Certified Roundoff Error Bounds using Bernstein Expansions and Sparse Krivine-Stengle Representations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Certified Roundoff Error Bounds using Bernstein Expansions and Sparse Krivine-Stengle Representations

Alexandre Rocca
  • Fonction : Auteur
Victor Magron
Thao Dang

Résumé

Floating point error is an inevitable drawback of embedded systems implementation. Computing rigorous upper bounds of roundoff errors is absolutely necessary for the validation of critical software. This problem of computing rigorous upper bounds is even more challenging when addressing non-linear programs. In this paper, we propose and compare two new methods based on Bernstein expansions and sparse Krivine-Stengle representations, adapted from the field of the global optimization , to compute upper bounds of roundoff errors for programs implementing polynomial functions. We release two related software package FPBern and FPKiSten, and compare them with state of the art tools. We show that these two methods achieve competitive performance, while computing accurate upper bounds by comparison with other tools.
Fichier principal
Vignette du fichier
1610.07038v2.pdf (286.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01448167 , version 1 (27-01-2017)

Identifiants

  • HAL Id : hal-01448167 , version 1

Citer

Alexandre Rocca, Victor Magron, Thao Dang. Certified Roundoff Error Bounds using Bernstein Expansions and Sparse Krivine-Stengle Representations. 2017. ⟨hal-01448167⟩
287 Consultations
153 Téléchargements

Partager

More