A Gaussian Process Regression Model for Distribution Inputs - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Information Theory Année : 2018

A Gaussian Process Regression Model for Distribution Inputs

Résumé

Monge-Kantorovich distances, otherwise known as Wasserstein distances, have received a growing attention in statistics and machine learning as a powerful discrepancy measure for probability distributions. In this paper, we focus on forecasting a Gaussian process indexed by probability distributions. For this, we provide a family of positive definite kernels built using transportation based distances. We provide a probabilistic understanding of these kernels and characterize the corresponding stochastic processes. We prove that the Gaussian processes indexed by distributions corresponding to these kernels can be efficiently forecast, opening new perspectives in Gaussian process modeling.
Fichier principal
Vignette du fichier
Final_Bachoc_Gamboa_Loubes_Venet (1).pdf (389.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01450002 , version 1 (30-01-2017)
hal-01450002 , version 2 (26-01-2018)

Identifiants

Citer

François Bachoc, Fabrice Gamboa, Jean-Michel Loubes, Nil Venet. A Gaussian Process Regression Model for Distribution Inputs. IEEE Transactions on Information Theory, 2018, 64 (10), pp.6620 - 6637. ⟨hal-01450002v2⟩
2934 Consultations
457 Téléchargements

Altmetric

Partager

More