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A Gaussian Process Regression Model
for Distribution Inputs

François Bachoc, Fabrice Gamboa, Jean-Michel Loubes and Nil Venet

Abstract—Monge-Kantorovich distances, otherwise known as
Wasserstein distances, have received a growing attention in statis-
tics and machine learning as a powerful discrepancy measure for
probability distributions. In this paper, we focus on forecasting
a Gaussian process indexed by probability distributions. For
this, we provide a family of positive definite kernels built
using transportation based distances. We provide a probabilistic
understanding of these kernels and characterize the correspond-
ing stochastic processes. We prove that the Gaussian processes
indexed by distributions corresponding to these kernels can be
efficiently forecast, opening new perspectives in Gaussian process
modeling.

Index Terms—Gaussian process, Positive definite kernel, Krig-
ing, Monge-Kantorovich distance, Fractional Brownian motion

I. INTRODUCTION

ORIGINALLY used in spatial statistics (see for instance
[2] and references therein), Kriging has become very

popular in many fields such as machine learning or computer
experiment, as described in [3]. It consists in predicting the
value of a function at some point by a linear combination
of observed values at different points. The unknown function
is modeled as the realization of a random process, usually
Gaussian, and the Kriging forecast can be seen as the posterior
mean, leading to the optimal linear unbiased predictor of the
random process.

Gaussian process models rely on the definition of a co-
variance function that characterizes the correlations between
values of the process at different observation points. As the
notion of similarity between data points is crucial, i.e. close lo-
cation inputs are likely to have similar target values, covariance
functions are the key ingredient in using Gaussian processes,
since they define nearness or similarity. In order to obtain a
satisfying model one need to chose a covariance function (i.e. a
positive definite kernel) that respects the structure of the index
space of the dataset. Continuity of the covariance is a minimal
assumption, as one may ask for additional properties such as
stationarity or stationary increments with respect to a distance.
These stronger assumptions allow to obtain a model where
the correlations between data points depend on the distance
between them.

First used in Support Vector (see for instance [4]), positive
definite kernels are nowadays used for a wide range of
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applications. There is a huge statistical literature dealing with
the construction and properties of kernel functions over Rd
for d ≥ 1 (we refer for instance to [5] or [6] and references
therein). Yet the construction of kernels with adequate proper-
ties on more complex spaces is still a growing field of research
(see for example [7], [8], [9]).

Within this framework, we tackle the problem of forecast-
ing a process indexed by one-dimensional distributions. Our
motivations come from a variety of applied problems: in the
classical ecological inference problem (see [10]), outputs are
not known for individual inputs but for groups, for which the
distribution of a covariate is known. This situation happens
for instance in political studies, when one wants to infer the
correlation between a vote and variables such as age, gender
or wealth level, from the distributions of these covariates in
different states (see for example [10]). The problem of causal
inference can also be considered in a distribution learning
setting (see [11]).

As [12] remarks, learning on distribution inputs offers two
important advantages in the big data era. By bagging together
individual inputs with similar outputs, one reduces the size of a
dataset and anonymizes the data. Doing so results on learning
on the distribution of the inputs in the bags.

Another application arises in numerical code experiments,
when the prior knowledge of the input conditions may not
be an exact value but rather a set of acceptable values that
will be modeled using a prior distribution. Hence we observe
output values for such probability distributions and want to
forecast the process for other ones. A similar application of
distribution inputs for numerical code experiments is given by
non-negative functional inputs. We give a detailed example of
this situation in Section II.

Several approaches already exist to deal with distribution
inputs regression. An important class of methods relies on
some notion of divergence between distributions (see [13]–
[15]). Other methods have been proposed, such as kernel mean
embedding [12] and kernel ridge regression methods [16]. In
this paper we focus on Gaussian process regression method.

The first issue when considering Gaussian process regres-
sion for distribution inputs is to define a covariance function,
which will allow to compare the similarity between probability
distributions. Several approaches can be considered here. The
simplest method is to compare a set of parametric features
built from the probability distributions, such as the mean or
the higher moments. This approach is limited as the effect
of such parameters do not take into account the whole shape
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of the law. Specific kernels should be designed in order to
map distributions into a reproducing kernel Hilbert space in
which the whole arsenal of kernel methods can be extended to
probability measures. This issue has recently been considered
in [17] or [18].

In the past few years, transport based distances such as the
Monge-Kantorovich or Wasserstein distance have become a
growing way to assess similarity between probability measures
and are used for numerous applications in learning and forecast
problems. Since such distances are defined as a cost to
transport one distribution to the other one, they appear to be a
very relevant way to measure similarities between probability
measures. Details on Wasserstein distances and their links with
optimal transport problems can be found in [19]. Applications
in statistics are developed in [20], [21], [22] while kernels have
been developed in [18] or [23].

In this paper, we construct covariance functions in order to
obtain Gaussian processes indexed by probability measures.
We provide a class of covariances which are functions of
the Monge-Kantorovich distance, corresponding to stationary
Gaussian processes. We also give covariances corresponding
to the fractional Brownian processes indexed by probability
distributions, which have stationary increments with respect
to the Monge-Kantorovich distance. Furthermore we show
original nondegeneracy results for these kernels. Then, in
this framework, we focus on the selection of a stationary
covariance kernel in a parametric model through maximum
likelihood. We prove the consistency and asymptotic normality
of the covariance parameter estimators. We then consider the
Kriging of such Gaussian processes. We prove the asymptotic
accuracy of the Kriging prediction under the estimated covari-
ance parameters. In simulations, we show the strong benefit
of the studied kernels, compared to more standard kernels
operating on finite dimensional projections of the distributions.
In addition, we show in the simulations that the Gaussian
process model suggested in this article is significantly more
accurate that the kernel smoothing based predictor of [24].
Our results consolidate the idea that the Monge-Kantorovich
distance is an efficient tool to assess variability between
distributions, leading to sharp predictions of the outcome of a
Gaussian process with distribution-type inputs.

The paper falls into the following parts. In Section III
we recall generalities on the Wasserstein space, covariance
kernels and stationarity of Gaussian processes. Section IV is
devoted to the construction and analysis of an appropriate
kernel for probability measures on R. Asymptotic results on
the estimation of the covariance function and properties of the
prediction of the associated Gaussian process are presented
in Section V. Section VI is devoted to numerical applications
while the proofs are postponed to the appendix.

II. AN APPLICATIVE CASE FROM NUCLEAR SAFETY

The research that conducted to this article have been par-
tially funded by CEA, and is motivated by a nuclear safety
application, which we detail here.

A standard problem for used fissile storage process is the
axial burn up analysis of fuel pins [25]. In this case study, fuel

pins may be seen as one-dimensional curves X : [0, 1]→ R+

[26]. These curves correspond to the axial irradiation profiles
for fuel in transportation or storage packages which define
the neutronic reactivity of the systems. From a curve X ,
corresponding to a given irradiation profile, it is then possible
to compute the resulting neutron multiplication factor keff (X)
by numerical simulation [27]. It can be insightful, for profiles
with a given total irradiation

∫ 1

0
X(t)dt, to study the impact

of the shape of the irradiation curve X on the multiplication
factor keff (X). This type of study can be addressed by
considering keff as a realization of a Gaussian process indexed
by one-dimensional distributions.

III. GENERALITIES

In this section we recall some basic definitions and proper-
ties of the Wasserstein spaces and of covariance kernels.

a) The Monge-Kantorovich distance: Let us consider the
setW2(R) of probability measures on R with a finite moment
of order two. For two µ, ν in W2 (R) , we denote by Π(µ, ν)
the set of all probability measures π over the product set R×R
with first (resp. second) marginal µ (resp. ν).

The transportation cost with quadratic cost function, or
quadratic transportation cost, between these two measures µ
and ν is defined as

T2(µ, ν) = inf
π∈Π(µ,ν)

∫
|x− y|2 dπ(x, y). (1)

This transportation cost allows to endow the set W2 (R) with
a metric by defining the quadratic Monge-Kantorovich, or
quadratic Wasserstein distance between µ and ν as

W2(µ, ν) = T2(µ, ν)1/2. (2)

A probability measure π in Π(µ, ν) realizing the infimum in
(1) is called an optimal coupling. This vocabulary transfers to
a random vector (X1, X2) with distribution π. We will call
W2(R) endowed with the distance W2 the Wasserstein space.

We will consider on several occasions the collection of
random variables (F−1

µ (U))µ∈W2(R), where F−1
µ defined as

F−1
µ (t) = inf{u, Fµ(u) ≥ t}

denotes the quantile function of the distribution µ, and U is an
uniform random variable on [0, 1]. For every µ, ν ∈ W2(R),
the random vector ((F−1

µ (U)), (F−1
ν (U))) is an optimal cou-

pling (see [19]). Notice that the random variable F−1
µ (U) does

not depend on ν, so that (F−1
µ (U))µ∈W2(R) is an optimal

coupling between every distribution of W2(R).
More details on Wasserstein distances and their links with

optimal transport problems can be found in [28] or [19] for
instance.

b) Covariance kernels: Let us recall that the law of a
Gaussian random process (X(x))x∈E indexed by a set E is
entirely characterized by its mean and covariance functions

M : x 7→ E(X(x))

and
K : (x, y) 7→ Cov(X(x)X(y))



3

(see e.g. [29]).
A function K is actually the covariance of a random process

if and only if it is a positive definite kernel, that is to say for
every x1, · · · , xn ∈ E and λ1, · · · , λn ∈ R,

n∑
i,j=1

λiλjK(xi, xj) ≥ 0. (3)

In this case we say that K is a covariance kernel.
On the other hand, any function can be chosen as the mean

of a random process. Hence without loss of generality we
focus on centered random processes in Section IV.

Positive definite kernels are closely related to negative
definite kernels. A function K : E × E → R is said to be
a negative definite kernel if for every x ∈ E,

K(x, x) = 0 (4)

and for every x1, · · · , xn ∈ E and c1, · · · , cn ∈ R such that∑n
i=1 ci = 0,

n∑
i,j=1

cicjK(xi, xj) ≤ 0. (5)

Example The variogram (x, y) 7→ E(X(x) −X(y))2 of any
random field X is a negative definite kernel.

If the inequality (3) (resp. (5)) is strict as soon as not
every λi (resp. ci) is null and the xi are two by two distinct,
a positive definite (resp. negative definite) kernel is said to
be nondegenerate. Nondegeneracy of a covariance kernel is
equivalent to the fact that every covariance matrix built with
K is invertible. We will say that a Gaussian random process
is nondegenerate if its covariance function is a nondegenerate
kernel. Nondegeneracy is is usually a desirable condition for
Kriging, since the forecast is built using the inverse of the
covariance matrix of the observations. In addition, Gaussian
process models with degenerate kernels have structural restric-
tions that can prevent them for being flexible enough. We give
the nondegeneracy of the fractional Brownian motion indexed
by the Wasserstein space in Section IV.

c) Stationarity: Stationarity is a property of random
processes that is standard in the Kriging literature. Roughly
speaking, a stationary random process behaves in the same
way at every point of the index space. It is also an enjoy-
able property for technical reasons. In particular it is a key
assumption for the proofs of the properties we give in Section
V.

We say that a random process X indexed by a metric space
(E, d) is stationary if it has constant mean and for every
isometry g of the metric space we have

Cov(X(g(x)), X(g(y))) = Cov(X(x), X(y)). (6)

Let us notice in particular that if the covariance of a random
process is a function of the distance, equation (6) is verified.
This is the assumption we make in Section V.

One can also find the assumption of stationarity for the
increments of a random process. Many classical random
processes have stationarity increments, such as the fractional

Brownian motion. We prove the existence of fractional Brow-
nian motion indexed by the Wasserstein space in Section IV.

We will say that X has stationary increments starting in
o ∈ E if X is centred, X(o) = 0 almost surely, and for every
isometry g we have

Cov (X(g(x))−X(g(o))) = Cov (X(x)−X(o)) . (7)

Notice that the variance of a random process with stationary
increments increases as the input gets far from the origin
point o.

Let us remark that the definitions we gave are usually called
“in the wide sense”, in contrast with stationarity definitions “in
the strict sense”, which asks for the law of the process (or its
increments) to be invariant under the action of the isometries,
and not only the first and second moments. Since we are only
dealing with Gaussian processes those definitions coincide.

d) Isometries of the Wasserstein space: Since we are
interested in processes indexed by the Wasserstein space with
stationarity features, let us recall a few facts about isome-
tries of the Wasserstein space W2(R), that is to say maps
i :W2(R)→W2(R) that preserve the Wasserstein distance.

Trivial isometries come from isometries of R: to any isom-
etry g : R→ R, we can associate an isometry g# :W2(R)→
W2(R) that maps any measure µ ∈ W2(R) to the measure

g#(µ) : A 7→ µ(g−1(A)).

Stationarity of a random process with regard to these trivial
isometries is an interesting feature, since it means that the
statistical properties of the outputs do not change when we
apply an isometry to the real line.

However let us mention that not every isometry of the
Wasserstein space is trivial. In particular, mapping every
distribution to its symmetric regarding its expectancy defines
an isometry of W2(R). We refer to [30] for a complete
description of the isometries of the Wasserstein space.

IV. GAUSSIAN PROCESS MODELS FOR DISTRIBUTION
INPUTS

In this section we give covariance kernels on the space
of probability distributions on the real line. This allows for
modeling and Gaussian process regression of datasets with
distribution inputs.

We start in Section IV-A by giving a generalization of
the seminal fractional Brownian motion to distributions inputs
endowed with the Wasserstein distance.

Then, in Section IV-B we give Gaussian processes that
are stationary with respect to the Wasserstein distance on the
inputs.

A. Fractional Brownian motion with distribution inputs

We first consider the family of fractional Brownian kernels

KH,µ0(µ, ν)

=
1

2

(
W 2H

2 (µ0, µ) +W 2H
2 (µ0, ν)−W 2H

2 (µ, ν)
)
, (8)

where 0 < H ≤ 1 and µ0 ∈ W2(R) are fixed.
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Note that these kernels are obtained by taking the co-
variances of the classical fractional Brownian motions and
replacing the distance |t − s| between two times s, t ∈ R by
the Wasserstein distance W2(µ, ν) between two distribution
inputs. The measure µ0 ∈ W2(R) plays the role of the origin
0 ∈ R.

Theorem IV.1. For every 0 ≤ H ≤ 1 and a given µ0 ∈
W2(R) the function KH,µ0 defined by (8) is a covariance
function on W2(R). Furthermore KH,µ0 is nondegenerate if
and only if 0 < H < 1.

The Gaussian process (X(µ))µ∈W2(R) such that{
EX(µ) = 0,

Cov(X(µ), X(ν)) = KH,µ0(µ, ν)
(9)

is the H-fractional Brownian motion with index space W2(R)
and origin in µ0. It inherits properties from the classical
fractional Brownian motion.

It is easy to check that the output at the origin measure µ0

is zero, X(µ0) = 0 almost surely. Furthermore

E(X(µ)−X(ν))2 = W 2H
2 (µ, ν), (10)

from which we deduce that (X(µ))µ∈W2(R) has stationary
increments, which means that the statistical properties of
X(µ) − X(ν) are the same as those of X(g(µ)) − X(g(ν))
for every isometry g of the Wasserstein space.

The fractional Brownion motion is well known for its
parameter H governing the regularity of the trajectories: small
values of H correspond to very irregular trajectories while
greater values give steadier paths. Moreover for H > 1/2 the
process exhibits long-range dependence (see [31]).

From the modelling point of view, it is interesting to
consider the following process: consider (X(µ))µ∈W2(R) the
H-fractional Brownian motion with origin in δ0 the Dirac
measure at 0, f a real-valued function and define

Y (µ) := X(µ̄) + f(m(µ)), (11)

where µ̄ denotes the centred version of µ. We then have,
using X(δ0) = 0 almost surely and (10):

Var(Y (µ)) = E(X(µ̄))2 = E(X(µ̄)−X(δ0))2 = W 2H
2 (µ̄, δ0)

= (Var(µ))
H
.

Hence the mean of the output Y (µ) is a function of the mean
of the input distribution µ and its dispersion is an increasing
function of the dispersion of µ. This is a valuable property
when modeling a function µ 7→ g(µ) as a Gaussian Process
realization µ 7→ Y (µ), when it is believed that the range of
possible values for g increases with the variance of the input
µ.

Let us further notice that for f = id and H = 1 we have

E(Y (µ)) = E(F−1
µ (U))

and

Cov(Y (µ), Y (ν)) = Cov(F−1
µ (U), F−1

µ (U)),

where F−1
µ denotes the quantile function of the distribution µ,

and U is an uniform random variable on [0, 1]. In some sense,

Y is in this case the Gaussian process that mimics the statisti-
cal properties of the optimal coupling (F−1

µ (U))µ∈W2(R) (see
Section III a ).

From now on (with the exception of Section A from the
appendix where we prove Theorem IV.1) we will focus on
stationary processes, which are more adapted to learning tasks
on distributions where there is no a priori reason to associate
different dispersion properties to the outputs corresponding to
different distribution inputs.

B. Stationary processes
We now construct Gaussian processes which are stationary

with respect to the Wasserstein distance.

Theorem IV.2. For every completely monotone function F
and 0 < H ≤ 1 the function

(µ, ν) 7→ F
(
W 2H

2 (µ, ν)
)

(12)

is a covariance function on W2(R). Furthermore a Gaussian
random process with constant mean and covariance (12) is
stationary with respect to the Wasserstein distance.

We recall that a C∞ function F : R+ → R+ is said to be
completely monotone if for every n ∈ N and x ∈ R+,

(−1)nF (n)(x) ≥ 0.

Here F (n) denotes the derivative of order n of F . The
prototype of a completely monotone fuction is x 7→ e−λx,
for any positive λ. Furthermore F is completely monotone if
and only if it is the Laplace transform of a positive measure
µF with finite mass on R+, that is to say

F (x) =

∫
R+

e−λxdµF (λ).

Other examples of completely monotone functions include
x−λ for positive values of λ and log

(
1 + 1

x

)
.

Example Applying theorem IV.2 with the completely mono-
tone functions e−λx we obtain the stationary covariance ker-
nels

e−λW
2H
2 (µ,ν), (13)

for every λ > 0 and 0 < H ≤ 1.
These kernels are generalizations to distribution inputs of

the kernels of the form e−λ‖x−y‖
2H

on Rd, which are classical
in spatial statistics and machine learning. In particular setting
H = 1/2 gives the family of Laplace kernels, and H = 1 the
family of Gaussian kernels.

At this point we have obtained enough covariance func-
tions to consider parametric models that fit practical datasets.
Section V addresses the question of the selection of the best
covariance kernel amongst a parametric family of stationary
kernels, together with the prediction of the associated Gaussian
process. In Section VI we carry out simulations with the
following parametric model, which is directly derived from
(13):{

Kσ2,`,H = σ2e−
W2H

2
` , (σ2, `,H) ∈ C × C ′ × [0, 1]

}
,

(14)
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where C,C ′ ⊂ (0,∞) are two compact sets.

C. Ideas of proof

Theorems IV.1 and IV.2 are direct corollaries of the follow-
ing result:

Theorem IV.3. The function W 2H
2 is a negative definite kernel

if and only if 0 ≤ H ≤ 1. Furthermore, it is nondegenerate if
and only if 0 < H < 1.

One can find in [18] a proof of the negative definiteness of
the kernel W 2H

2 restricted to absolutely continuous distribu-
tions inW2(R). The proof given here holds for any distribution
of W2(R), and we provide the nondegeneracy property of the
kernel.

In short (see Appendix A for a detailed proof), we consider
H = 1 and the optimal coupling (see Section III a)

(Z(µ))µ∈W2(R) := (F−1
µ (U))µ∈W2(R), (15)

where F−1
µ is the quantile function of the distribution µ and

U is an uniform random variable on [0, 1]. This coupling can
be seen as a (non-Gaussian!) random field indexed byW2(R).
As such, its variogram

(µ, ν) 7→ E(Z(µ)− Z(ν))2 (16)

is a negative definite kernel. Furthermore it is equal to
W 2

2 (µ, ν) since the coupling (Z(µ)) is optimal (see (1)). The
proof ends with the use of the following classical lemma:

Lemma IV.4. If K is a negative definite kernel then KH is
a negative definite kernel for every 0 ≤ H ≤ 1.

See e.g. [32] for a proof Lemma IV.4.

Remark In [8], Istas defines the fractional index of a metric
space E endowed with a distance d by

βE := sup
{
β > 0 | dβ is negative definite

}
. (17)

One of the interpretation of the fractional index is that βE/2
it is the maximal regularity for a fractional Brownian motion
indexed by (E, d): indeed the H-fractional Brownian motion
indexed by a metric space exists if and only if H ≤ βE/2.
For instance, the fractional exponent of the Euclidean spaces
Rn is equal to 2, while the fractional index of the spheres Sn
is only 1. Recall that an H-fractional Brownian motion has
more regular paths and exhibits long-distance correlation for
large values of H . In a non-rigorous way, the fractional index
can be seen as some measure of the difficulty to construct
long-distance correlated random fields indexed by the space
(E, d).

It is in general a difficult problem to find the fractional
index of a given space. Theorem IV.3 states that the fractional
exponent βW2(R) of the Wasserstein space is equal to 2.

V. MODEL SELECTION AND GAUSSIAN PROCESS
REGRESSION

A. Maximum Likelihood and prediction

Let us consider a Gaussian process Y indexed by W2(R),
with zero mean function and unknown covariance function K0.

Most classically, it is assumed that the covariance function K0

belongs to a parametric set of the form

{Kθ; θ ∈ Θ}, (18)

with Θ ⊂ Rp and where Kθ is a covariance function and θ
is called the covariance parameter. Hence we have K0 = Kθ0

for some true parameter θ0 ∈ Θ.
For instance, considering the fractional Brownian motion

kernel given in (8), we can have θ = (σ2, H), Θ = (0,∞)×
(0, 1] and Kθ = σ2KH,η , where η is fixed in W2(R). In this
case, the covariance parameters are the order of magnitude
parameter σ2 and the regularity parameter H .

Typically, the covariance parameter θ is selected from a
data set of the form (µi, yi)i=1,...,n, with yi = Y (µi). Several
techniques have been proposed for constructing an estimator
θ̂ = θ̂(µ1, y1, ..., µn, yn), in particular maximum likelihood
(see e.g. [33]) and cross validation [34]–[36]. In this paper,
we shall focus on maximum likelihood, which is widely used
in practice and has received a lot of theoretical attention.

Maximum Likelihood is based on maximizing the Gaussian
likelihood of the vector of observations (y1, ..., yn). The
estimator is θ̂ML ∈ argminLθ with

Lθ =
1

n
ln(detRθ) +

1

n
ytR−1

θ y, (19)

where Rθ = [Kθ(µi, µj)]1≤i,j≤n
Given the maximum likelihood estimator θ̂ML, the value

Y (µ), for any input µ ∈ W2(R), can be predicted by plugging
(see for instance in [33]) θ̂ML in the conditional expectation
(or posterior mean) expression for Gaussian processes. More
precisely, Y (µ) is predicted by Ŷθ̂ML

(µ) with

Ŷθ(µ) = rtθ(µ)R−1
θ y (20)

and

rθ(µ) =

 Kθ(µ, µ1)
...

Kθ(µ, µn)

 .
Note that Ŷθ(µ) is the conditional expectation of Y (µ) given
y1, ..., yn, when assuming that Y is a centered Gaussian
process with covariance function Kθ.

B. Asymptotic properties

In this section, we aim at showing that some of the
asymptotic results of the Gaussian process literature, which
hold for Gaussian processes indexed by Rd, can be extended
to Gaussian processes indexed by W2(R). To our knowledge,
this extension has not been considered before.

For a Gaussian process indexed by Rd, two main asymp-
totic frameworks are under consideration: fixed-domain and
increasing-domain asymptotics [33]. Under increasing-domain
asymptotics, as n → ∞, the observation points x1, ..., xn ∈
Rd are so that mini 6=j ||xi − xj || is lower bounded. Under
fixed-domain asymptotics, the sequence (or triangular array)
of observation points (x1, ..., xn) becomes dense in a fixed
bounded subset of Rd. To be specific, for a Gaussian process
indexed by R, a standard increasing-domain framework would
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be given by xi = i for i ∈ N, while a standard fixed-domain
framework would be given by, for n ∈ N, xi = i/n for
i = 1, ..., n.

Let us now briefly review the existing results for Gaussian
processes indexed by Rd. Typically, under increasing-domain
asymptotics, the true covariance parameter θ0 is estimated
consistently by maximum likelihood, with asymptotic normal-
ity [37]–[42]. Also, predicting with the estimated covariance
parameter θ̂ is asymptotically as good as predicting with θ0

[41].
Under fixed-domain asymptotics, there are cases where

some components of the true covariance parameter θ0 can
not be consistently estimated [33], [43]. Nevertheless, these
components which can not be estimated consistently do not
have an asymptotic impact on prediction [44]–[46]. Some
results on prediction with estimated covariance parameters are
available in [47]. Also, asymptotic properties of maximum
likelihood estimators are obtained in [48]–[52].

We remark, finally, that the above increasing-domain
asymptotic results hold for fairly general classes of covariance
functions, while fixed-domain asymptotic results currently
have to be derived for specific covariance functions and on
a case-by-case basis.

For this reason, in this paper, we focus on extending some
of the above increasing-domain asymptotic results to Gaussian
processes indexed by W2(R). Indeed, this will enable us to
obtain a fair amount of generality with respect to the type of
covariance functions considered.

We thus extend the contributions of [41] in the case of
Gaussian processes with probability distribution inputs. In the
rest of the section, we first list and discuss technical conditions
for the asymptotic results. Then, we show the consistency
and asymptotic normality of maximum likelihood and show
that predictions from the maximum likelihood estimator are
asymptotically as good as those obtained from the true covari-
ance parameter. In Section V-C, we study an explicit example,
for which all the technical conditions can be satisfied. All the
proofs are postponed to the appendix. At the end of Section
V-C, we discuss the novelty of these proofs, compared to those
of the literature, and especially those in [41].

The technical conditions for this section are listed below.

Condition V.1. We consider a triangular array of observation
points {µ1, ..., µn} = {µ(n)

1 , ..., µ
(n)
n } so that for all n ∈ N

and 1 ≤ i ≤ n, µi has support in [i, i+L] with a fixed L <∞.

Condition V.2. The model of covariance functions {Kθ, θ ∈
Θ} satisfies

∀θ ∈ Θ, Kθ(µ, ν) = Fθ (W2(µ, ν)) ,

with Fθ : R+ → R and

sup
θ∈Θ
|Fθ(t)| ≤

A

1 + |t|1+τ

with a fixed A <∞, τ > 1.

Condition V.3. We have observations yi = Y (µi), i =
1, · · · , n of the centered Gaussian process Y with covariance
function Kθ0 for some θ0 ∈ Θ.

Condition V.4. The sequence of matrices Rθ =
(Kθ(µi, µj))1≤i,j≤n satisfies

λinf(Rθ) ≥ c

for a fixed c > 0, where λinf(Rθ) denotes the smallest
eigenvalue of Rθ.

Condition V.5. ∀α > 0,

lim inf
n→∞

inf
‖θ−θ0‖≥α

1

n

n∑
i,j=1

[Kθ(µi, µj)−Kθ0(µi, µj)]
2
> 0.

Condition V.6. ∀t ≥ 0, Fθ(t) is continuously differentiable
with respect to θ and we have

sup
θ∈Θ

max
i=1,··· ,p

∣∣∣∣ ∂∂θiFθ(t)
∣∣∣∣ ≤ A

1 + t1+τ
,

with A, τ as in Condition V.2.

Condition V.7. ∀t ≥ 0, Fθ(t) is three times continuously
differentiable with respect to θ and we have, for q ∈ {2, 3},
i1 · · · iq ∈ {1, · · · p},

sup
θ∈Θ

∣∣∣∣ ∂

∂θi1
· · · ∂

∂θiq
Fθ(t)

∣∣∣∣ ≤ A

1 + t1+τ
.

Condition V.8. ∀(λ1 · · · , λp) 6= (0, · · · , 0),

lim inf
n→∞

1

n

n∑
i,j=1

(
p∑
k=1

λk
∂

∂θk
Kθ0 (µi, µj)

)2

> 0.

Condition V.1 mimics the increasing-domain asymptotic
framework discussed above for vectorial inputs. In particular,
the observation measures µi and µj yield a large Wasserstein
distance when |i− j| is large.

Condition V.2 entails that all the covariance functions under
consideration are stationary in the sense that the covariance
between µ and ν depends only on the distance W2(µ, ν).
Stationarity is also assumed when considering increasing-
domain asymptotics for Gaussian processes indexed by Rd
[37]–[42]. Hence, we remark that the asymptotic results of
the present section do not apply to the covariance functions of
fractional Brownian motion in (8). On the other hand, these
results apply to the power exponential covariance functions in
(14).

Condition V.2 also imposes that the covariance functions in
the parametric model decrease fast enough with the Wasser-
stein distance. This condition is standard in the case of vector
inputs, and holds for instance for the covariance functions in
(14).

Condition V.3 means that we address the well-specified case
[34], [35], where there is a true covariance parameter θ0 to
estimate.

Condition V.4 is technically necessary for the proof tech-
niques of this paper. This condition holds whenever the
covariance model satisfies, for all θ ∈ Θ, w ≥ 0, Fθ(w) =
F̄θ(w) + δθ1{w=0}, where F̄θ is a continuous covariance
function and where infθ∈Θ δθ > 0. This situation corresponds
to Gaussian processes observed with Gaussian measure errors,
or to Gaussian processes with very small scale irregularities,
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and is thus representative of a significant range of practical
applications.

In the case where Fθ is continuous (which usually means
that we have exact observations of a Gaussian process with
continuous realizations), then Condition V.4 implies that

inf
n∈N,i6=j=1,...,n

W2(µi, µj) > 0. (21)

For a large class of Gaussian processes indexed by Rd, it has
been shown that the condition in (21) (with W2 replaced by
the Euclidean distance) is also sufficient for Condition V.4
[41], [53]. The proof relies on the Fourier transform on Rd.
For Gaussian processes indexed by W2(R), one could expect
the condition in (21) to be sufficient to guarantee V.4 in many
cases, although, to our knowledge, obtaining rigorous proofs
in this direction is an open problem.

Condition V.5 means that there is enough information in
the triangular array {µ1, ..., µn} to differentiate between the
covariance functions Kθ0 and Kθ, when θ is bounded away
from θ0. We believe that Condition V.5 can be checked for
specific explicit instances of the triangular array {µ1, ..., µn},
as it involves an explicit sum of covariance values.

Conditions V.6 and V.7 are standard regularity and asymp-
totic decorrelation conditions for the covariance model. They
hold, in particular, for the power exponential covariance model
of (14).

Finally, Condition V.8 is interpreted as an asymptotic local
linear independence of the p derivatives of the covariance
function, around θ0. Since this condition involves an explicit
sum of covariance function derivatives, we believe that it
can be checked for specific instances of the triangular array
{µ1, ..., µn}.

We now provide the first result of this section, showing that
the maximum likelihood estimator is asymptotically consis-
tent.

Theorem V.9. Let θ̂ML be as in (19). Under Conditions V.1
to V.5, we have as n→∞

θ̂ML
P−→ θ0.

In the next theorem, we show that the maximum likeli-
hood estimator is asymptotically Gaussian. In addition, the
rate of convergence is

√
n, and the asymptotic covariance

matrix M−1
ML of

√
n(θ̂ML − θ0) (that may depend on n) is

asymptotically bounded and invertible, see (22).

Theorem V.10. Let MML be the p× p matrix defined by

(MML)i,j =
1

2n
Tr

(
R−1
θ0

∂Rθ0
∂θi

R−1
θ0

∂Rθ0
∂θj

)
,

with Rθ as in (19). Under Conditions V.1 to V.8 we have
√
nM

1/2
ML

(
θ̂ML − θ0

)
L−→

n→∞
N (0, In).

Furthermore,

0 < lim inf
n→∞

λmin(MML) ≤ lim sup
n→∞

λmax(MML) < +∞.
(22)

In the next theorem, we show that, when using the maxi-
mum likelihood estimator, the corresponding predictions of the

values of Y are asymptotically equal to the predictions using
the true covariance parameter θ0. Note that, in the increasing-
domain framework considered here, the mean square predic-
tion error is typically lower-bounded, even when using the
true covariance parameter. Indeed, this occurs in the case of
Gaussian processes with vector inputs, see Proposition 5.2 in
[41].

Theorem V.11. Under Conditions V.1 to V.8 we have

∀µ ∈ W2(R),
∣∣∣Ŷθ̂ML

(µ)− Ŷθ0(µ)
∣∣∣ = oP(1),

with Ŷθ(µ) as in (20).

C. An example

In this section, we provide an explicit example of triangular
array of probability measures for which Conditions V.5 and
V.8 are satisfied. We consider random probability measures
(µi)i∈N which are independent and identically distributed (up
to support shifts to satisfy condition V.1). We then show
that Conditions V.5 and V.8 are satisfied almost surely. The
motivation for studying shifted independent and identically
distributed random probability measures is that this this model
is simple to describe and can generate a large range of
sequences {µ1, ..., µn}.

Proposition V.12. Assume that Conditions V.2, V.6 and V.7
hold.

Assume that for θ 6= θ0, Fθ and Fθ0 are not equal every-
where on R+. Assume that there does not exist (λ1, ..., λp) 6=
(0, ..., 0) so that

∑p
i=1(∂/∂θi)Fθ0 is the zero function on R+.

Let (Zi)i∈Z be independent and identically distributed
Gaussian processes on R with continuous trajectories. Assume
that Z0 has mean function 0 and covariance function C0.
Assume that C0(u, v) = C0(u′, v′) whenever v − u = v′ − u′
and let C0(u, v) = C0(u − v) for ease of notation. Let
Ĉ0(w) =

∫
R C0(t)e−iwtdt with i2 = −1. Assume that

Ĉ0(w)|w|2q is bounded away from 0 and ∞ as |w| → ∞,
for some fixed q ∈ (0,∞).

Let L > 1 be fixed. For i ∈ Z, let fi : R→ R+ be defined by
fi(t) = exp(Zi(t− i))/Mi if t ∈ [i, i+L] and fi(t) = 0 else,
where Mi =

∫ i+L
i

exp(Zi(t − i))dt. Let µi be the measure
with probability density function fi. Then, almost surely, with
the sequence of random probability measures {µ1, ..., µn},
Conditions V.5 and V.8 hold.

In Proposition V.12, the identifiability assumptions on {Fθ}
are very mild, and hold for instance for the power exponential
model in (14).

In Proposition V.12, the random probability measures have
probability density functions obtained from exponentials of
realizations of Gaussian processes. Hence, these measures
have a non-parametric source of randomness, and can take
flexible forms. Several standard covariance functions on R
satisfy the conditions in Proposition V.12, in particular the
Matérn covariance functions (see e.g. [33]).

We remark that, in the context of Proposition V.12, when
Fθ(w) = F̄θ(w)+δθ1{w=0}, with F̄θ a continuous covariance
function and infθ∈Θ δθ > 0, as described when discussing
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Condition V.4, then Conditions V.1 to V.8 hold so that The-
orems V.9, V.10 and V.11 hold. If however Fθ is continuous,
then Condition V.4 almost surely does not hold since L > 1 (as
there will almost surely be pairs of distributions µi, µi, i 6= j,
with arbitrarily small W2(µi, µj)). Nevertheless, when L < 1,
it can be shown that Proposition V.12 still holds when, in the
conditions of this proposition on {Fθ}, R+ is replaced by
∪∞i=1[i−L, i+L]. Also, as discussed above, when L < 1, the
condition in (21) is satisfied and one could expect Condition
V.4 to hold.

We conclude this section by discussing the corresponding
proofs (in the appendix). These proofs can be divided into two
groups. In the first group (proofs of Theorems V.9, V.10 and
V.11 and of Proposition A.7) we show that the arguments in
[41] can be adapted and extended to the setting of the present
article. The main innovations in this first group compared to
[41] are that we allow for triangular arrays of observation
points, and are not restricted to the specific structure of
observation points of [41].

The proofs of the second group (proofs of Lemma A.4
and Proposition V.12) are specific to Gaussian processes with
distribution inputs and are thus original for the most part. In
particular, in the proof of Proposition V.12, we show that,
for two measures obtained by taking exponentials of Gaussian
processes, the corresponding random Wasserstein distance has
maximal distribution support. In this aim, we use equivalence
of Gaussian measure tools and specific technical manipulations
of the Wasserstein distance.

VI. SIMULATION STUDY

We now compare the Gaussian process model suggested in
the present paper, with various models for predicting scalar
outputs corresponding to distributional inputs. Among the
covariance functions introduced in this paper, we shall focus
on the power-exponential model (14), since its covariance
functions are stationary with respect to the Wasserstein dis-
tance. We will not consider the fractional Brownian motion
model (8), since it imposes to choose a “zero distribution”,
from which the variance increases with the distance. While
this feature is relevant in some applications (for instance in
finance), it is not natural in the simulation examples adressed
here.

A. Comparison with projection-based covariance functions

In this section, we focus on Gaussian process models for
prediction. We compare the covariance functions (14) of this
paper, operating directly on the input probability distributions,
to more classical covariance functions operating on projections
of these probability measures on finite dimensional spaces.

1) Overview of the simulation procedure: We address the
input-output map given by, for a distribution ν on R,

F (ν) =
m1(ν)

0.05 +
√
m2(ν)−m1(ν)2

,

where mk(ν) =
∫
R x

kdν(x).
We first simulate independently n = 100 learning distribu-

tions ν1, ..., ν100 as follows. First, we sample uniformly µi ∈

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

Fig. 1. Probability density functions of 10 of the randomly generated learning
distributions for the simulation study.

[0.3, 0.7] and σi ∈ [0.001, 0.2], and compute fi, the density of
the Gaussian distribution with mean µi and variance σ2

i . Then,
we generate the function gi with value fi(x) exp(Zi(x)), x ∈
[0, 1], where Zi is a realization of a Gaussian process on [0, 1]
with mean function 0 and Matérn 5/2 covariance function with
parameters σ = 1 and ` = 0.2 (see e.g. [54] for the expression
of this covariance function). Finally, νi is the distribution
on [0, 1] having density gi/(

∫ 1

0
gi). In Figure 1, we show

the density functions of 10 of these n sampled distributions.
From the figure, we see that the learning distributions keep a
relatively strong underlying two dimensional structure, driven
by the randomly generated means and standard deviations. At
the same time, because of the random perturbations generated
with the Gaussian processes Zi, these distributions are not
restricted in a finite-dimensional space, and can exhibit various
degrees of asymmetries.

From the learning set (νi, F (νi))i=1,...,n, we fit three Gaus-
sian process models, which we call “distribution”, “Legendre”
and “PCA”, and for which we provide more details below.
Each of these three Gaussian process models provide a con-
ditional expectation function

ν → F̂ (ν) = E(F (ν)|F (ν1), ..., F (νn))

and a conditional variance function

ν → σ̂2(ν) = var(F (ν)|F (ν1), ..., F (νn)).

We then evaluate the quality of the three Gaussian pro-
cess models on a test set of size nt = 500 of the form
(νt,i, F (νt,i))i=1,...,nt , where the νt,i are generated in the same
way as the νi above. We consider the two following quality
criteria. The first one is the root mean square error (RMSE),

RMSE2 =
1

nt

nt∑
i=1

(
F (νt,i)− F̂ (νt,i)

)2

,
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which should be minimal. The second one is the confidence
interval ratio (CIR) at level α ∈ (0, 1),

CIRα =
1

nt

nt∑
i=1

1
{∣∣∣F (νt,i)− F̂ (νt,i)

∣∣∣ ≤ qασ̂(νt,i)
}
,

with qα the
(

1
2 + α

2

)
quantile of the standard normal distribu-

tion. The CIRα criterion should be close to α.
2) Details on the Gaussian process models: The “distri-

bution” Gaussian process model is based on the covariance
functions discussed before, operating directly on probability
distributions. In this model, the Gaussian process has mean
function zero and a covariance function of the form

Kσ2,`,H(ν1, ν2) = σ2 exp

(
−W2(ν1, ν2)2H

`

)
.

We call the covariance parameters σ2 > 0, ` > 0 and
H ∈ [0, 1] the variance, correlation length and exponent.
These parameters are estimated by maximum likelihood from
the training set (νi, F (νi))i=1,...,n, which yields the estimates
σ̂2, ˆ̀, Ĥ . Finally, the Gaussian process model for which the
conditional moments F̂ (ν) and σ̂2(ν) are computed is a
Gaussian process with mean function zero and covariance
function Kσ̂2,ˆ̀,Ĥ .

The “Legendre” and “PCA” Gaussian process models are
based on covariance functions operating on finite-dimensional
linear projections of the distributions. These projection-based
covariance functions are used in the literature, in the general
framework of stochastic processes with functional inputs, see
e.g. [55], [56]. For the “Legendre” covariance function, for a
distribution ν with density fν and support [0, 1], we compute,
for i = 0, ..., o− 1

ai(ν) =

∫ 1

0

fν(t)pi(t)dt,

where pi is the i− th normalized Legendre polynomial, with∫ 1

0
p2
i (t)dt = 1. The integer o is called the order of the

decomposition. Then, the covariance function operates on the
input vector (a0(ν), ..., ao−1(ν)) and is of the form

Kσ2,`0,...,`o−1,H(ν1, ν2)

= σ2 exp

−{o−1∑
i=0

[
|ai(ν1)− ai(ν2)|

`i

]}H .

The covariance parameters σ2 ≥ 0, `0 > 0, ..., `o−1 >
0, H ∈ (0, 1] are estimated by maximum likelihood, from the
learning set (a0(νi), ..., ao−1(νi), F (νi))i=1,...,n. Finally, the
conditional moments F̂ (ν) and σ̂2(ν) are computed as for the
“distribution” Gaussian process model.

For the “PCA” covariance function, we discretize each of
the n probability density functions fνi to obtain n vectors
vi = (fνi(j/(d − 1)))j=0,...,d−1, with d = 100. Then, we let
w1, ..., wo be the first o principal component vectors of the set
of vectors (v1, ..., nn). For any distribution ν with density fν ,
we associate its projection vector (a1(ν), ..., ao(ν)) defined as

ai(ν) =
1

d

d−1∑
j=0

fν(j/(d− 1))(wi)j .

model RMSE CIR0.9

“distribution” 0.094 0.92
“Legendre” order 5 0.49 0.92
“Legendre” order 10 0.34 0.89
“Legendre” order 15 0.29 0.91

“PCA” order 5 0.63 0.82
“PCA” order 10 0.52 0.87
“PCA” order 15 0.47 0.93

TABLE I
VALUES OF DIFFERENT QUALITY CRITERIA FOR THE “DISTRIBUTION”,

“LEGENDRE” AND “PCA” GAUSSIAN PROCESS MODELS. THE
“DISTRIBUTION” GAUSSIAN PROCESS MODEL IS BASED ON COVARIANCE
FUNCTIONS OPERATING DIRECTLY ON THE INPUT DISTRIBUTIONS, WHILE
“LEGENDRE” AND “PCA” ARE BASED ON LINEAR PROJECTIONS OF THE

INPUT DISTRIBUTIONS ON FINITE-DIMENSIONAL SPACES. FOR
“LEGENDRE” AND “PCA”, THE ORDER VALUE IS THE DIMENSION OF THE

PROJECTION SPACE. THE QUALITY CRITERIA ARE THE ROOT MEAN
SQUARE ERROR (RMSE) WHICH SHOULD BE MINIMAL AND THE

CONFIDENCE INTERVAL RATIO (CIR0.9) WHICH SHOULD BE CLOSE TO
0.9. THE “DISTRIBUTION” GAUSSIAN PROCESS MODEL CLEARLY

OUTPERFORMS THE TWO OTHER MODELS.

This procedure corresponds to the numerical implementa-
tion of functional principal component analysis presented in
Section 2.3 of [57]. Then, the covariance function in the “PCA”
case operates on the input vector (a1(ν), ..., ao(ν)). Finally,
the conditional moments F̂ (ν) and σ̂2(ν) are computed as for
the “Legendre” Gaussian process model.

3) Results: In Table I we show the values of the RMSE
and CIR0.9 quality criteria for the “distribution”, “Legendre”
and “PCA” Gaussian process models. From the values of the
RMSE criterion, the “distribution” Gaussian process model
clearly outperforms the two other models. The RMSE of
the “Legendre” and “PCA” models slightly decreases when
the order increases, and stay well above the RMSE of the
“distribution” model. Note that with orders 10 and 15, de-
spite being less accurate, the “Legendre” and “PCA” models
are significantly more complex to fit and interpret than the
“distribution” model. Indeed these two models necessitate
to estimate 12 and 17 covariance parameters, against 3 for
the “distribution” model. The maximum likelihood estimation
procedure thus takes more time for the “Legendre” and “PCA”
models than for the “distribution” model. We also remark
that all three models provide appropriate predictive confidence
intervals, as the value of the CIR0.9 criterion is close to 0.9.
Finally, “Legendre” performs slightly better than “PCA”.

Our interpretation for these results is that, because of the
nature of the simulated data (νi, F (νi)), working directly
on distributions, and with the Wasserstein distance, is more
appropriate than using linear projections. Indeed, in particular,
two distributions with similar means and small variances are
close to each other with respect to both the Wasserstein
distance and the value of the output function F . However,
if the ratio between the two variances is large, the probability
density functions of the two distributions are very different
from each other, with respect to the L2 distance. Hence,
linear projections based on probability density functions is
inappropriate in the setting considered here.
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B. Comparison with the kernel regression procedure of [24]

In this section, we compare the “distribution” method
of Table I which is suggested in the present article, with
the “kernel regression” procedure of [24]. This procedure
consists in predicting f(P ) ∈ R, with P ∈ W2(R),
from P̂ , P̂1, ..., P̂n, f(P1), ..., f(Pn) where P̂ , P̂1, ..., P̂n are
estimates of P, P1, ..., Pn ∈ W2(R) obtained from sample
values of P, P1, ..., Pn. In [24], P̂ , P̂1, ..., P̂n correspond to
kernel smoothing estimates of probability density functions
constructed from the sample values. Then, the prediction f̂(P̂ )
of f(P ) is obtained by a weighted average of f(P1), ..., f(Pn)
where the weights are computed by applying a kernel to the
distances D(P̂ , P̂1), ..., D(P̂ , P̂n). The distances suggested in
[24] are the L1 distances between the estimated probability
density functions. We remark that there is no estimate of the
prediction error f(P ) − f̂(P̂ ) in [24], which is a downside
compared to the Gaussian process model considered in this
paper.

An interesting feature of the setting of [24] is that the input
P of the function value f(P ) is not observed. Only a sample
from P is available (this is the “two-stage sampling” difficulty
described in [16], which arises in various applications) We
shall demonstrate in this section that Gaussian process models
can accommodate with this constraint. The idea is that f(P̂ )
differs from f(P ), and that this difference can be modeled by
adding a nugget variance parameter to the Gaussian process
model. More precisely, the covariance functions we shall study
in this section are

Kσ2,`,H,δ(ν1, ν2)

= σ2 exp

(
−W2(ν1, ν2)2H

`

)
+ δ1{W2(ν1, ν2) = 0}, (23)

where δ ≥ 0 is an additional covariance parameter, which
can also be estimated in the maximum likelihood procedure.
Apart from this modification of the covariance model, we carry
out the Gaussian process model computation as in Section
VI-A, with always W2(P,Q) replaced by W2(P̌ , Q̌), where
P̌ , Q̌ are the empirical distributions corresponding to the
available sample values from P,Q.

We first reproduce the “skewness of Beta” example of [24].
In this example n = 275 distributions P1, ..., Pn are randomly
and independently generated for the learning set. We have that
Pi = Bai is the Beta distribution with parameters (ai, b) where
ai is uniformly distributed on [3, 20] and b = 3. The test
set consists in nt = 50 distributions Pt,1, ..., Pt,nt generated
independently in the same way. The function to predict is
defined by f(Pa) = [2(b−a)(a+b+1)1/2]/[(a+b+2)(ab)1/2]
and corresponds to the skewness of the Beta distribution.
For each distribution, 500 sample values are available. For
the “kernel regression” procedure, we used the same settings
(kernel, bandwidth selection, training and validation sets...) as
in [24].

The predictions obtained by the “distribution” and “kernel
regression” procedures are presented in Figure 2. We observe
that both methods perform equally well. The prediction errors
are small, and are essentially due to to the fact that we only
observe random samples from the distributions. [We have

5 10 15 20

−
0.

8
−

0.
4

0.
0

5 10 15 20

−
0.

8
−

0.
4

0.
0

Fig. 2. Comparison of the “distribution” Gaussian process model of this
paper (left) with the “kernel regression” procedure (right) for the “skewness
of Beta” example. We predict the skewness of the Beta distribution (y-axis)
from samples obtained from Beta distributions with parameter (a, 3) with
a ∈ [3, 20] (x-axis). The true skewness is in plain line and the predictions
are the dots. Both methods perform equally well.

repeated the simulation of Figure 2 with 5, 000 sample values
instead of 500, and the predicted values have become visually
equal to the true values.] Our conclusion on this “skewness
of Beta” example is that the setting is here very favourable
(the input space of distributions is one-dimensional and 275
observations of the function are available) so that both methods
have similar good performances.

Next, we repeat the “distribution” and “kernel regression”
procedures on the same setting as in Table I (except that each
input and predictand distribution is only observed indirectly,
through 500 sample values from it). The prediction results,
based on the same criteria as in Table I are given in Table
II. We observe that the RMSE prediction criterion for the
“distribution” model is deteriorated compared to Table I. This
is due to the fact that the distributions are not observed
exactly anymore. The CIR0.9 criterion is equal to 0.91 for
the “distribution” Gaussian process model. Hence, thanks to
the addition of the nugget variance parameter, the Gaussian
process model is able to take into account the additional
uncertainty due to the random samples of the unobserved
distributions, and to yield appropriate conditional variances.

We also observe that the RMSE pediction criterion is much
larger for the “kernel regression” procedure. Hence, in this
more challenging scenario (the input-space of distributions
is non-parametric and only 100 learning function values are
available), the “distribution” Gaussian process model become
strongly preferable. In our opinion, this is because the Wasser-
stein distance is here more relevant than distances between
probability density functions (as discussed for Table I). Also,
Gaussian process prediction has benefits compared to predic-
tion with weighted kernel averages. In particular, Gaussian
process predictions come with a probabilistic model and have
optimality properties under this model.

C. Numerical complexity of the method

Our method inherits the numerical complexity of Gaus-
sian process regression in more classical settings. Given a
learning dataset (µi, yi)

N
i=1 the complexity of the Kriging

method is given by the inversion of the covariance matrix
Kθ(µi, µj)

N
i,j=1, which is in O(N3) number of operations.

The Wasserstein distances between every pair of µi need also
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model RMSE CIR0.9

“distribution” 0.21 0.91
“kernel regression” 0.93

TABLE II
SAME SETTING AS IN TABLE I, EXCEPT THAT THE INPUT AND

PREDICTAND DISTRIBUTIONS ARE ONLY OBSERVED INDIRECTLY,
THROUGH SAMPLE VALUES FROM THEM. THE “DISTRIBUTION” MODEL

SUGGESTED IN THIS PAPER CLEARLY OUTPERFORMS THE “KERNEL
REGRESSION” PROCEDURE.

to be evaluated, which costs O(N2q) operations, where q is
the size of the sampling of the distributions.

Each prediction is then obtained by a vector product in
O(N) operations, while the computation of the conditional
variance at some outputs is obtained in O(N2).

The O(N3) cost of the overall method makes it challenging
to use on very large datasets, however on moderately large
datasets its good performances makes it an interesting choice,
and in particular a preferable choice over the other methods
it was compared to in this simulation study.

For the sake of illustration, we remark that it took around
9 seconds to carry out our whole suggested Gaussian process
procedure, in the case of Table I, and around 30 seconds in
the case of Table II.

See also [58] for a discussion of the covariance tapering
method to reduce the numerical cost of Gaussian process
regression.

VII. CONCLUSION

We provided a new approach to learning with distribution
inputs. Its strength relies on the existence of positive definite
kernels on the distribution space, which enables the use
of Gaussian process models and kernel learning methods.
In particular, we generalized the seminal models that are
the fractional Brownian motion and the power exponential
stationary processes, to distribution inputs. The kernels we use
are functions of the Wasserstein distance, which has proven
its efficiency as a discrepancy measure between distributions
in numerous applications. Our method requires only the distri-
butions inputs to have a second order moment, which allows
the simultaneous handling of very heterogeneous data, such
as absolutely continuous distributions, deterministic inputs and
empirical distributions, which is particularly important when
only a sample of the input distributions is known.

Focusing on Gaussian process regression with stationary
covariance functions, we proved that our method extends this
classical tool to distribution inputs. In particular, we gave
generalization of state of the art asymptotic results to our
setting. As in vector input Kriging, the overall numerical
complexity of the method is in O(n3), where n is the size
of the dataset, which is more costly than other distribution
regression methods (such as the kernel regression procedure
from [24]), however our numerical simulations suggest that our
method gives better prediction. Furthermore Kriging comes
with an error estimation in the form of the conditional variance
of the Gaussian process, which is an important guarantee in
practice.

On the down side, the methods we use to prove the positive
definiteness of our kernels are tightly related to the existence
of an optimal coupling between every distribution, which
existence is specific to dimension one. It is an important
problem for numerous applications to give learning methods
for multidimensional distributions. Hence, it would be valuable
to obtain kernels based on the multidimensional Wasserstein
space. This would require an other approach that the one used
in the present paper, and constitutes an interesting problem for
further research.

APPENDIX
PROOFS

A. Proofs for Section IV
Proof of Theorem IV.3. We start with the negative definite-
ness. For any µ ∈ W2(R) we denote by F−1

µ the quantile
function associated to µ. It is well known that given a uniform
random variable U on [0, 1], F−1

µ (U) is a random variable with
law µ, and furthermore for every µ, ν ∈ W2(R):

W 2
2 (µ, ν) = E

(
F−1
µ (U)− F−1

ν (U)
)2
, (24)

that is to say the coupling of µ and ν given by the ran-
dom vector (F−1

µ (U), F−1
ν (U)) is optimal. Consider now

µ1, · · · , µn ∈ W2(R) and c1, · · · , cn ∈ R such that∑n
i=1 ci = 0. We have

n∑
i,j=1

cicjW
2
2 (µi, µj)

=

n∑
i,j=1

cicj E
(
F−1
µi

(U)− F−1
µj

(U)
)2

=

n∑
i,j=1

cicj E
(
F−1
µi

(U)
)2

+

n∑
i,j=1

cicj E
(
F−1
µj

(U)
)2

− 2

n∑
i,j=1

cicj E
(
F−1
µi

(U)F−1
µj

(U)
)
.

Using
∑n
i=1 ci = 0 the first two sums vanish and we obtain

n∑
i,j=1

cicjW
2
2 (µi, µj)

=− 2

n∑
i,j=1

cicj E
(
F−1
µi

(U)F−1
µj

(U)
)

=− 2E

(
n∑
i=1

ciF
−1
µi

(U)

)2

≤ 0,

which proves that W 2H
2 is a negative definite kernel for 0 ≤

H ≤ 1.
Let us now consider H > 1. Using (1) it is clear that for

every x, y ∈ R, W2(δx, δy) = |x − y|. It is well known (see
e.g [8]) that |x − y]2H is not a negative definite kernel on R
for H > 1, hence the same is true for W 2H

2 .
Let us now prove the nondegeneracy of the kernel: the idea

of the proof is adapted from [59]: we consider W2(R) × R
endowed with the product distance

d((µ, s), (ν, t)) =
(
W2(µ, ν)2 + |s− t|2

)1/2
.
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We assume the degeneracy of the kernel W 2H
2 on W2(R)

and deduce that d2H is not negative definite on W2(R) × R,
in contradiction with the following Lemma, from which we
postpone the proof:

Lemma A.1. The function d2H is a negative definite kernel
if and only if 0 ≤ H ≤ 1.

Let us fix 0 < H < 1 and assume that W 2H
2 is degenerate.

There exists µ1, · · · , µn ∈ W2(R) and c1, · · · , cn ∈ R such
that

∑n
i=1 ci = 0 and

n∑
i,j=1

cicjW
2H
2 (µi, µj) = 0. (25)

In W2(R) × R we now consider the points Pi = (µi, 0) for
1 ≤ i ≤ n and Pn+1 = (µn, ε) with ε > 0. We also set c′i = ci
for every 1 ≤ i ≤ n − 1 and c′n = c′n+1 = cn/2. Notice that
we have

n+1∑
i=1

c′i = 0.

Now
n+1∑
i,j=1

c′ic
′
jd

2H(Pi, Pj)

=

n−1∑
i,j=1

c′ic
′
jd

2H(Pi, Pj) + 2

n−1∑
i=1

c′ic
′
nd

2H(Pi, Pn)

+ 2

n−1∑
i=1

c′ic
′
n+1d

2H(Pi, Pn+1) + 2c′nc
′
n+1d

2H(Pn, Pn+1).

We now use

d2H(Pi, Pn+1) =
(
W2(µi, µn)2 + ε2

)H
=W2(µi, µn)2H +O

(
ε2
)

to obtain
n+1∑
i,j=1

c′ic
′
jd

2H(Pi, Pj)

=

n−1∑
i,j=1

cicjW
2H
2 (µi, µj) + 2

n−1∑
i=1

ci
cn
2
W 2H

2 (µi, µn)

+ 2

n−1∑
i=1

ci
cn
2
W 2H

2 (µi, µn) +
c2n
2
ε2H +O

(
ε2
)

=

n−1∑
i,j=1

cicjW
2H
2 (µi, µj) + 2

n−1∑
i=1

cicnW
2H
2 (µi, µn)

+
c2n
2
ε2H +O

(
ε2
)

=

n∑
i,j=1

cicjW
2H
2 (µi, µj) +

c2n
2
ε2H +O

(
ε2
)
.

Finally using (25) and H < 1 we obtain

n+1∑
i,j=1

c′ic
′
jd

2H(Pi, Pj) =
c2n
2
ε2H + o

(
ε2H

)
,

which is positive for ε small enough. This shows that d2H is
not negative definite, in contradiction with Lemma A.1. In the
end W 2H

2 is nondegenerate for every 0 < H < 1.
We now use the same argument as in the end of the proof

of Theorem IV.3. Since W 2H
2 (δx, δy) = |x−y|2H and |x−y|2

and |x − y|0 are degenerate kernels on R, W 0
2 and W 2

2 are
degenerate kernels.

Proof of Lemma A.1. For H = 1 we have

d2((µ, s), (ν, t)) = W2(µ, ν)2 + |s− t|2

hence d2 is negative definite as the sum of two negative definite
kernels. From Lemma IV.4 we get that d2H is a negative
definite kernel for every 0 ≤ H ≤ 1.

For H > 1 we notice that d2H(µ, x)(µ, y) = |x − y|2H
and use again the fact that |x− y|2H is not a negative definite
kernel to conclude that d2H is not negative definite.

Proof of Theorem IV.1. The fact that (8) are covariance ker-
nels is a direct consequence of Theorem IV.3 and the following
Schoenberg Theorem (which is proven in [32]):

Theorem A.2 (Schoenberg). Given a set X , two functions
K,R : X×X → R, and o ∈ X such that for every x, y ∈ X ,

K(x, x) = 0

and
R(x, y) = K(x, o) +K(y, o)−K(x, y),

the function R is a positive definite kernel if and only if K is
a negative definite kernel.

We now prove the degeneracy: let X = (X(µ))µ∈W2(R)

denote the H-fractional Brownian field indexed by W2(R)
with origin in σ. Assume X is degenerate: there exist
λ1, · · · , λn ∈ R and µ1, · · · , µn ∈ W2(R) such that

n∑
i=1

λnX(µn) = 0 almost surely.

Since X(σ) = 0 almost surely, setting µn+1 = σ and λn+1 =
−
∑n
i=1 λi, it is clear that

n+1∑
i=1

λnX(µn) = 0 almost surely,

which implies

n+1∑
i,j=1

λiλjW
2H
2 (µi, µj) = E

(
n+1∑
i=1

λnX(µn)

)2

= 0.

Since
∑n+1
i=1 λi = 0 this shows that W 2H

2 is degenerate, in
contradiction with Theorem IV.3. Therefore X is nondegener-
ate for every 0 < H < 1.

The degeneracy of the 0-fractional and the 2-fractional
Brownian field indexed by W2(R) is a direct consequence
from the degeneracy of W 0

2 and W 2
2 .



13

Proof of Theorem IV.2. The fact that (12) are covariance ker-
nels is a direct consequence of Theorem IV.3 and the following
Schoenberg Theorem (which proof can be found in [32]):

Theorem A.3 (Schoenberg). Let F : R+ → R+ be a
completely monotone function, and K a negative definite
kernel. Then (x, y) 7→ F (K(x, y)) is a positive definite kernel.

Furthermore as a function of the distance W2, (12) is ob-
viously invariant under the action of any isometry of W2(R),
so that the second claim holds.

B. Proofs for Section V-B

Proof of Theorem V.9. We have θ̂ML ∈ argminLθ with

Lθ =
1

n
ln(detRθ) +

1

n
ytR−1

θ y.

From Lemma A.5 we have that

sup
θ∈Θ

λmax(Rθ) and sup
θ∈Θ

max
i=1,··· ,p

λmax

(
∂

∂θi
Rθ

)
are bounded as n → ∞. Hence we can proceed as in the
beginning of the proof of Proposition 3.1 in [41] to obtain

sup
θ∈Θ
‖Lθ − E(Lθ)‖ = oP(1). (26)

Following again the proof of Proposition 3.1 in [41] we obtain
the existence of a positive a such that

E(Lθ)− E(Lθ0) ≥ a|Rθ −Rθ0 |2,

with |Λ|2 = (1/n)
∑n
i,j=1 Λ2

i,j .
Hence from Condition V.5 and (26) we have ∀α > 0,

P
(∥∥∥θ̂ML − θ0

∥∥∥ ≥ α) −→
n→∞

0

and so
θ̂ML

P−→
n→∞

θ0.

Proof of Theorem V.10. From Lemma A.5 and Condition V.4
we have for every n ∈ N,

∣∣∣(MML)i,j

∣∣∣ ≤ B for a fixed B <∞.
In addition, for any λ1, · · · , λp ∈ R such that

∑p
i=1 λ

2
i = 1,

p∑
i,j=1

λiλj (MML)i,j

=
1

2n
Tr

R−1
θ0

(
p∑
i=1

λi
∂Rθ0
θi

)
R−1
θ0

 p∑
j=1

λj
∂Rθ0
θj


=

1

2

∣∣∣∣∣R−1/2
θ0

(
p∑
i=1

λi
∂Rθ0
∂θi

)
R
−1/2
θ0

∣∣∣∣∣
2

≥ C2

∣∣∣∣∣
p∑
i=1

λi
∂Rθ0
∂θi

∣∣∣∣∣
2

with a fixed C > 0, since for every n

λmin

(
R−1
θ0

)
=

1

λmax(Rθ0)
≥ C > 0

from Lemma A.5. Hence from Condition V.8 we obtain

lim inf
n→∞

λmin(MML) > 0.

Hence (22) is proved. Let us now assume that

√
nM

1/2
ML

(
θ̂ML − θ0

)
�

��L−→
n→∞

N (0, In). (27)

Then there exists a bounded measurable function g : Rp →
R, ξ > 0 and a subsequence n′ such that along n′ we have

∣∣∣E [g (√nM1/2
ML(θ̂ML − θ0)

)]
− E(g(U))

∣∣∣ ≥ ξ,
with U ∼ N (0, Ip).

In addition, by compactness, up to extracting another sub-
sequence we can assume that

MML →
n→∞

M∞,

where M∞ is a symmetric positive definite matrix.
Now the remaining of the proof is similar to the proof of

Proposition 3.2 in [41]. We have

∂

∂θi
Lθ =

1

n

(
Tr

(
R−1
θ

∂Rθ
∂θi

)
− ytR−1

θ

∂Rθ
∂θi

R−1
θ y

)
.

Hence, exactly as in the proof of Proposition D.9 in [41] we
can show √

n
∂

∂θi
Lθ0

L−→
n→∞

N (0, 4M∞).

Let us compute

∂2

∂θi∂θj
Lθ0 =

1

n
Tr

(
−R−1

θ0

∂Rθ0
∂θi

R−1
θ0

Rθ0
∂θj

+R−1
θ0

∂2Rθ0
∂θi∂θj

)
+

1

n
yt
(

2R−1
θ0

∂Rθ0
∂θi

R−1
θ0

∂Rθ0
∂θj

R−1
θ0
−R−1

θ0

∂2Rθ0
∂θi∂θj

R−1
θ0

)
y.

We have

E
(

∂2

∂θi∂θj
Lθ0

)
= 2MML,

and from Condition V.4 and Lemma A.6,

Var

(
∂2

∂θi∂θj
Lθ0

)
−→
n→∞

0.

Hence
∂2

∂θi∂θj
Lθ0

P−→
n→∞

2M∞.

Moreover,
∂3

∂θi∂θj∂θk
Lθ can be written as

1

n
Tr(Aθ) +

1

n
ytBθy,

where Aθ and Bθ are sums of products of the matrices R−1
θ

or
∂

∂θi1
· · · ∂

∂θiq
Rθ with q ∈ {0, · · · , 3} and i1, · · · , iq ∈

{1, · · · p}.
Hence from Condition V.4 and from Lemmas A.5 and A.6

we have

sup
θ∈Θ

∥∥∥∥ ∂3

∂θi∂θj∂θj
Lθ

∥∥∥∥ = OP(1).
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Following exactly the proof of Proposition D.10 in [41] we
can show that

√
n(θ̂ML − θ0)

L−→
n′→∞

N (0,M−1
∞ ).

Moreover since MML →
n→∞

M∞ we have

√
nM

1/2
ML(θ̂ML − θ0)

L−→
n′→∞

N (0, Ip).

This is in contradiction with (27) and concludes the proof.

Proof of Theorem V.11. From Theorem V.9 it is enough to
show for i = 1, · · · , p that

sup
θ∈Θ

∣∣∣∣ ∂∂θi Ŷθ(µ)

∣∣∣∣ = OP(1).

From a version of Sobolev embedding theorem (see Theorem
4.12, part I, case A in [60]), there exists a finite constant AΘ

depending only on Θ such that

sup
θ∈Θ

∣∣∣∣ ∂∂θi Ŷθ(µ)

∣∣∣∣ ≤ AΘ

∫
Θ

∣∣∣∣ ∂∂θi Ŷθ(µ)

∣∣∣∣p+1

dθ

+AΘ

p∑
j=1

∫
Θ

∣∣∣∣ ∂∂θj ∂

∂θi
Ŷθ(µ)

∣∣∣∣p+1

dθ.

Therefore in order to prove the theorem it is sufficient to show
that for wθ(µ) of the form rθ(µ) or ∂

∂θi
rθ(µ) or ∂

∂θi
∂
∂θj

rθ(µ),
and for Wθ equal to a product of the matrices R−1

θ or ∂
∂θi
Rθ

or ∂
∂θi

∂
∂θj

Rθ, we have∫
Θ

∣∣wtθ(µ)Wθy
∣∣p+1

dθ = OP(1).

From Fubini theorem for positive integrands we have

E
[∫

Θ

∣∣wtθ(µ)Wθy
∣∣p+1

dθ

]
=

∫
Θ

E
(∣∣wtθ(µ)Wθy

∣∣p+1
)
dθ.

Now there exists a constant cp+1 so that for X a centred
Gaussian random variable,

E
(
|X|p+1

)
= cp+1 (Var(X))

(p+1)/2
,

hence

E
(∫

Θ

∣∣wtθ(µ)Wθy
∣∣p+1

dθ

)
= cp+1

∫
Θ

(
Var

(
wtθ(µ)Wθy

))(p+1)/2
dθ

= cp+1

∫
Θ

(
wtθ(µ)WθRθ0W

t
θwθ(µ)

)(p+1)/2
dθ.

Now from Lemmas A.5 and A.6 there exists B <∞ such
that

sup
θ∈Θ

λmax (WθRθ0Wθ) ≤ B.

Thus

E
(∫

Θ

∣∣wtθWθy
∣∣p+1

dθ

)
≤ B(p+1)/2cp+1

∫
Θ

∥∥wtθ(µ)
∥∥(p+1)/2

dθ.

Finally for some q ∈ {0, 1, 2} and for i1, · · · , iq ∈ {1, · · · p}
we have

sup
θ∈Θ

∥∥wtθ(µ)
∥∥2

= sup
θ∈Θ

n∑
i=1

(
∂

∂θi1
· · · ∂

∂θiq
Fθ(W2(µ, µi))

)2

≤ C
n∑
i=1

∣∣∣∣ 1

1 +W2(µ, µi)1+τ

∣∣∣∣ ,
with C <∞ coming from Condition V.2, V.6, and V.7.

Using the proof of Lemma A.4 we see that this quantity is
bounded, which finishes the proof of Theorem V.11.

C. Technical lemmas for Section V-B

Lemma A.4.

sup
µ∈W2(R)

sup
θ∈Θ

n∑
j=1

|Kθ(µ, µj)|

is bounded as n→∞.

Proof. Let µ ∈ W2(R) and i∗ ∈ argmink∈{1,···n}W2(µk, µ).
For every j ∈ {1, · · · , n}, W2(µ, µj) ≥ W2(µ, µi∗). More-
over from the triangle inequality we have

W2(µ, µj) ≥W2(µj , µi∗)−W2(µi∗ , µ),

hence
W2(µ, µj) ≥

W2(µj , µi∗)

2
.

Let us define

rµ := sup
θ∈Θ

n∑
i=1

Fθ(W2(µi, µ))

From Condition V.2 we have

rµ ≤
n∑
i=1

A

1 +W2(µi, µ)1+τ
≤

n∑
i=1

A

1 +
(
W2(µj ,µi∗ )

2

)1+τ .

Now

W 2
2 (µj , µi∗) =

∫ 1

0

∣∣qµj (t)− qµi∗ (t)
∣∣2 dt,

where for every t ∈ [0, 1]

qµ(t) = inf{x ∈ R| Fµ(x) ≥ t}.

Note that from Condition V.1 for every t ∈ [0, 1],

qµi
(t) ∈ [i, i+ L].

If |j − i∗| ≥ L we have

∀t ∈ R, |qµi∗ (t)− qµj
(t)| ≥ |j − i∗| − L

so that
W2(µi∗ , µj) ≥ |j − i∗| − L. (28)

Hence

rµ ≤ 2AL+
∑

j, |j−i∗|≥L

A

1 +
(
|j−i∗|−L

2

)1+τ

≤ 2AL+

+∞∑
j=−∞

A

1 +
∣∣ j

2

∣∣1+τ <∞.
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Lemma A.5. Under Conditions V.1 to V.4,

sup
θ∈Θ

λmax(Rθ)

and

sup
θ∈Θ

max
i=1···p

λmax

(
∂

∂θi
Rθ

)
are bounded as n→∞.

Proof.

sup
θ∈Θ

λmax(Rθ) ≤ sup
θ∈Θ

max
i=1,...,n

n∑
j=1

|Fθ(W2(µi, µj))|

is bounded as n→∞ from Lemma A.4. The proof is similar
for

sup
θ∈Θ

max
i=1···p

λmax

(
∂

∂θi
Rθ

)
.

In a similar way we also obtain the following Lemma.

Lemma A.6. ∀q ∈ {2, 3}, ∀i1, · · · , iq ∈ {1, · · · p},

sup
θ∈Θ

λmax

(
∂

∂θi1
· · · ∂

∂θiq
Rθ

)
is bounded as n→∞.

D. Proofs for Section V-C

Proposition A.7. Under the setting of Proposition V.12, al-
most surely as n→∞,

sup
θ∈Θ

∣∣∣∣∣∣ 1n
n∑

i,j=1

[Kθ(µi, µj)−Kθ0(µi, µj)]
2

−
∞∑

j=−∞
E
(

[Kθ(µ0, µj)−Kθ0(µ0, µj)]
2
)∣∣∣∣∣∣→ 0

and the sum in the right-hand side of the above display is a
continuous function of θ.

Proof. Let

Sθ =
1

n

n∑
i,j=1

[Kθ(µi, µj)−Kθ0(µi, µj)]
2
.

Let (mn)n∈N be a sequence of integers so that as n → ∞,
mn →∞ and n/mn →∞. Let

Sθ,mn =
1

n

n∑
i,j=1

1{b i−1
mn
c=b j−1

mn
c} [Kθ(µi, µj)−Kθ0(µi, µj)]

2
.

With the same proof as that of Lemma D.11 in [41], we can
show (using (28)) that |Sθ−Sθ,mn | goes almost surely to zero
as n→∞. Also

Sθ,mn =
1

n/mn

b n
mn
c−1∑

k=0

1

mn

mn∑
i,j=1

[Kθ(µkmn+i, µkmn+j)

−Kθ0(µkmn+i, µkmn+j)]
2

+
1

n

n∑
i,j=

mn(b n
mn
c−1)+1

1{b i−1
mn
c=b j−1

mn
c} [Kθ(µi, µj)−Kθ0(µi, µj)]

2

=
1

n/mn

b n
mn
c−1∑

k=0

Bk + r,

say. From (28), one can show simply that r → 0 almost surely
as n → ∞. Also, the Bk are independent random variables
with identical distribution, and they are bounded in absolute
value by

2L+ 1 +

∞∑
i=−∞

2

(
A

1 + |i|1+τ

)2

<∞

from (28) and Condition V.2. Hence, applying Theorem 2.1 in
[61] yields 1

n/mn

b n
mn
c−1∑

k=0

Bk

− E(B0)→a.s.
n→∞ 0.

Hence, finally he have obtained almost surely as n→∞∣∣∣∣∣∣Sθ − 1

mn

mn∑
i,j=1

E
[
(Kθ(µi, µj)−Kθ0(µi, µj))

2
]∣∣∣∣∣∣→ 0.

Also, we have, for |i− j| ≥ L

E
[
(Kθ(µi, µj)−Kθ0(µi, µj))

2
]

≤ 2

(
A

1 + (|i− j| − L)1+τ

)2

from (28). Hence, we can simply show∣∣∣∣∣∣ 1

mn

mn∑
i,j=1

E
[
(Kθ(µi, µj)−Kθ0(µi, µj))

2
]
− Tθ

∣∣∣∣∣∣→a.s.
n→∞ 0,

with

Tθ =

∞∑
j=−∞

E
(

[Kθ(µ0, µj)−Kθ0(µ0, µj)]
2
)
.

From (28) and Condition V.6, we can show that there exists a
deterministic finite constant C so that

sup
θ∈Θ

max
i=1,...,p

∣∣∣∣ ∂∂θiSθ
∣∣∣∣ ≤ C.

Also, by dominated convergence Tθ is a continuously differ-
entiable function of θ and

sup
θ∈Θ

max
i=1,...,p

∣∣∣∣ ∂∂θiTθ
∣∣∣∣ ≤ C ′
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where C ′ is also a deterministic finite constant. Hence
supθ∈Θ |Sθ − Tθ| → 0 almost surely as n→∞.

Proof of Proposition V.12. Assume that

lim inf
n→∞

inf
‖θ−θ0‖≥α

1

n

n∑
i,j=1

[Kθ(µi, µj)−Kθ0(µi, µj)]
2

= 0.

Then from Proposition A.7 and by compacity, there exists θ1 6=
θ0 so that

∞∑
j=−∞

E
(

[Kθ1(µ0, µj)−Kθ0(µ0, µj)]
2
)

= 0.

From the conditions on {Fθ}, there exist β > 0, δ > 0, a ≥ 0
so that for u ∈ [a− δ, a+ δ] we have |Fθ1(u)−Fθ0(u)| ≥ β.
Hence, we have

β2P (W2(µ0, µk−1) ∈ [a− δ, a+ δ]) = 0,

for k so that a ∈ (k − 1, k].
Let now g0 : [0, L] → R+ be defined by g0(u) =

D0 exp(−1/(1 − u2))1{u∈[−1,1]} where 0 < D0 < ∞ is so
that

∫
R g0(u)du = 1. Then, g0 is infinitely differentiable. Let

h0(u) = (1/σ)g0((u− δ/4)/σ) and hk−1(u) = (1/σ)g0((u−
a)/σ), where σ > 0 is chosen small enough so that, with ν0

and νk−1 the distributions with probability density functions
h0 and hk−1 we have W2(ν0, νk−1) ∈ [a− δ/2, a+ δ/2] and
ν0, νk−1 have supports in [0, L], [k − 1, k − 1 + L].

Let now P1, P2 be two distributions with support in [0, L],
with quantile functions q1, q2, with cumulative distribution
functions F1, F2 and with probability density functions f1, f2.
Then we have

W2(P1, P2) =

√∫ 1

0

(q1 − q2)2

≤
√
L

√∫ 1

0

|q1 − q2|

=
√
L

√∫ L

0

|F1 − F2|

≤ L
√

sup
u∈[0,L]

|F1(u)− F2(u)|

≤ L

√∫ L

0

|f1 − f2|

≤ L3/2
√

sup
u∈[0,L]

|f1(u)− f2(u)|.

Let τ > 0 be so that L3/2τ1/2 ≤ δ/5. Then, for any f :
[0, L] → R and g : [k − 1, k − 1 + L] → R, we have that
|f/(

∫ L
0
f) − h0|∞ ≤ τ and |g/(

∫ L
0
g) − hk−1|∞ ≤ τ imply

W2(νf , νg) ∈ [a−δ, a+δ], where νf , νg are the measures with
probability density functions f and g. Since h0 and hk−1 are
infinitely differentiable, have integral one, and have respective
supports included in [0, L] and [k − 1, k − 1 + L], it is easy
to see that there exists ε > 0 so that |f − h0|∞ ≤ ε implies

|f/(
∫ L

0
f)− h0|∞ ≤ τ , and similarly for g and hk−1. Hence,

if we can show that

P ( sup
u∈[0,L]

|h0(u)− exp(Z0(u))| ≤ ε) > 0

and

P ( sup
u∈[0,L]

|hk−1(u+ (k − 1))− exp(Zk−1(u))| ≤ ε) > 0,

we obtain a contradiction. The two probabilities above are
shown to be non-zero similarly and we will address the first
one only. It is sufficient to show that

P ( sup
u∈[0,L]

|h0(u) + ε/2− exp(Z0(u))| ≤ ε/2) > 0.

Since h0 + ε/2 is continuous and bounded away from 0 and
infinity on [0, L], it is sufficient to show that for all κ > 0,

P ( sup
u∈[0,L]

| log(h0(u) + ε/2)− Z0(u)| ≤ κ) > 0.

From e.g. Theorem 1.1 in [62], since z0 has mean function
zero, we have

P ( sup
u∈[0,L]

|Z0(u)| ≤ κ) > 0.

Consider now the Gaussian measures G1 and G2, on the space
of continuous functions from [0, L] → R, so that G1 is the
measure of the Gaussian process Z0 and G2 is that of Z0 −
log(h0+ε/2). Then, from e.g. the discussion in (22) in Chapter
4.2 of [33], since log(h0 +ε/2) is infinitely differentiable, and
from the assumptions on the covariance function of Z0, the
Gaussian measures G1 and G2 are equivalent. Hence, since

G1 ({f continuous : [0, L]→ R; |f |∞ ≤ κ}) > 0,

we also have

G2 ({f continuous : [0, L]→ R; |f |∞ ≤ κ}) > 0,

which is exactly

P ( sup
u∈[0,L]

| log(h0(u) + ε/2)− Z0(u)| ≤ κ) > 0.

This concludes the proof that Condition V.5 holds.
The proof that Condition V.8 holds can be obtained in the

same way. In particular, an analog of Proposition A.7 can be
obtained. We skip the details.
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