the end of the article, A is a commutative ring with unity, and Frac(A) is its total
ring of fractions (also called the total quotient ring), namely S¡1A where S is the set of
the nonzero divisors in A. In other words, elements of Frac(A) are of the form a/s, with
a2A and s2S. When A is integral, that is an integral domain, then Frac(A) is its �eld
of fractions.

Divisions. For algorithmic purposes, A is assumed to be endowed with the partially
de�ned division routine: precisely, if a and b are two elements of A such that b divides a,
then this routine returns a/b. Operations in A at our disposal are: addition, subtraction,
multiplication, and this partially de�ned division. Let A and B be two polynomials in
A[x]. If B=/ 0, we say that the division of A by B is well de�ned when there exist Q and
R in A[x] such that A = Q B + R and deg R < deg G. These polynomials Q and R are
respectively written quo(A;B) and rem(A;B).

The leading coe�cient of a polynomial A is written lc(A). The pseudo-division of A by
B=/ 0 in A[x] is the division of lc(B)degA¡degB+1A by B: the remainder (resp. quotient),
written prem(A; B) (resp. pquo(A; B)), is called the pseudo-remainder (resp. pseudo-
quotient). Pseudo-divisions have the advantage to be well de�ned and easily computable
without divisions in A.
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Subresultant and Euclidean sequences. Our two input polynomials are written F =P
i=0
n0 fi x

i and G=
P

i=0
n1 gi x

i, and are of respective degrees n0 and n1. Throughout the
article, we assume that n0>n1. For 06k<n1, the kth subresultant coe�cient of F andG is
written sk2A, and the associated kth subresultant polynomial Sk2A[x] (usual de�nitions
are recalled in Section 2.1). The subresultant polynomial Sk is said to be defective when
its degree is strictly less than k. Of course, when n0 < n1, without loss of generality, we
may swap the two input polynomials since the subresultant sequences coincide up to signs.

The extended Euclidean algorithm consists in computing the remainder sequence, recur-
sively de�ned by R0=F , C0=1, D0=0, R1=G, C1=0, D1=1, and Ri+1=Ri¡1¡EiRi,
Ci+1=Ci¡1¡EiCi,Di+1=Di¡1¡EiDi, where Ei=quo(Ri¡1;Ri). Consequently we have
Ri+1= rem(Ri¡1;Ri), and Ri=CiF +DiG for all i>0. The extended Euclidean sequence
(Ri; Ci; Di)i is well de�ned over Frac(A) whenever the leading coe�cients of the nonzero
Ri are invertible in Frac(A). In this case, the sequence ends after w ¡ 1 division steps
with Ri=/ 0 for all 06 i6w, and Rw+1=0 � the last nonzero polynomial Rw is gcd(F ;G)
whenever A is an integral domain.

For all 06 i6w + 1, we let ni= degRi, and call (ni)i the Euclidean degree sequence.
This sequence is said to be normal when ni+1=ni¡1 for all 16 i<w. When ni+1<ni¡1
for some i we say that a degree gap occurs at step i. In addition, it is easy to verify that
degCi<n1¡ni and degDi<n0¡ni by induction on 1<i6w+1.

Complexity model. For complexities, we shall use computation trees over A with the
total complexity point of view. This means that complexity estimates charge a constant
cost for each arithmetic operation in A (addition, subtraction, multiplication, and division
in our framework) and the equality test. All constants in A are though to be freely at our
disposal. See de�nitions in [16, Chapter 4].

A univariate polynomial of degree n is represented by the vector of its n+1 coe�cients.
We write M:N!Z for a function that bounds the cost of a polynomial product algorithm
in terms of the number of ring operations performed independently of the coe�cient ring,
assuming a unity is available. In other words, two polynomials of degrees at most n over
such a ring A may be multiplied with M(n) arithmetic operations in A. The fastest known
algorithm, due to Cantor and Kaltofen [17], provides us with M(n)=O(n logn log logn)=
O~(n). Here, the soft-Oh notation f(n)2O~(g(n)) means that f(n)= g(n) logO(1) g(n) (we
refer the reader to [24, Chapter 25, Section 7] for technical details). In order to simplify
cost analyses, we make the customary assumption that n 7! M(n) /n is non decreasing,
which implies the super-additivity of M, namely M(n1)+M(n2)6M(n1+n2) for all n1> 0
and n2> 0.

Over concrete rings or �elds, explicitly presented over a �nite �eld, or Z, we shall use
Turing machines endowed with su�ciently many tapes, in order to bene�t from standard
algorithms. Integers are though to be represented by their binary expansion. Additions take
linear time, and we write I(n) for a function that bounds the cost of an integer product in
size n, with the same customary assumptions as for M.

1.2. Related work
The Euclidean algorithm has a long history in computational mathematics, which goes
back to Euclid. Nowadays it is widely used in computer algebra systems for gcds of integers
and polynomials, with softly linear time in most common situations. The naive algorithm
has quadratic cost in the input size (in the Turing model for integers, and in the computa-
tion tree model for univariate polynomials over abstract �elds). The key ideas of the fast
�divide and conquer� algorithm are due to Lehmer, for integers [35]: Euclidean quotients
only depend on higher bits, and their total bit size does not exceed the input size. The �rst
softly linear cost has been achieved by Knuth [33], namely O(I(n) log4n) for input size n.
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At present time, the best known asymptotic complexity bound is owned by Schönhage [42],
namely O(I(n) logn). For polynomials over �elds, these algorithms have been adapted �rst
to normal sequences by Moenck [40], and Aho, Hopcroft, Ullman [3], and then completed
by Brent, Gustavson, and Yun [13], who reached the analogue cost O(M(n) log n) for
general sequences and input degree n. We shall refer to these fast variants of the Euclidean
algorithms as the half-gcd algorithm. For modern pleasant presentations of this algorithm
we refer the reader to classical books [16, 18, 24, 43].

In the polynomial case, the half-gcd algorithm works �ne when coe�cient sizes do not
grow during the computation (typically over �nite �elds). Over integers or polynomial
rings, it is well known that intermediate sizes grow very quickly, and straightforward
implementations are not practical even in medium sizes. The subresultant theory provides
a nice solution to this issue. First, it gives a simple condition to decide if a given degree
occurs in the Euclidean degree sequence. Second, it o�ers polynomial expressions for the
coe�cients of these remainders in terms of the coe�cients of the input polynomials (up to
a suitable renormalisation). These polynomial expressions even turn out to be irreducible
over Z [23, Lemma 4.2]. Informally speaking, this means that subresultant polynomials
have generically optimal sizes, and are thus convenient representative of Euclidean remain-
ders.

Subresultant coefficients were introduced by Sylvester in 1840 as determinants of
matrices nowadays called Sylvester matrices. The terminology �subresultant� was coined
latter by Bôcher in 1907 [12] for the subresultant coe�cients. Straightforward naive com-
putations of the subresultant polynomials by means of their de�ning determinants lead
essentially to a cubic cost, which is far from e�cient in general. The �rst algorithm with
quadratic cost goes back to Habicht [27]: he showed that only the subresultant poly-
nomials Sni and Sni¡1 are nonzero, and that they may be computed recursively as follows,
by means of pseudo-divisions:

Sni+1 = (sni¡1;ni
ni¡ni+1¡1Sni¡1)/sni

ni¡ni+1¡1; (1)

Sni+1¡1 = prem(Sni; Sni¡1)/sni
ni¡ni+1; (2)

where sni¡1;ni represents the coe�cient of degree ni in Sni¡1. In particular, if all the
nonzero subresultant coe�cients sk are invertible in Frac(A), then each nonzero subre-
sultant polynomial is proportional over Frac(A) to the Euclidean remainder of the same
degree (in particular the Euclidean sequence is well de�ned).

The �rst use of subresultants in computer algebra is due to Collins [19], who coined
the �subresultant polynomial� terminology, and reported on the practical impact. He also
showed lower bounds for the expression swell in the Euclidean algorithm. Then, Brown
and Traub [15], followed by Loos [39], extended Collins' algorithm over unique factorization
domains, with easier proofs for the proportionality to the Euclidean remainder sequence.
Overall, this led to major practical algorithms. First, over a �eld, one may compute what-
ever polynomial remainder sequence (including using the half-gcd algorithm) in order to
deduce subresultants by suitable a posteriori renormalisations. Second, over rings for which
the coe�cient size is an issue, it is often possible to use the specialization property of the
subresultant in order to reduce the bulk of computations over �nite �elds, thanks to the
multi-modular approach which was initiated by Collins [20] and Brown [14].

For non normal sequences, and when multi-modular techniques are not available,
the coe�cient growth becomes an issue for large gaps in the degree sequence (see our
Example 18). In order to make the discussion precise on coe�cient growth, we consider
that A is a polynomial ring K[t], where K is an e�ective �eld, and that the degrees
in t of F and G are 6d. Then the degrees in t of the subresultant polynomials are 6
(n0 + n1) d. The �rst part of the solution for formula (1) is due to Lazard: in a manu-
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script remained unpublished, he showed that sni¡1;ni
e /sni

e¡1 is inA for 16e6ni¡ni+1, and
that its degree in t remains 6(n0+n1) d (see our Lemma 7). Ducos [21] found the second
part of the solution, for the coe�cient growth involved in (2): he designed the �rst algo-
rithm with a quadratic number of operations in the ground ring, and with a degree in t not
exceeding twice the degree bound in t of the subresultants, namely 2 (n0+n1) d. At present
time, it is not known how to apply the �divide and conquer� paradigm to his algorithm.

In their 1996 article [36], Lickteig and Roy designed an alternative solution for the coef-
�cient growth involved by degree gaps, by limiting this growth to a factor of 3. Their main
improvement is an exact polynomial division scheme in A[x] in replacement of pseudo-
divisions. They appealed to Lazard's optimization, and replaced formula (2) by

(¡1)ni¡ni+1¡1 sni¡1;ni+1 sni+1Sni=Qni+1Sni¡1+ sni
2 Sni+1¡1; (3)

with Qni+1 2 A[x]. This means that the division of sni¡1;ni+1 sni+1 Sni by Sni¡1 is well
de�ned inA[x], and this allows to obtain Sni+1¡1 as rem((¡1)ni¡ni+1¡1 sni¡1;ni+1 sni+1 Sni;
Sni¡1)/sni

2 . We shall refer to formula (3) as the Lickteig�Roy division. Roughly speaking,
the coe�cients may grow by a factor of 3, but Lickteig and Roy showed how this division
process may bene�t from the half-gcd strategy. However they did not explain how to
perform this division e�ciently over an abstract ring A. They contented themselves to rely
on multi-modular techniques for the concrete ring A=Z (see [37, p. 335]).

In his 2001 article [22], Ducos proposed an algorithm for performing the Lickteig�Roy
division with a coe�cient growth of only 2, but with a total quadratic cost. Lombardi, Roy,
and Safey El Din [38], achieved the same growth and quadratic cost with an alternative
algorithm.

When A is a multivariate polynomial ring D[t1; :::; tr], the most e�cient techniques
for subresultants rely on fast multi-point evaluation and interpolation algorithms (see
[8, 29] for instance for recent advances). These algorithms require D to have su�ciently
many elements, which is not very restrictive in practice. In fact, if necessary, we may
often perform computations over an algebraic extension of D. Nevertheless for an abstract
domain D, the complexity of subresultant computations is of theoretical interest. If d now
represents a bound on the partial degrees in t1; :::; tr of F and G, then the coe�cient size
of the k-th subresultant polynomial is O((n0+n1¡ 2 k)r dr). A growth of a factor of � in
the partial degrees implies a growth of a factor of �r in the coe�cient sizes. Consequently
the algorithms presented so far behave well only when n0 is su�ciently larger than dr.
Otherwise one may appeal to suitable linear algebra techniques as those designed in [1, 2,
4, 5, 6, 7, 11, 32]. We shall not investigate this situation in the present article.

For a modern use of Habicht's original ideas, the reader might consult Reischert's
article [41], which also contains a �divide and conquer� variant of the subresultant algorithm
based on formulas (1) and (2) (thus discarding the coe�cient growth in defective cases). In
an other more recent article in this vein, El Kahoui [23] proved the Lickteig�Roy division
formula over any commutative ring. Finally, let us mention the 2003 article by von zur
Gathen and Lücking [25], which contains a comprehensive history of the Euclidean algo-
rithm, lower bounds for the coe�cient swell, and also comparisons between performances
of usual implementations with quadratic costs.

1.3. Our contributions
Our �rst contribution concerns the cost analysis of the Lickteig�Roy algorithm. In fact
we propose to perform the Lickteig�Roy divisions by a �divide and conquer� algorithm
over A. We show that the quotient Qni+1 in formula (3) may be obtained with O(M(ni¡
ni+1) log(ni ¡ ni+1)) operations in A. This is a logarithmic factor higher than by using
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Newton's iteration when A is a �eld. At �rst sight, one might thus fear a total cost
of O(M(n0) log2 n0) for the complete subresultant algorithm, but it is not so, because
the total contribution of polynomial divisions is O(

P
iM(ni ¡ ni+1) log (ni ¡ ni+1)) =

O(M(n0) log n0). Our Section 3.1 concerns fast divisions in A[x]: the presented algorithm
is certainly elementary, but we need to recall it for properly analyzing coe�cient growths.

In Section 2 we prove the Lickteig�Roy formula from scratch. Our reasons for repeating
this proof are twice. First, in their article [37], Lickteig and Roy consider the Habicht
remainder sequence over an integral domain (this sequence coincides to the subresultant
sequence up to signs). Second, they assume n1=n0¡1, and therefore we have to detail the
two �rst division steps in the general case. We could not rely on [23] neither, mostly because
of the coe�cient growth in the second division step (see part 5 of Theorem 9). Algorithm 4
and Theorem 15 constitute our main results for any A, whence our second contribution.

Our third contribution concerns re�ned complexity results when A is a univariate
polynomial ring of the form B[t], where B is a commutative ring with unity endowed with
its partially de�ned division routine. Complexity results are stated in Section 4.4. Then
Section 4.5 contains corollaries for the deterministic complexity of bivariate gcds. Our new
complexity bounds improve on previously known ones from the asymptotic point of view.
Unfortunately, these new bounds do not turn out to be relevant to practice: for computa-
tions that last several minutes, Ducos' algorithm or evaluation/interpolation strategies are
faster. Nevertheless, for testing purposes, we included an open source implementation of
our main algorithm in Mathemagix [28, 30].

2. Subresultants

This section recalls formulas needed for the fast subresultant algorithm presented in the
next section. Proofs are established from scratch, on the top of basic linear algebra state-
ments. Recall that our input polynomials are F =

P
i=0
n0 fi x

i, with degree n0, and G =P
i=0
n1 gi x

i, with degree n1 6 n0. The A-module of polynomials of degrees <n is written
A[x]<n.

2.1. De�nitions and main properties
For all 06 k <n1, the k-th Sylvester map of F and G is de�ned as:

A[x]<n1¡k�A[x]<n0¡k ! A[x]<n0+n1¡k

(U ; V ) 7! UF +VG:

In the canonical monomial basis 1; x; x2; :::, its matrix is

Sylk=

0BBBBBBBBBBBB@

f0 g0
���

f0 ��� ������
gn1 g0

���
fn0

��� ������
fn0 gn1

1CCCCCCCCCCCCA
: (4)

The coe�cients of F occupy the n1¡k �rst columns, and those of G the n0¡k last ones.
The determinant of the submatrix of Sylk obtained by discarding the k-th �rst rows, is
called the k-th subresultant coe�cient of F and G, and is written sk. In other words, sk
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is the determinant of the map

A[x]<n1¡k�A[x]<n0¡k ! A[x]<n0+n1¡2k (5)
(U ; V ) 7! (UF +VG) quoxk:

The determinant s0 is the classical resultant of F and G, written Res(F ; G). We de�ne
the k-th subresultant polynomial , written Sk, by the following determinant over A[x]:

Sk=

�����������������

F ��� xn1¡k¡1F G ��� xn0¡k¡1G
fk+1 f2k¡n1+2 gk+1 g2k¡n0+2������ gn1��� ���
fn0

������
fn0 gn1

�����������������
; (6)

where the coe�cients of F occupy the n1 ¡ k �rst columns, and those of G the n0 ¡ k
last ones. The coe�cient of degree l in Sk, written sk;l, may be obtained as the following
determinant over A:

sk;l=

����������������

fl fl+k¡n1+1 gl gl+k¡n0+1
fk+1 f2k¡n1+2 gk+1 g2k¡n0+2������ gn1��� ���
fn0

������
fn0 gn1

����������������
:

In this way, we see that Sk has degree 6k, and that sk is the coe�cient sk;k of degree k
in Sk. When sk is zero, the subresultant polynomial Sk is said to be defective. Then we
introduce the two polynomials Uk and Vk, called the cofactors of Sk:

Uk =

�����������������

1 ��� xn1¡k¡1 0 ��� 0
fk+1 f2k¡n1+2 gk+1 g2k¡n0+2������ gn1��� ���
fn0

������
fn0 gn1

�����������������
; (7)

Vk =

�����������������

0 ��� 0 1 ��� xn0¡k¡1

fk+1 f2k¡n1+2 gk+1 g2k¡n0+2������ gn1��� ���
fn0

������
fn0 gn1

�����������������
: (8)
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The coe�cient of degree l in Uk (resp. in Vk) is written uk;l (resp. vk;l). From these
de�nitions we straightforwardly obtain the Bézout relation

Sk=UkF +VkG;

which turns out to be unique whenever sk is invertible in Frac(A), as detailed in the
following proposition.

Proposition 1. If sk is invertible in Frac(A), then Sk, Uk and Vk are the unique polyno-
mials S; U ; V in Frac(A)[x] satisfying the following conditions: S=UF + VG, degS = k,
degU <n1¡ k, degV <n0¡ k, and sk= lc(S).

Proof. The uniqueness follows from the injectivity of the map de�ned in (5), for which
Uk; Vk is the unique preimage of (sk; 0; :::; 0). �

We �nally introduce the transition matrix Tk =
�

Uk Vk
Uk¡1 Vk¡1

�
, for k < n1, so we have�

Sk
Sk¡1

�
=Tk

�
F
G

�
.

2.2. Highest subresultants and conventions
When n0>n1, it makes sense to consider the case k=n1, for which the Sylvester map is

A[x]<0�A[x]<n0¡n1 ! A[x]<n0
(U ; V ) 7! UF +VG;

and to use the following conventions: sn1 = gn1
n0¡n1, Sn1 = gn1

n0¡n1¡1 G, Un1 = 0 and
Vn1= gn1

n0¡n1¡1. When n0= n1, it is sometimes convenient to use the same values for sn1,
Sn1, Un1 and Vn1 notwithstanding that Sn1 and Vn1 are not de�ned overA but over Frac(A),
as long as gn1 is not a zero divisor in A.

When n1> 1 and k=n1¡ 1, the Sylvester map,

A[x]<1�A[x]<n0¡n1+1 ! A[x]<n0+1

(U ; V ) 7! UF +VG;

has for matrix 0BBBBBBBB@

f0 g0
������ g0

���
gn1

������
fn0 gn1

1CCCCCCCCA
:

Elementary calculations then yield

Sn1¡1= prem(F ;G): (9)

We introduce Qn1=pquo(F ;G), so we have n2=degSn1¡1<n1. We shall de�ne the other
quotients Qni latter on. Notice that we may also consider the �rst transition matrix Tn1

Tn1=

 
0 sn1/gn1

gn1
n0¡n1+1 ¡Qn1

!
;

but it is not de�ned over A in general, although detTn1=¡sn1
2 actually belongs to A.
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2.3. Proportionality to the Euclidean sequence
If the Euclidean sequence is well de�ned over Frac(A), if Ri has degree ni > 0 for some
i > 2, and if sni is invertible in Frac(A), then Ri is proportional to Sni over Frac(A),
by Proposition 1. The following lemma is the key step to establish the converse: every
subresultant polynomial is proportional to a remainder in the Euclidean sequence.

Lemma 2. If n1 > 0 and if gn1 is invertible in Frac(A), then R2 is well de�ned over
Frac(A), and the following properties hold:
1. When n1> 1, we have Sn1¡1= prem(F ;G)= gn1

n0¡n1+1R2;
2. When n2<k<n1¡ 1, we have Sk=0;

3. When n2> 0, we have Sn2= lc(R2)n1¡n2¡1 gn1
n0¡n2R2;

4. When 0 6 k < n2, we have Sk = (¡1)(n1¡k)(n2¡k) gn1
n0¡n2 Ŝk, where Ŝk is the k-th

polynomial subresultant of G and R2, over Frac(A).

Proof. Let us write r2;j for the coe�cient of degree j in R2. When n26k<n1, interpreting
the division of F by G in terms of column operations over Frac(A), we observe that

Sk=

������������������������������

R2 xR2 ��� xk¡n2R2 xk¡n2+1R2 ��� xn1¡k¡1R2 G ��� xn0¡k¡1G

0 ��� 0 r2;n2 r2;2k¡n1+2 gk+1 g2k¡n0+2

��� ��� 0 ��� ���
0 ��� ��� r2;n2

0 0 ���
��� ���

0 ���
gn1

���
gn1

������������������������������

;

For k=n1¡ 1, we recover the formula Sn1¡1= gn1
n0¡n1+1R2, already seen in equation (9).

Then we obtain Sk=0 when n2<k<n1¡1, and Sn2= r2;n2
n1¡n2¡1 gn1

n0¡n2R2. For k<n2, the
matrix Sylk is column equivalent to0BBBBBBBBBBBBBBBBBBB@

r2;0 g0  n0¡n2!
������ ��� g0

��� g0
r2;n2 r2;0 ������ g0

��� ��� gn1
������

r2;n2 gn1
���

gn1 ���
 ¡ n1¡ k ¡!  ¡ n2¡ k ¡! gn1

1CCCCCCCCCCCCCCCCCCCA

;

which implies that Sk=(¡1)(n1¡k)(n2¡k) gn1
n0¡n2 Ŝk. �

Corollary 3. If gn1 and all the nonzero sk are invertible in Frac(A), then the Euclidean
remainder sequence is well de�ned over Frac(A), and the following properties hold:
1. Sni¡1 and Sni+1 are proportional to Ri+1 over Frac(A), when 16 i <w;
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2. Sk=0, when ni+1<k<ni¡ 1 and 16 i <w;
3. Sk=0, when k <nw.

Proof. The proof is done by induction on w. The case w=1 means that R2=0, and the
previous lemma implies that all the subresultant polynomials are zero. Now assume w>2.
From the previous lemma, we know that: R2 is well de�ned over Frac(A), R2 is proportional
to Sn1¡1 and Sn2 over Frac(A), the leading coe�cient of R2 is invertible in Frac(A), Sk=0
for all n2<k <n1¡ 1, and the other Sk are proportional to the subresultant polynomials
of G and R2. Since the length of the Euclidean sequence of G and R2 is w ¡ 1, we may
use the corollary by induction. �

Corollary 4. If gn1 and all the nonzero sk are invertible in Frac(A), then, for 26 i<w
the transition matrix Tni is the unique matrix T =

 
T1;1 T1;2
T2;1 T2;2

!
over Frac(A)[x] satisfying

the following properties:
 

Sni
Sni¡1

!
= T

�
F
G

�
, deg T1;1 < n1 ¡ ni, deg T1;2 < n0 ¡ ni,

deg T2;1<n1¡ni+1, degT1;2<n0¡ni+1.

Proof. Proposition 1 already implies T1;1=Uni and T1;2=Vni. By the previous corollary,
Sni¡1 is proportional to Sni+1, and the conclusion follows again from Proposition 1 since
degUni¡1<n1¡ (ni¡ 1)6n1¡ni+1 and deg Vni¡1<n0¡ (ni¡ 1)6n0¡ni+1. �

About the uniqueness of the cofactors Unw¡1 and Vnw¡1 of Snw¡1= 0, we begin with
the following simple lemma:

Lemma 5. For all 16 k6n1, the following identities hold:

uk¡1;n1¡k=(¡1)n1¡k gn1 sk; vk¡1;n0¡k=(¡1)n1¡k¡1 fn0 sk:

Proof. These formulas are straightforward, from expanding determinants of equations (7)
and (8) along their �rst rows. �

Corollary 6. Assume w > 2, and that fn0, gn1 and all the nonzero sk are invertible
in Frac(A). Then, the cofactors Unw¡1 and Vnw¡1 are the unique polynomials A and
B of Frac(A)[x] satisfying the following properties: A F + B G = 0, deg A = n1 ¡ nk,
degB=n0¡nk, and lc(A)= (¡1)n1¡nw gn1 snw.

Proof. Let aj (resp. bj) represent the coe�cient of degree j in A (resp. in B). We consider
the relation

(A¡Unw¡1)F +(B ¡Vnw¡1)G=0:

By Lemma 5 we have deg(A¡ Unw¡1)< n1¡ nk. On the other hand, using an1¡nk fn0+
bn0¡nk gn1=0, we observe that

(¡1)n1¡nw¡1 bn0¡nwVnw¡1/(fn0 snw)= (¡1)n1¡nw an1¡nwVnw¡1/(gn1 snw)=Vnw¡1:

Using Lemma 5 again, we obtain that deg(B ¡Vnw¡1)<n0¡nk. Since the map

A[x]<n1¡nw�A[x]<n0¡nw ! A[x]<n0+n1¡2nw
(U ; V ) 7! (UF +VG) quoxnw

is injective, we deduce that A=Unw¡1 and B=Vnw¡1. �
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2.4. Structure theorem
We are now ready to prove Lazard's lemma and the Lickteig�Roy division (equation (3)).

Lemma 7. Assume that fn0, gn1, and all the nonzero sk are invertible in Frac(A), and let
16 i <w. Then, the following properties hold:

1. When ni+16 k < ni, the ratio sni¡1;k
ni¡k /sni

ni¡k¡1 equals a minor of size n0+ n1¡ 2 k of
Sylk, hence it belongs to A (Lazard's lemma);

2. Sni+1=(sni¡1;ni+1
ni¡ni+1¡1Sni¡1)/sni

ni¡ni+1¡1.

Proof. From Corollary 3, we know that Sni¡1 has degree ni+1. Thanks to Lemma 5, over
Frac(A) we may write

S~ni¡1 := (¡1)n1¡ni¡1 Sni¡1
fn0 sni

=U~ni¡1F +V~ni¡1G; (10)

where U~ni¡1= (¡1)n1¡ni¡1 Uni¡1/(fn0 sni), and V~ni¡1= (¡1)n1¡ni¡1 Vni¡1/(fn0 sni), so
V~ni¡1 is monic of degree n0¡ni. Assume ni+16k6ni. The Bézout relation (10) rephrases
in terms of the following column operations on the matrix (4) de�ning Sylk: for l from
ni¡k¡ 1 down to 0, the column xn0¡ni+lG(x) may be replaced by xlS~ni¡1(x) by adding
to it X

j=0

n1¡ni
u~ni¡1;jx

j+lF (x)+
X
j=0

n0¡ni¡1

v~ni¡1;jx
j+lG(x);

where s~ni¡1;j, u~ni¡1;j, v~ni¡1;j are the coe�cients of degree j in S~ni¡1, U~ni¡1, V~ni¡1 respec-
tively.

The Sylvester matrix Sylk is thus column equivalent over Frac(A) to0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

f0  ni¡ k ! g0 s~ni¡1;0
���

��� ��� ��� ��� s~ni¡1;0
fni+1¡1 s~ni¡1;ni+1¡1
fni+1 gni+1

��� s~ni¡1;ni+1
���

��� ��� g0 ���
fni+1+ni¡k¡1 gni+1+ni¡k¡1 s~ni¡1;ni+1
fni+1+ni¡k

��� gni+1+ni¡k
���

��� ��� f0 ���
fni¡1 f2ni¡n1 gni¡1 g2ni¡n0
fni f2ni¡n1+1 gni g2ni¡n0+1

��� ���
���

��� ���

��� gn1

fn0
��� ���

fn0 gn1
fn0

���
 n1¡ni ! fn0  n0¡ni !  ni¡ k !

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:
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When ni+16 k < ni, we discard the ni+1 �rst grayed rows and the other k ¡ ni+1 grayed
rows corresponding to the monomials xni+1+ni¡k; :::; xni¡1, and obtain the determinant

fn0
ni¡k sni s~ni¡1;ni+1

ni¡k =�fn0
ni¡k sni

�
sni¡1;ni+1
fn0 sni

�
ni¡k

=�
sni¡1;ni+1
ni¡k

sni
ni¡k¡1

;

which equals the minor of Sylk obtained by deleting the same rows. This concludes part 1.
When k=ni+1 this minor coincides to sni+1= sni¡1;ni+1

ni¡ni+1 /sni
ni¡ni+1¡1, whence part 2, since

Sni+1 is proportional to Sni¡1 by Corollary 3. �

Proposition 8. For all 26 i6w, we have

detTni =

���� Uni Vni
Uni¡1 Vni¡1

���� = (¡1)n1¡ni¡1 sni
2 ;

(¡1)n1¡ni¡1 sni
2 Tni

¡1 =

�
Vni¡1 ¡Vni
¡Uni¡1 Uni

�
:

Proof. By left multiplying booth sides of�
Sni
Sni¡1

�
=

�
Uni Vni
Uni¡1 Vni¡1

��
F
G

�
by ¡ Vni¡1 ¡Vni �, we obtain Vni¡1 Sni ¡ Vni Sni¡1= F det Tni. By Proposition 1, we have
deg(Vni Sni¡1)6n0¡2, and deg(Vni¡1 Sni)6n0. Consequently detTni is in A, and we have
vni¡1;n0¡ni sni= fn0 detTni. The conclusion follows from Lemma 5. �

Theorem 9. Let A be a commutative ring, and let F, G be polynomials of respective
degrees n0>n1> 0. We assume that fn0, gn1, and all the nonzero subresultant coe�cients
are invertible in Frac(A). Then we have:
1. Sn1¡1= prem(F ;G), Qn1= pquo(F ;G), when n1> 1;
2. Sk=0 when ni+1<k<ni¡ 1 and 16 i6w;
3. sni¡1;ni+1

ni¡k¡1 /sni
ni¡k¡2 equals a minor of size n0+n1¡2 k of Sylk, when ni+16k<ni¡1;

4. sniSni+1= �niSni¡1, where �ni= sni¡1;ni+1
ni¡ni+1¡1/sni

ni¡ni+1¡22A, and when ni+1<ni¡ 1;
5. The division of sn1¡1;n2 sn2G by Sn1¡1 is well de�ned over A, and we have

(¡1)n1¡n2¡1 sn1¡1;n2 sn2G=Qn2Sn1¡1+ gn1 sn1Sn2¡1; with Qn22A[x];

6. When i> 2, the division of sni¡1;ni+1 sni+1Sni by Sni¡1 is well de�ned over A, and we
have

(¡1)ni¡ni+1¡1 sni¡1;ni+1 sni+1Sni=Qni+1Sni¡1+ sni
2 Sni+1¡1; with Qni+12A[x]:

Proof. Parts 1 to 4 have already been proved. As for part 5, from Corollary 3 and part 2
of Lemma 7, there exist ' invertible in Frac(A), and �2Frac(A)[x] of degree n1¡n2, such
that �

Sn2
Sn2¡1

�
=

�
0 �n1/sn1
' (¡1)n1¡n2�

��
G

Sn1¡1

�
;

which implies�
Sn2
Sn2¡1

�
=

�
0 �n1/sn1
' (¡1)n1¡n2�

��
0 1

gn1 sn1 ¡Qn1

��
F
G

�
=

�
gn1 �n1 ¡�n1Qn1/sn1

(¡1)n1¡n2 gn1 sn1� '¡ (¡1)n1¡n2Qn1�

��
F
G

�
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by using Sn1¡1 = prem(F ; G) = gn1 sn1 F ¡ Qn1 G. Assume w > 2. Since deg(gn1 �n1) =
0< n1¡ n2, deg Qn1= n0¡ n1< n0¡ n2, deg�< n1¡ (n2¡ 1), deg (Qn1 �) = n0¡ n2<
n0¡ (n2¡ 1), we may apply Corollary 4 to obtain

Tn2=

�
gn1 �n1 ¡�n1Qn1/sn1

(¡1)n1¡n2 gn1 sn1� '¡ (¡1)n1¡n2Qn1�

�
: (11)

In particular, Proposition 8 gives det Tn2 = (¡1)n1¡n2¡1 sn2
2 = ' gn1 �n1, which leads to

' = (¡1)n1¡n2¡1 sn2
2 /(gn1 �n1) = (¡1)n1¡n2¡1 sn1¡1;n2 sn2/(gn1 sn1). On the other hand

gn1 sn1� belongs to A[x], which gives part 5, with Qn2=(¡1)n1¡n2+1 gn1 sn1�.
If w=2, then Sn2¡1=0, and we may divide ' and � by lc(�) without loss of generality.

Corollary 6 implies (¡1)n1¡n2 gn1 sn1�= Un2¡1 and '¡ (¡1)n1¡n2 Qn1�= Vn2¡1, which
again yields (11), and the conclusion follows as in the case w> 2.

Now for part 6, from Corollary 3 and part 2 of Lemma 7, again, there exist  invertible
in Frac(A), and 	2Frac(A)[x] of degree ni¡ni+1, such that 

Sni+1
Sni+1¡1

!
=

 
0 �ni/sni
 (¡1)n1¡ni+1	

!�
Sni
Sni¡1

�
;

which implies 
Sni+1
Sni+1¡1

!
=

 
0 �ni/sni
 (¡1)n1¡ni+1	

!
Tni

�
F
G

�
=

 
�niUni¡1/sni �niVni¡1/sni

 Uni+(¡1)n1¡ni+1	Uni¡1  Vni+(¡1)n1¡ni+1	Vni¡1

!�
F
G

�
:

Assume w> i+2. Since degUni¡1<n1¡ (ni¡ 1)6n1¡ni+1, deg Vni¡1<n0¡ (ni¡ 1)6
n0¡ni+1,

deg( Uni+	Uni¡1)<max (n1¡ni; n1¡ (ni+1¡ 1))6n1¡ (ni+1¡ 1); and

deg( Vni+	Vni¡1)<max (n0¡ni; n0¡ (ni+1¡ 1))6n0¡ (ni+1¡ 1);

we may apply Corollary 4 again to obtain

Tni+1=

 
�niUni¡1/sni �niVni¡1/sni

 Uni+(¡1)n1¡ni+1	Uni¡1  Vni+(¡1)n1¡ni+1	Vni¡1

!
: (12)

In particular Proposition 8 gives us

detTni+1=(¡1)n1¡ni+1¡1 sni+1
2 =¡(�ni /sni) detTni=(¡1)n1¡ni sni

2 sni+1  /sni¡1;ni+1;

which leads to  =(¡1)ni¡ni+1¡1 sni¡1;ni+1 sni+1/sni
2 . From

(  	 )Tni=
¡
Uni+1¡1 Vni+1¡1

�
; (13)

Proposition 8 implies that sni
2 	 belongs to A[x]. We thus obtain part 6 with Qni+1 =

¡sni
2 	.
If w= i+ 2, then Sni+1¡1= 0, and Corollary 6 implies  Uni+ (¡1)n1¡ni+1	Uni¡1=

c Uni+1¡1 and  Vni + (¡1)n1¡ni+1 	 Vni¡1 = c Vni+1¡1 for some element c invertible in
Frac(A). Without loss of generality we may divide  and 	 by c so that (12) still holds.
The conclusion then follows as in the case w> i+2. �
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2.5. Atomic transition matrices

We introduce the following atomic transition matrices Mni over Frac(A)[x]:

Mn1 =

 
0 sn1/gn1

gn1 sn1 ¡Qn1

!
;

Mni+1 =

 
0 �ni sni

(¡1)ni¡ni+1¡1 sni¡1;ni+1 sni+1 ¡Qni+1

!
/sni

2 ; when 16 i <w;

so
 

Sn1
Sn1¡1

!
=Mn1

�
F
G

�
, and by Theorem 9 we have

 
Sni+1
Sni+1¡1

!
=Mni+1

�
Sni
Sni¡1

�
; when 16 i <w:

Notice that sni
2 Mni+1 has all its entries in A[x], while the entry sn1/ gn1 in Mn1 does not

necessarily belong to A. In addition, we have the following useful formulas:

detMn1 = ¡sn1
2 ;

detMni+1 = (¡1)ni¡ni+1 sni+1
2 /sni

2 ;

Tni = Mni ���Mn1;

Tn2 =

 
gn1 �n1 ¡(�n1Qn1)/sn1
¡Qn2 ((¡1)n1¡n2+1 sn1¡1;n2 sn2+Qn1Qn2)/(gn1 sn1)

!
: (14)

By construction, Tn2 has all its entries in A[x].

Lemma 10. When 16 i < j6w, the product

sni
2 Mnj ���Mni+1=Tnj (sni

2 Tni
¡1)= (¡1)n1¡ni¡1

 
Unj Vnj
Unj¡1 Vnj¡1

!�
Vni¡1 ¡Vni
¡Uni¡1 Uni

�

has all its entries in A[x], the matrix of its degrees is
 
ni+1¡nj¡1 ni¡nj¡1
ni+1¡nj ni¡nj

!
, with the

convention that a negative degree (in the top left entry) means the zero polynomial.

Proof. Since Tnj = Mnj ��� Mn1 = Mnj ��� Mni+1 Tni has all its entries in A[x], so has
sni
2 Mnj ��� Mni+1, by Proposition 8. When j = i + 1 the degree matrix of Mni+1 is�
<0 0
0 ni¡ni+1

�
. Then the degree matrix of Mni+2 Mni+1 is

�
0 ni¡ni+1

ni+1¡ni+2 ni¡ni+2

�
, and

the one of Mni+3Mni+2Mni+1 is
�
ni+1¡ni+2 ni¡ni+2
ni+1¡ni+3 ni¡ni+3

�
. The conclusion follows easily by

induction. �

3. Half subresultant algorithm

The key idea of the half-gcd algorithm is the computation of the atomic transition matrices
by a �divide and conquer� approach. In our framework over a ring endowed with its par-
tial division routine, we �rst need to describe how well de�ned divisions in A[x] may be
performed fast. Let A=

P
i>0ai x

i be a polynomial in A[x], and let n>0, we shall use the
upper and lower truncations written dAen :=

P
i=0
n¡1 aixi and bAcn :=

P
i>0 ai+nx

i.
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3.1. Fast polynomial division
Let A and B be two polynomials in A[x] such that the division of A by B is well de�ned.
In the same vein as the Barrett or Sieveking�Kung division algorithms, we �rst compute
quotients and then remainders. Quotients are obtained from jet computations. Precisely,
if � and ¡ are two jets in AJxK/(xn), the division �/¡ is said to be well de�ned whenever
¡=/ 0 and there exists 	 in AJxK/(xn) such that �=¡	. If a> 0 is a real number, then
bac represents the largest integer 6a, and dae is the smallest integer >a.

Algorithm 1

Input. �=
P

i=0
n¡1 'ix

i and ¡=
P

i=0
n¡1 ix

i in AJxK/(xn).
Output. �/¡.
Assumption: the division of � by ¡ is well-de�ned, and 0=/ 0.
1. If n=1 then return '0/0.
2. Let h= dn/2e.
3. Call recursively the algorithm with d�eh and d¡eh to obtain 	l = d�eh / d¡eh in

AJxK/(xh).
4. Call recursively the algorithm with b�ch ¡ b	l d¡ehch ¡ 	l b¡ch and d¡eh in

AJxK/(xn¡h), and write 	h the jet in return.

5. Return 	l+	hx
h, seen in AJxK/(xn).

Proposition 11. Algorithm 2 is correct and takes O(M(n) logn) operations in A.

Proof. Let 	 represent the quotient �/¡ in AJxK/(xn). First, it is clear that the division
in step 3 is well-de�ned and that 	l= d	eh. Then, using 2h>n, we obtain

�= d	eh d¡eh+(d	eh b¡ch+ d¡eh b	ch)xh+O(xn)

which yields the correctness of step 4:

	h=
b�ch¡bd	eh d¡ehch¡d	eh b¡ch

d¡eh
+O(xn¡h)= b	ch+O(xn¡h):

The correctness of the algorithm follows by strong induction on n. Its cost function
C(n) satis�es C(n) = C(h) + C(n ¡ h) + O(M(n)), which classically leads to C(n) =
O(M(n) logn). �

For a polynomial A2A[x] of degree 6n, we write rev(A;n) for the reverse polynomial
xnA(1/x). The latter algorithm classically allows to compute polynomial quotients.

Algorithm 2

Input. A=
P

i=0
n aixi and B=

P
i=0
m bixi in A[x] of respective degrees n and m> 0.

Output. quo(A;B).
Assumption: the division of A by B is well de�ned.
1. Let l=n¡m, A~ = rev(A; n) and B~ = rev(B;m).

2. Compute C~ =A~ /B~ +O(xl+1) with Algorithm 1.

3. Return rev(C~ ; l), where C~ is seen as a polynomial of degree l.

Proposition 12. Algorithm 2 is correct and takes O(M(n ¡m) log(n ¡m)) operations
in A.
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Proof. Let R = rem(A; B), Q = quo(A; B), Q~ = rev(Q; l), and R~ = rev(R; n). From
A = Q B + R we deduce A~ = Q~ B~ + R~, and then Q~ = A~ /B~ + O(xl+1). This proves the
correctness. The complexity simply follows from the latter proposition. �

Once the quotient Q of A by B is computed, then R=A¡QB may be obtained with
M(n) operations in A.

3.2. Main divide and conquer routine
Theorem 9 gives formulas to compute Sn1¡1, Qn1, Sn2, Qn2, and Sn2¡1 by means of the
above division algorithm. Let us assume these polynomials already computed, and let us
examine how to obtain the other quotients Qni+1 for i>2. The key observation is that Qn3

only depends on the n2¡n3+1 highest coe�cients of Sn2 and Sn2¡1, so it can be obtained
from bSn2cn3¡degQn3 and bSn2¡1cn3¡degQn3. Then Qn4 only depends on the n3 ¡ n4 + 1

highest coe�cients of Sn3 and Sn3¡1. But the coe�cient of degree j in Sn3¡1 only depends
on the coe�cients of Sn2 and Sn2¡1 of degrees >j ¡ deg Qn3. Consequently Qn3 and Qn4

may be obtained from bSn2cn4¡(degQn3+degQn4) and bSn2¡1cn4¡(degQn3+degQn4). By induc-
tion, we thus prove that Qn3; :::; Qni may be obtained from bSn2cni¡(degQn3+���+degQni)
and bSn2¡1cni¡(degQn3+���+degQni). By using ni = n2 ¡ (n2 ¡ n3) ¡ ��� ¡ (ni¡1 ¡ ni) =

n2 ¡ (deg Qn3 + ��� + deg Qni); the low truncation order ni ¡ (deg Qn3 + ��� + deg Qni)
rewrites into n2¡ 2 (degQn3+ ���+ degQni).

If we �x an integer l > 0, in order to compute Qn3; :::; Qnj with j maximal such that
degQn3+ ���+degQnj6 l, it su�ces to low truncate Sn2 and Sn2¡1 at order n2¡2 l. In order
to handle negative truncation order, it could be convenient to use Laurent polynomials
from a theoretical point of view, but for practice we prefer to keep computations in A[x].
In fact the construction we have just sketched simply works �ne by setting bAcn=A for
all n< 0, thanks to the following lemma:

Lemma 13. Let A =/ 0; B 2 A[x], and let l 2 Z. If l < 0 then we have bA Bcl+degA =
bA bBclcl+degA, otherwise we have bABcl+degA= bA bBclcdegA.

Proof. If l < 0 then bBcl=B and the lemma is correct. Now assume l> 0. We need to
prove that the coe�cient

P
p+q=i;q>0 ap bq+l of degree i in A bBcl equals the coe�cient

of degree i+ l in AB for all i>degA. This assertion is correct because p6degA implies
q= i¡ p> 0. �

Let i> 2 and 06 l6 ni. If we are given bSnic� and bSni¡1c�, where � = ni¡ 2 l, then
the same reasoning shows that we may compute Qni+1; :::; Qnj with j maximal such
that ni ¡ nj 6 l. In fact, we shall better compute the subresultants sni; :::; snj¡1 and the
numerators Nni+1; :::; Nnj of the atomic transition matrices made from Qni+1; :::; Qnj

respectively, namely Nni+1 = sni
2 Mni+1. At the same time we shall return the composite

transition matrix Mni+1;nj =Mnj ���Mni+1, or more precisely its �numerator� Nni+1;nj =

sni
2 Mni+1;nj, which has coe�cients in A[x] according to Lemma 10. We may then recover
Snj and Snj¡1 as  

Snj
Snj¡1

!
=

�
Nni+1;nj

�
Sni
Sni¡1

��
/sni

2 :

Upon this strategy we are now able to present the adaptation of the half-gcd algorithm to
subresultants. But before, notice that given l and bAcl one may deduce deg A whenever
bAcl=/ 0: this is simply deg bAcl if l < 0, or l+ deg bAcl otherwise.
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Algorithm 3

Input. n0; :::; ni, an integer l2f0; :::; nig, and bSnic� and bSni¡1c�, where �=ni¡2 l.

Output. ni+1; :::; nj, sni+1; :::; snj, Nni+1; :::; Nnj, and Nni+1;nj with j > i maximal
such that ni¡nj6 l.
Assumptions: i> 2, fn0, gn1, sn1; :::; snw are nonzero divisors in A.

1. If bSni¡1c�=0 or l <ni¡ni+1 then return nothing. Notice that ni+1 is determined
from bSni¡1c� and � when bSni¡1c�=/ 0.

2. Let h= bl/2c and call the algorithm recursively with n0; :::; ni, h, and bSnicni¡2h,
bSni¡1cni¡2h. Let ni+1; :::; nk, sni+1; :::; snk, Nni+1; :::;Nnk, and Nni+1;nk be the data
obtained in return.

3. Let �= �+ni¡nk, and compute
 

bSnkc�
bSnk¡1c�

!
from Nni+1;nk

 
bSnic�
bSni¡1c�

!
/sni

2 .

4. If bSnk¡1c� = 0 or l < ni ¡ nk+1 then return ni+1; :::; nk, sni+1; :::; snk, Nni+1; :::;

Nnk, and Nni+1;nk. Notice that nk+1 is determined from bSnk¡1c� and � when
bSnk¡1c�=/ 0.

5. If nk+1 < nk ¡ 1 then compute �nk = snk¡1;nk+1
nk¡nk+1¡1 / snk

nk¡nk+1¡2, and bSnk+1c� =
(�nk bSnk¡1c�)/snk, otherwise set �nk= sk.

6. Compute Qnk+1 from (¡1)nk¡nk+1¡1 snk¡1;nk+1 snk+1 bSnkc� and bSnk¡1c�, by
means of Algorithm 2.

7. Build Nnk+1=

0@ 0 �nk snk

(¡1)nk¡nk+1¡1 snk¡1;nk+1 snk+1 ¡Qnk+1

1A.
8. Let � = � + nk ¡ nk+1, and deduce bSnk+1¡1c� =

j
(¡

1)nk¡nk+1¡1 snk¡1;nk+1 snk+1Snk¡Qnk+1Snk¡1

k
�
/snk

2 by means of Lemma 13.

9. Call recursively the algorithm with n0; :::; nk+1, l ¡ (ni ¡ nk+1), bSnk+1c� and
bSnk+1¡1c�. Let nk+1; :::; nj, snk+2; :::; snj, Nnk+2; :::;Nnj, and Nnk+2;nj be the data
obtained in return.

10. Return ni+1; :::; nj, sni+1; :::; snj, Nni+1; :::; Nnj and (Nnk+2;nj ((Nnk+1 Nni+1;nk)/

snk
2 ))/snk+1

2 .

Proposition 14. Algorithm 3 is correct and takes O(M(l) log l) operations in A.

Proof. The proof is done by strong induction on l. If l=0 then �=ni, bSni¡1c�=0, and
the output is correct. Now assume l> 1 and that the algorithm is correct up to l¡ 1.

In step 1 the case bSni¡1c� = 0 means that � > ni+1, whence ni ¡ ni+1> 2 l > l, and
the output is correct. Otherwise we obtain ni+1, and the output is again correct whenever
l <ni¡ni+1.

In step 2 we necessarily have 06h<l, which implies that the recursive call is valid and
returns a correct result by induction. By Lemma 10 the degrees of the entries of Nni+1;nk

are 6ni¡nk. Lemma 13 ensures that we may safely obtain bSnkc� and bSnk¡1c� in step 3.
If bSnk¡1c�=0 in step 4, then this means that �>nk+1, whence ni¡nk+1>ni¡ �=

ni¡ � ¡ (ni¡ nk) = 2 l¡ (ni¡ nk)> l and the output is correct. If bSnk¡1c�=/ 0 then we
may determine nk+1 so the output is also correct when l <ni¡nk+1.

The computation in step 5 follows from part 4 of Theorem 9. In step 6, we have
ni¡nk+16 l, and therefore, from �=ni¡ 2 l, we obtain �= �+ni¡nk=2ni¡nk¡ 2 l6
nk+1¡ (nk¡nk+1) so we may safely obtain Qnk+1 by part 6 of Theorem 9.
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In step 9, we verify the requested conditions to the recursive call: � = nk+1 ¡ 2 (l ¡
(ni¡nk+1)), and l¡ (ni¡nk+1)< l.

In step 10, sni
2 Mni+1;nk+1 = sni

2 (Nnk+1/ snk
2 ) (Nni+1;nk / sni

2 ) = (Nnk+1 Nni+1;nk) / snk
2

has its entries in A[x] by Lemma 10. Repeating this argument we obtain sni
2 Mni+1;nj =

(Nnk+2;nj ((Nnk+1Nni+1;nk)/snk
2 ))/snk+1

2 . We are done with the correctness.
Let C(l) represent the cost of the algorithm called with l. Steps 1, 4, 5 and 7 involve

O(l) operations in A. Step 2 costs C(h). Steps 3, 8 and 10 perform O(M(l)) operations in
A. In step 6, we appeal to Proposition 12 to get a cost O(M(nk ¡ nk+1) log(nk ¡ nk+1)).
Step 9 amounts to C(l¡ (ni¡nk+1)): notice that ni¡nk+1>h+1 implies l¡ (ni¡nk+1)6
l¡ (h+1)< l/2. Overall there exists a constant c> 0 such that

C(l)6C(h)+C(l¡ (ni¡nk+1))+ c (M(l)+M(nk¡nk+1) log(nk¡nk+1)):

Since h and l¡ (ni¡nk+1) are 6l/2, it is classical to deduce

C(l)=O

 
M(l) log l+

X
k=i

j¡1
M(nk¡nk+1) log(nk¡nk+1)

!
=O(M(l) log l): �

3.3. Top level algorithm
We are now ready to present the main algorithm for computing all the atomic transition
matrices.

Algorithm 4

Input. F and G in A[x] of respective degrees n0>n1.
Output. n0; :::; nw, sn1; :::; snw, Nn3; :::; Nnw, Sn1¡1, Qn1, �n1, Qn2.
Assumption: fn0, gn1, sn1; :::; snw are nonzero divisors in A.
1. If F =0 then w=¡1 and return nothing � none of the quantities are de�ned.
2. If G=0 then w=0 and return n0 � the other quantities are not de�ned.
3. Compute Sn1¡1=prem(F ; Q), Qn1=pquo(F ;G), and sn1= gn1

n0¡n1.

4. If Sn1¡1= 0 then w = 1 and return n0; n1, sn1, Sn1¡1, Qn1 � the other quantities
are not de�ned.

5. Let n2 = deg Sn1¡1. If n2 < n1 ¡ 1 then compute Sn2 = (�n1 Sni¡1) / sn1, where
�n1= sn1¡1;n2

n1¡n2¡1/sn1
n1¡n2¡2, otherwise let �n1= sn1.

6. Perform the division (¡1)n1¡n2¡1 sn1¡1;n2 sn2 G = Qn2 Sn1¡1 + gn1 sn1 Sn2¡1, in
order to obtain Qn2 and Sn2¡1.

7. If Sn2¡1 = 0 then w = 2 and return n0; n1; n2, sn1; sn2 = lc(Sn2), Sn1¡1, Qn1, �n1,
Qn2� the other quantities are not de�ned.

8. Call Algorithm 3 with n0; n1; n2, l= n2, bSn2c� and bSn2¡1c�, where � =¡n2. Let
n3; :::; nj, sn3; :::; snj, Nn3; :::;Nnj, and Nn3;nj represent the data obtained in return.

9. Return n0; :::; nj, sn1; :::; snj, Nn3; :::; Nnj, Sn1¡1, Qn1, �n1, Qn2.

Theorem 15. Algorithm 4 is correct and takes O(M(n0) logn0) operations in A.

Proof. The correctness follows from Theorem 9 and Proposition 14 after noticing that j
necessarily coincides to w in step 8. The divisions in steps 2 and 5 take O(M(n0) log n0)
by Proposition 12. The cost of step 8 is given in Proposition 14. �
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Example 16. Let us brie�y illustrate the algorithm with A=Z, n0=5, n1=4,

F =¡3x5¡5x4+3x3¡2x2+4x+2; G=¡5x4+4x3¡2x2+3x¡1:

We obtain Sn1¡1 = ¡43 x3 ¡21 x2 +4 x+87, n2 = 3, and Sn2 = Sn1¡1. Then we have
Sn2¡1=¡415x2¡482x+890, and we enter Algorithm 3 with Sn2, Sn2¡1 and l= 3. In a
recursive call with bSn2c1, bSn2¡1c1 and l=1 we obtain Qn3, which has degree 1. Then we
deduce Sn3¡1=¡11348x+ 13885, and then Qn3= 4709420x+11232011. Finally we have
n4=1, Qn4= 2724234924x¡3333274755, and Sn4¡1=¡240063.

4. Bivariate case

In this section we study the complexity of Algorithm 4 when A is a polynomial ring B[t],
where B is a commutative ring with unity and endowed with its partially de�ned division
routine. First, we illustrate the coe�cient growth issue. Then we detail the computations
of the �ni and analyze the cost of the divisions in A[x]. We are interested in deterministic
algorithms that do not rely on fast evaluation/interpolation schemes, which would require
speci�c assumptions on B.

We recall that the product of two polynomials in B[t][x] of partial degrees 6d in t
and 6n in x may be achieved with O(M(d n)) operations in B by means of the classical
Kronecker substitution [24, Section 8.4].

4.1. Coe�cient growth
The sizes of the coe�cients of the subresultant polynomials may be bounded from their
de�ning determinant.

Lemma 17. Assume A = B[t]. If degt F 6 d0 and degt G 6 d1 then we have degt sn1 6
(n0¡ n1) d1, and, for 06 k < n1, the partial degrees of Sk, Uk and Vk are 6(n1¡ k) d0+
(n0¡ k) d1.

Proof. This follows from the de�nitions in equations (6), (7), and (8). �

Example 18. Let A=Z[t]. We consider the following family of polynomials parametrized
by the integer m> 2:

F = t x3m¡ t x2m+xm¡ 1; G= t x3m+ t x2m+xm:

We have n0=n1=3m. The convention for Sn1 and formula (9) lead to:

Sn1 = t¡1G = x3m+x2m+ t¡1xm 2 t¡1Z[t];

Sn1¡1 = prem(F ;G) = t F ¡ tG = ¡ 2 t2x2m¡ t:

We obtain n2=2m, and formulas (1) and (2) give:

Sn2 = (�n1Sn1¡1)/sn1 = (¡2 t2)m¡1Sn1¡1 = (¡2 t2)mx2m¡ (¡2)m¡1 t2m¡1;
Sn2¡1 = prem(Sn1;¡Sn1¡1)/sn1

m+1 = (¡2)m t2m+1xm¡ t (¡2 t2)m:

Then we get n3=m, and

Sn3 = (sn2¡1;n3
m¡1 Sn2¡1)/sn2

m¡1 = ((¡2 t2)m t/(¡2 t2)m)m¡1 Sn2 = (¡2)m t3m (xm ¡
1);

Sn3¡1 = prem(Sn2;¡Sn2¡1)/(¡2 t2)m(m+1) = (¡2)m t3m+1¡ (¡2)m¡1 t3m:
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Finally n4=0, and

Sn4 = ¡(1+2 t)m¡1 (2 t+1) t3m:

This example shows that the intermediate sizes grow linearly with the gap sizes, when
computing subresultants by means of formulas (1) and (2). Of course, for normal sequences
of subresultants, these formulas simplify to Sni+1= prem(Sni; Sni¡1)/sni

2 = rem(sni¡1
2 Sni;

Sni¡1), and intermediate coe�cient sizes just increase by a factor of three.

In the rest of this section, we show that the combination of Lazard's lemma and of the
Lickteig�Roy division allows Algorithm 4 to preserve a coe�cient growth bounded by a
constant factor only.

4.2. Computation of the �ni
Here we analyze the computation of Sni+1 from Sni¡1 when ni+1 < ni ¡ 1. Example 18
shows that �ni should not be computed as the division of sni¡1;ni+1

ni¡ni+1¡1 by sni
ni¡ni+1¡2. Instead,

we appeal to the �divide and conquer� algorithm based on Lazard's lemma (part 3 of
Theorem 9), as described by Ducos in [21, p. 338], and which is reminiscent of the classical
binary powering algorithm.

Algorithm 5

Input. sni and sni¡1;ni+1 in A, for 16 i6w, and an integer 16 l6ni¡ni+1¡ 1.

Output. sni¡1;ni+1
l /sni

l¡12A.

Assumption: ni+1<ni¡ 1.
1. If l=1 then return sni¡1;ni+1.
2. Let h= bl/2c.
3. Recursively compute a= sni¡1;ni+1

h /sni
h¡1, and then b= a2/sni.

4. If l is even then return b else return (sni¡1;ni+1 b)/sni.

Lemma 19. Algorithm 5 is correct and takes O(log (ni¡ ni+1)) operations in A. If A=
B[t], degtF 6d0, and degtG6d1, then the algorithm costs O(M(D) log(D) log(ni¡ni+1))
operations in B, where D= n1 d0+ n0 d1. If B is a �eld then the latter cost simpli�es to
O(M(D) log(ni¡ni+1)).

Proof. The correctness is a consequence of part 3 of Theorem 9. When A = B[t], we
use the degree bound provided by Lemma 17, and part 3 of Theorem 9 also gives that
degta=O(D) holds during the execution. Then the cost analysis is rather standard: each
product takes O(M(D)), and each division costs O(M(D) log D) by Proposition 12 (the
factor logD may be discarded when B is a �eld). �

4.3. Polynomial divisions

We need now to revisit the costs of the division algorithms of Section 3.1 when A=B[t].

Proposition 20. Assume A=B[t]. Let �;¡2AJxK/(xn) be such that the division of �
by ¡ is well de�ned, and let d bound the degrees in t of �, ¡, and 	. Then, Algorithm 1
takes O(M(d n) log n+ nM(d) log d) operations in B. If B is a �eld then the latter cost
simpli�es to O(M(dn) logn).
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Proof. We use the notation of Algorithm 1, and write C(n) for its cost. A straightforward
induction shows that the degrees in t of the values of ¡ and of the output 	 are always at
most d throughout the recursive calls. This implies that the degrees in t of the values of �
always remain bounded by 2 d throughout the recursive calls. Consequently, there exists
a constant c> 0 such that

C(n)6C(h)+C(n¡h)+ cM(dn):

In general we have C(1) = O(M(d) log d) by Proposition 12, which simpli�es to C(1) =
O(M(d)) when B is a field. The conclusion classically follows by unrolling the latter
inequality. �

Proposition 21. Assume A=B[t]. Let A; B 2A[x] be of respective degrees n>m> 0,
and such that the division of A by B is well de�ned, and let d bound the degrees in t of A,
B, and of their quotient Q. Then, Q may be obtained with O(M(d (n¡m)) log(n¡m) +
(n ¡ m) M(d) log d) operations in B. If B is a �eld then the latter cost simpli�es to
O(M(d (n¡m)) log(n¡m)). Then the remainder may be deduced from Q with O(M(d n))
additional operations in B.

Proof. The quotient Q may be obtained with the claimed complexity thanks to the
latter proposition by using Algorithm 2. Then the remainder is obtained as A¡QB with
O(M(dn)) additional operations in B. �

Lemma 22. Assume A=B[t]. Let A; B 2A[x] be of respective degrees n>m> 0. Then
the degree in t of pquo(A;B) is 6degtA+(n¡m)degtB.

Proof. We follow the naive pseudo-division algorithm of A by B:
1. Set R=A and Q=0;
2. For l from n down to m replace Q by bmQ+ rlx

l¡m and R by bmR¡ rlxl¡mB.
At the end, Q and R are respectively the pseudo-quotient and pseudo-remainder. At each
step in the loop the degrees in t of R and Q increase by at most degtB. �

4.4. Main complexity bounds
In order to apply Proposition 21, we need to bound the degrees in t of all the quotients
Qni arising in the subresultant algorithm. Some care is necessary since A is not assumed
to be integral. Our sole assumption is that fn0, gn1, sn1; :::; snw are nonzero divisors in A.

Lemma 23. Assume A=B[t], degtF 6 d0, degtG6 d1, and let D= n1 d0+ n0 d1. Then,
degQn16 d0+n0 d1, and for all 26 i6w the degree in t of Qni is O(D).

Proof. The bound for Qn1 follows from Lemma 22. By equation (14) the degree bound for
Qn2 follows from the one for Un2¡1 given in Lemma 17. For i>3, we combine equation (13),
Proposition 8, and Lemma 17. �

Lemma 24. Assume A=B[t], degtF 6 d0, degtG6 d1, and let D= n1 d0+ n0 d1. Then,
for all 16 i < j6w the degrees in t of the entries of sni

2 Mnj ���Mni+1 are O(D).

Proof. This is a consequence of Lemmas 10 and 17. �

Theorem 25. Assume A=B[t], degtF 6d0, degtG6d1, and let D=n1 d0+n0 d1. Then,
Algorithm 4 takes

O(M((d0+ d1n0)n0) logn0+n0M(d0+ d1n0) log(d0+ d1n0))
+ O(M(Dn1) logn1+n1M(D) logD logn1):
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operations in B. In addition, the underlined expressions may be discarded when B is a �eld.

Proof. We �rst analyse the cost C(l) of Algorithm 3 in terms of operations in B:
� steps 1 and 4 involve O(Dl) operations in B,
� step 2 takes C(h),
� step 3 takes O(M(Dl)+ lM(D) logD),

� step 5 takes O(M(D) logD log l+ lM(D) logD) by using Lemma 19,
� step 6 takes O(M(D (nk ¡ nk+1)) log(nk ¡ nk+1) + (nk ¡ nk+1) M(D) log D) by

combining Lemma 23 to Proposition 21,
� step 7, 8 and 10 take O(M(Dl)+ lM(D) logD) by using Lemma 24,
� step 9 takes C(l¡ (ni¡nk+1)).
Consequently, there exists a constant c> 0 such that

C(l) 6 C(h)+C(l¡ (ni¡nk+1))+ c (M(Dl)+ lM(D) logD
+M(D (nk¡nk+1)) log(nk¡nk+1)+ (nk¡nk+1)M(D) logD)):

Since h and l¡ (ni¡nk+1) are <l/2, it is classical to deduce

C(l)=O(M(Dl) log l+ lM(D) logD log l):

Then we analyze the cost of Algorithm 4 in terms of operations in B:
� steps 1, 2 take O(d0n0+ d1n1),
� step 3 takes O(M((d0+d1 n0) n0) logn0+n0M(d0+d1 n0) log(d0+d1 n0)) by combining

Lemma 22 to Proposition 21,
� step 4 just performs O((d0+ d1n0)n0) operations in B,
� step 5 takes O(M(D) logD logn1+n1M(D) logD by using Lemma 19,
� step 6 takes O(M(D n1) log n1+ n1M(D) logD) by combining Lemma 23 to Proposi-

tion 21,
� steps 7 takes O(Dn1),
� step 8 takes C(n2).
The total cost of Algorithm 4 is therefore

O(M((d0+ d1n0)n0) logn0+n0M(d0+ d1n0) log(d0+ d1n0))
+ O(M(Dn1) logn1+n1M(D) logD logn1):

operations in B. �

Corollary 26. Assume A=B[t]. Let F ; G 2A[x] be of respective degrees n0 > n1, let
d0=degtF, d1=degtG, and D=d1n0+d0 n1. If fn0, gn1, sn1; :::; snw are nonzero divisors
in A, then any one subresultant polynomial of F and G with its associated cofactors may
be obtained with

O(M(Dn0)+M((d0+ d1n0)n0) logn0+n0M(D) log(D))
+ O(M(Dn1) logn1+n1M(D) logD logn1)

operations in B. The sole computation of one subresultant without its associated cofactors
takes

O(M((d0+ d1n0)n0) logn0+n0M(d0+ d1n0) log(d0+ d1n0))
+ O(M(Dn1) logn1+n1M(D) logD logn1):

In addition, the underlined expressions may be discarded when B is a �eld.
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Proof. After calling Algorithm 4, we have the atomic transition matrices at our disposal,
and we may easily build Tn2 via formula (14). Now assume we want to obtain Sni, Sni¡1
and Tni for 26 i6w. For this purpose we compute Tni �rst, and then use�

Sni
Sni¡1

�
=Tni

�
F
G

�
:

Since Tni=Mni ���Mn3 Tn2, we shall compute sn2
2 Mni ���Mn3 by the following divide and

conquer algorithm that computes sni
2 Mnj ���Mni+1 for i < j as follows:

1. If j= i+1 then return sni
2 Mni+1 (available as Nni+1 from the output of Algorithm 4);

2. Let h = b(i + j) / 2c, and recursively compute A = sni
2 Mnh ��� Mni+1 and B =

snh
2 Mnj ���Mnh+1;

3. Return (BA)/snh
2 .

The correctness is ensured by Lemma 10, which also provides us with the degree bound
ni¡ nj in x for sni

2 Mnj ���Mni+1. In addition the degree in t of the latter matrix is O(D)
by Lemma 24. Therefore the computation of sn2

2 Mni ��� Mn3 costs O(M(D n2) log n2 +
n2 M(D) log(D) log n2). Finally, the computation of Tn2 just requires O(M(D n0) +

n0 M(D) log(D)) operations in B. If the cofactors are not needed then we may truncate
Tn2 to precision O(xn2+1), which yields a cost O(M(Dn2)+n2M(D) log(D)). �

If B is a �eld that contains su�ciently many elements (for instance when the character-
istic is zero), then we may use fast evaluation and interpolation algorithms [24, Chapter 10].
To simplify the situation we reformulate the costs in terms of d = max (d0; d1). In
this way, a subresultant of degree k may be interpolated from D + 1 values of t with
O(kM(dn0) log(dn0)). All the specializations of F and G may be obtained with

O(n0
2M(d) log d);

and each specialized subresultant requires O(M(n0) logn0). Thus the total cost is

O(kM(dn0) log(dn0)+n02M(d) log d+ dn0M(n0) logn0): (15)

If k ' n0, then the dominant term is k M(d n0) log(d n0), which is asymptotically higher
than the cost O(M(dn02) logn0) of Corollary 26 when M(n)=n logn log logn because

M(dn0
2) logn0

n0M(dn0) log(dn0)
=
dn0

2 log(dn0) log log(dn0) logn0
dn0

2 log2(dn0) log log(dn0)
=O

�
logn0

log(dn0)

�
:

For any k, the ratio of the cost of Corollary 26 over the one of (15) when M(n) =
n logn log logn becomes bounded by

M(dn0
2) logn0

n0
2M(d) log d+ dn0M(n0) logn0

=
log(dn0) log log(dn0) logn0

log2 d log log d+ log2n0 log logn0
:

If n06 d this ratio is O
�
logn0
logd

�
=O(1). Otherwise, if d6n0, then the ratio is again O(1).

Consequently, in all case the cost of Corollary 26 is never asymptotically higher (up to a
constant factor) than with the evaluation/interpolation strategy.

4.5. Applications
Gcd is a very classical application of subresultants. Our Corollary 26 leads to the following
deterministic result.
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Corollary 27. Let K be a �eld, and let A and B be two polynomials in K[t; x] of degrees
6d in t and 6n in x. Then, the gcd of A and B may be computed with O(M(d n2) logn+
nM(dn) log d) operations in K, which simpli�es to O(M((dn)3/2) log d) whenever n6 d.

Proof. First we compute the contents and primitive parts of A and B seen in K[t][x]
with O(n M(d) log d) operations in K. Then we deduce the gcd of the contents with
O(M(d) log d) operations in K. By Corollary 26, we may compute the last nonzero subre-
sultant of the primitive parts with O(M(d n2) logn) operations in K. It has degree 6n in x
and O(d n) in t, hence its primitive part may be obtained with O(nM(d n) log(d n)) more
operations. �

Let us mention that complexities in terms of convex hulls of the supports of A and B
may further be derived thanks to the algorithm in [10]. Previously such deterministic costs
for bivariate gcds were involving hypotheses on the cardinality of K in order to use fast
evaluation/interpolation strategies, as in [24, Chapter 10].

The next corollary concerns the cost of the bivariate multi-gcd problem, which is for
instance useful for computing separable decompositions [34].

Corollary 28. Let K be a �eld, and let A and B1; :::; Bs be polynomials in K[t; x]. Let
n=degxA, d=degtA, ni=degxBi, di=degtBi, and assume n1+ ���+ns=O(n), s=O(n),
and d1 + ��� + ds = O(d). Then, the gcds of A and B1, A and B2,:::, A and Bs may be
computed with O(M(dn2) logn+nM(dn) log d) operations in K.

Proof. First we compute the content a and the primitive part Â of A seen in K[t][x]
with O(nM(d) log d) operations in K. Now let 16 i6 s. We compute the content bi and
the primitive part Bi of Bi with O(niM(di) log di) operations in K. Then we deduce the
gcd of a and bi with O(M(d) log d) operations in K. By Corollary 26, we may compute
the last nonzero subresultant of Â and Bi with O(M((d+ di n) n) log n+M(Di ni) log ni)
operations in K, where Di= di n+ d ni=O(d n). It has degree 6ni in x and O(Di) in t,
hence its primitive part may be obtained withO(niM(Di) log(Di))=O(niM(d n) log(d n)).
The total cost for computing all the gcds is O(n M(d) log d +

P
i=1
s [ni M(di) log di +

M((d + di n) n) log n + M(d n ni) log ni + ni M(d n) log(d n)]) = O(M(d n2) log n +
nM(dn) log d). �

An other application of Corollary 26 is the computation of characteristic polynomials
in a A-algebra of the form A[x]/(A(x)).

Corollary 29. Let A be an integral domain endowed with its partially de�ned division,
and let A and B be two polynomials in A[x] of degrees 6n. Then, the resultant �(t) =
Resx(A(x); t¡B(x)) may be computed with O(M(n2) log n+ nM(n) log2 n) operations in
A. If A is a �eld then the cost simpli�es to O(M(n2) logn).

Proof. It su�ces to use Corollary 26 with d0=0 and d1=1. �

If A is a �eld, written K, which contains su�ciently many elements, then � may be
interpolated from n + 1 values of t. For each value a of t the specialized resultant
Resx(A(x); a ¡ B(x)) takes O(M(n) log n) operations in K. This leads to a total cost
O(n M(n) log n), which is smaller than the general bound of the latter corollary. How-
ever, if K=F2, we need to perform this evaluation/interpolation procedure over L=F2�

with � being the �rst integer such that 2�>n+1: the resultant �may be thus obtained with
O(nM(n)M(logn) logn) operations in F2. With M(n)=n logn log logn, this cost rewrites

O(n2 log3n (log logn)2 log log logn);
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which is higher than the one of the latter corollary. Notice that there also exist algorithms
with subquadratic costs based on power projections and the Newton�Girard formula [26,
Section 2], but they also require hypotheses on K (such as characteristic zero, or to be a
�nite �eld, etc).

Implementation.

The algorithms presented in this article have been implemented in the C++ library called
Algebramix of Mathemagix [30] from 2009. The source code is available from our SVN
server http://gforge.inria.fr/projects/mmx/. For the design of the C++ libraries
see [31, Section 4].

When A is a �eld, the simplest algorithm with quadratic cost is adapted from the naive
version of the Euclidean algorithm: it is available from polynomial_naive.hpp. The half-
gcd is implemented in polynomial_dicho.hpp.

Over rings, the �le polynomial_ring_naive.hpp contains the following implementa-
tions of subresultants: over any commutative ring we appeal to Berkowitz' algorithm [9]
to compute the de�ning determinants without division; when a partial division routine is
available in the ground ring, we use Ducos' algorithm [22].

Algorithm 4 can be found in polynomial_ring_dicho.hpp. The latter �le includes
the fast polynomial division routines. These C++ implementations are rather intricate
because of several optimizations for various contexts, taking into account for instance
which subresultants or cofactors are actually requested. For the sake of convenience, in
revision 10523, we added a simple implementation of Algorithm 4 in the Mathemagix
language [28]: see gregorix/mmx/subresultant_lickteig_roy.mmx, and gregorix/mmx/
subresultant_test.mmx for the tests.

Concerning e�ciencies, unfortunately our implementations of Algorithm 4 did not
reveal to be competitive to Ducos' algorithm even in large sizes for bivariate polyno-
mials. In the special case of Corollary 29, the evaluation/interpolation strategy is in general
observed to be faster than the direct use of Algorithm 4.
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