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Abstract. Floating point error is an inevitable drawback of embedded
systems implementation. Computing rigorous upper bounds of roundoff
errors is absolutely necessary for the validation of critical software. This
problem of computing rigorous upper bounds is even more challenging
when addressing non-linear programs. In this paper, we propose and
compare two new methods based on Bernstein expansions and sparse
Krivine-Stengle representations, adapted from the field of the global op-
timization, to compute upper bounds of roundoff errors for programs im-
plementing polynomial functions. We release two related software pack-
age FPBern and FPKiSten, and compare them with state of the art
tools.
We show that these two methods achieve competitive performance, while
computing accurate upper bounds by comparison with other tools.

Keywords: Polynomial Optimization, Floating Point Arithmetic,
Roundoff Error Bounds, Linear Programming Relaxations, Bernstein Ex-
pansions, Krivine-Stengle Representations

1 Introduction

Theoretical models, algorithms, and programs are often reasoned and designed
in real algebra. However, their implementation on computers uses floating point
algebra: this conversion from real numbers and their operations to floating point
is not without errors. Indeed, due to finite memory and binary encoding in com-
puters, real numbers cannot be exactly represented by floating point numbers.
Moreover, numerous properties of the real algebra are not conserved such as
commutativity or associativity.

The consequences of such imprecisions become particularly significant in
safety-critical systems, especially in embedded systems which often include con-
trol components implemented as computer programs. When implementing an
algorithm designed in real algebra, and initially tested on computers with single
or double floating point precision, one would like to ensure that the roundoff
error is not too large on more limited platforms (small processor, low memory
capacity) by computing their accurate upper bounds.

http://arxiv.org/abs/1610.07038v2
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For programs implementing linear functions, SAT/SMT solvers, as well as
affine arithmetic, are efficient tools to obtain good upper bounds. When extend-
ing to programs with non-linear polynomial functions, the problem of determin-
ing a precise upper bound becomes substantially more difficult, since polyno-
mial optimization problems are in general NP-hard [17]. We can cite at least
three closely related and recent frameworks designed to provide upper bounds
of roundoff errors for non-linear programs. FPTaylor [25] is a tool based on
Taylor-interval methods, while Rosa [5] combines SMT with interval arithmetic.
Real2Float [19] relies on Putinar representations of positive polynomials while
exploiting sparsity in a similar way as the second method that we propose in
this paper.

We introduce two methods, coming from the field of polynomial optimiza-
tion, to compute upper bounds on roundoff errors of polynomial programs. The
first method is based on Bernstein expansions of polynomials, while the second
relies on sparse Krivine-Stengle certificates for positive polynomials. In practice,
these methods (presented in Section 3) provide accurate bounds at a reasonable
computational cost. Indeed, the size of the Bernstein expansion used in the first
method as well as the size of the LP relaxation problems considered in the second
method are both linear w.r.t. the number of roundoff error variables.

1.1 Overview

Before explaining in detail each method, let us first illustrate the addressed
problem on an example. Let f be the degree two polynomial defined by:

f(x) := x2 − x , ∀x ∈ X = [0, 1].

When approximating the value of f at a given real number x, one actually
computes the floating point result f̂ = x̂ ⊗ x̂ ⊖ x̂, with all the real operators
+,−,× being substituted by their associated floating point operators ⊕, ⊖, ⊗,
and x being represented by the floating point number x̂ (see Section 2.1 for more
details on floating point arithmetics). A first simple rounding model consists of
introducing an error term ei for each floating point operation, as well as for
each floating point variable. For instance, x̂ ⊗ x̂ corresponds to ((1 + e1)x (1 +
e1)x) (1 + e2), where e1 is the error term between x and x̂, and e2 is the one
associated to the operation ⊗. Let e be the vector of all error terms ei. Given
ei ∈ [−ε, ε] for all i, with ε being the machine precision, we can write the floating

point approximation f̂ of f as follows:

f̂(x, e) = (((1 + e1)x(1 + e1)x)(1 + e2)− x(1 + e1))(1 + e3).

Then, the absolute roundoff error is defined by:

r(x, e) := max
x∈[0,1]

e∈[−ε,ε]3

(|f̂(x, e)− f(x)|) .

However, we can make this computation easier with a slight approximation:
|f̂(x, e) − f(x)| ≤ |l(x, e)| + |h(x, e)| with l(x, e) being the sum of the terms of
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(f̂(x, e) − f(x)) which are linear in e, and h(x, e) the sum of the terms which
are non-linear in e. The term |h(x, e)| can then be over-approximated by O(|e|2)
which is in general negligible compared to |l(x, e)|, and can be bounded using
standard interval arithmetic. For this reason, we focus on computing an upper
bound of |l(x, e)|. In the context of our example, l(x, e) is given by:

l(x, e) = (2x2 − x)e1 + x2e2 + (x2 − x)e3. (1)

We divide each error term ej by ε, and then consider the (scaled) linear part
l′ := l

ε
of the roundoff error with the error terms e ∈ [−1, 1]3. For all x ∈ [0, 1],

and e ∈ [−1, 1]3, one can easily compute a valid upper bound of |l′(x, e)| with
interval arithmetic. Surcharging the notation for elementary operations +,−,×
in interval arithmetic, one has l′(x, e) ∈ ([−0.125, 1]× [−1, 1] + [0, 1]× [−1, 1] +
[−0.25, 0]× [−1, 1]) = [−2.25, 2.25], yielding |l(x, e)| ≤ 2.25ε.
Using the first method based on Bernstein expansion detailed in Section 3.1, we
compute 2ε as an upper bound of |l(x, e)| in 0.23s using FPBern(b) a rational
arithmetic implementation. With the second method based on sparse Krivine-
Stengle representation detailed in Section 3.2, we also compute an upper bound
of 2ε in 0.03s.
Although on this particular example, the method based the sparse Krivine-
Stengle representation appears to be more time-efficient, in general the com-
putational cost of the method based on Bernstein expansions is lower. For this
example, the bounds provided by both methods are tighter than the ones deter-
mined by interval arithmetic. We emphasize the fact that the bounds provided
by our two methods can be certified. Indeed, in the first case, the Bernstein
coefficients (see Sections 2.2 and 3.1) can be computed either with rational
arithmetic or certified interval arithmetic to ensure guaranteed values of up-
per bounds. In the second case, the positivity certificates are directly provided
by sparse Krivine-Stengle representations.

1.2 Related Works

We first mention two tools, based on positivity certificates, to compute round-
off error bounds. The first tool, related to [3], relies on a similar approach to
our second method. It uses dense Krivine-Stengle representations of positive
polynomials to cast the initial problem as a finite dimensional LP problem. To
reduce the size of this possibly large LP, [3] provides heuristics to eliminate some
variables and constraints involved in the dense representation. However, this ap-
proach has the main drawback of loosing the property of convergence toward
optimal solutions of the initial problem. Our second method uses sparse repre-
sentations and is based on the previous works by [11] and [27], allowing to ensure
the convergence towards optimal solutions while greatly reducing the computa-
tional cost of LP problems. Another tool, Real2Float [19], exploits sparsity
in the same way while using Putinar representations of positive polynomials,
leading to solving semidefinite (SDP) problems. Bounds provided by such SDP
relaxations are in general more precise than LP relaxations [15], but the solving
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cost is higher.
Several other tools are available to compute floating point roundoff errors. SMT
solvers are efficient when handling linear programs, but often provide coarse
bounds for non-linear programs, e.g. when the analysis is done in isolation [5].
The Rosa [5] tool is a solver mixing SMT and interval arithmetic which compiles
functional SCALA programs implementing non-linear functions (involving /,

√
,

and polynomials) as well as conditional statements. SMT solvers are theoreti-
cally able to output certificates which can be validated externally afterwards.
FPTaylor tool [25], relies on Symbolic Taylor expansion method, which consists
of a branch and bound algorithm based on interval arithmetic. Bernstein ex-
pansions have been extensively used to handle systems of polynomial equations
[21,23] as well as systems of polynomial inequalities (including polynomial opti-
mization), see for example [23,8,22]. Yet, to the best of our knowledge, there is no
tool based on Bernstein expansions in the context of roundoff error computation.
The Gappa tool provides certified bounds with elaborated interval arithmetic
procedure relying on multiple-precision dyadic fractions. The static analysis tool
FLUCTUAT [7] performs forward computation (by contrast with optimization) to
analyze floating point C programs. Both FLUCTUAT and Gappa use a different
rounding model (see Section 2.1), also available in FPTaylor, that we do not
handle in our current implementation. Some tools also allow formal validation
of certified bounds. FPTaylor, Real2Float [19], as well as Gappa [6] provide
formal proof certificates, with HOL-Light [12] for the first case, and Coq [4] for
the two other ones.

1.3 Key Contributions

Here is a summary of our key contributions:

◮ We present two new methods to compute upper bounds of floating point
roundoff errors for programs implementing multivariate polynomial func-
tions with input variables constrained to boxes. The first one is based on
Bernstein expansions and the second one relies on sparse Krivine-Stengle
representations. We also propose a theoretical framework to guarantee the
validity of upper bounds computed with both methods (see Section 3). In
addition, we give an alternative shorter proof in Section 2.3 for the existence
of Krivine-Stengle representations for sparse positive polynomials (proof of
Theorem 4).

◮ We release two software packages based on each method. The first one, called
FPBern3, computes the bounds using the Bernstein expansions, with two
modules built on top of the software related to [8]: FPBern(a) is a C++module
using double precision floating point arithmetic while FPBern(b) is a Matlab
module using rational arithmetic. The second one FPKriSten4 computes the
bounds using Krivine-Stengle representations in Matlab. FPKriSten is built
on top of the implementation related to [27].

3 https://github.com/roccaa/FPBern
4 https://github.com/roccaa/FPKriSten

https://github.com/roccaa/FPBern
https://github.com/roccaa/FPKriSten
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◮ We compare our two methods implemented in FPBern and FPKriSten to
three state-of-the-art methods. Our new methods have similar precision
with the compared tools (Real2Float, Rosa, FPTaylor). At the same
time, FPBern(a) shows an important time performance improvement, while
FPBern(b) and FPKriSten has similar time performances compared with
the other tools, yielding promising results.

The rest of the paper is organized as follows: in Section 2, we give basic back-
ground on floating point arithmetic, the Bernstein expansions and Krivine-
Stengle representations. In Section 3 we give the main contributions, that is the
computation of roundoff error bounds using Bernstein expansions and sparse
Krivine-Stengle representations. Finally, in Section 4 we compare the perfor-
mance and precision of our two methods with the existing tools, and show the
advantages of our tools.

2 Preliminaries

We first recall useful notation on multivariate calculus. For x = (x1, . . . , xn) ∈
R

n and the multi-index α = (α1, . . . , αn) ∈ N
n, we denote by xα the product

∏n
i=1 x

αi

i . We also define |α| = |α1|+ . . .+ |αn|, 0 = (0, . . . , 0) and 1 = (1, . . . , 1).
The notation

∑

α is the nested sum
∑

α1
. . .

∑

αn
. Equivalently we have

∏

α

which is equal to the nested product
∏

α1
. . .

∏

αn
.

Given another multi-index d = (d1, . . . , dn) ∈ N
n, the inequality α < d

(resp. α ≤ d) means that the inequality holds for each sub-index: α1 <
d1, . . . , αn < dn (resp. α1 ≤ d1, . . . , αn ≤ dn). Moreover, the binomial coeffi-
cient

(

d

α

)

is the product
∏n

i=1

(

di

αi

)

.
Let R[x] be the vector space of multivariate polynomials. Given f ∈ R[x], we as-
sociate a multi-degree d = (d1, . . . , dn) to f , with each di standing for the degree
of f with respect to the variable xi. Then, we can write f(x) =

∑

γ≤d
aγx

γ ,
with aγ (also noted (f)γ) being the coefficients of f in the monomial basis and
each γ ∈ N

n is a multi-index. The degree d of f is given by d := max{γ:aγ 6=0} |γ|.
As an example, if f(x1, x2) = x41x2 + x11x

3
2 then d = (4, 3) and d = 5. For the

polynomial l used in Section 1.1, one has d = (2, 1, 1, 1) and d = 3.

2.1 Floating Point arithmetic

This section gives background on floating point arithmetic, inspired from ma-
terial available in [25, Section 3]. The IEEE754 standard [28] defines a binary
floating point number as a triple significant, sign, and exponent (denoted by
sig, sgn, exp) which represents the numerical value of (−1)sgn × sig× 2exp. The
standard describes 3 formats (32, 64, and 128 bits) which vary by the size of
the significant and the exponent, as well as special values (such as NaN, the
infinities). Denoting by F the set of floating point numbers, we call rounding
operator, the function rnd : R → F which takes a real number and returns the
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closest floating point number rounded to the nearest, toward zero, or toward
±∞. A simple model of rounding is given by the following formula:

rnd(x) = x(1 + e) + u,

with |e| ≤ ε, |u| ≤ µ and eu = 0. The value ε is the maximal relative error (given
by the machine precision [28]), and µ is the maximal absolute error for numbers
very close to 0. For example, in the single (32 bits) format, ε is equal to 2−24

while µ equals 2−150. It is clear that in general µ is negligible compared to ε,
thus we neglect terms depending on u in the remainder of this paper.
Given an operation op : Rn → R, let opFP be the corresponding floating point
operation. An operation is exactly rounded when opFP(x) = rdn(op(x)), for all
x ∈ R

n.
In the IEEE754 standard the following operations are defined as exactly rounded:
+,−,×, /,√, and the fma operation5. It follows that for those operations we have
the continuation of the simple rounding model opFP(x) = op(x)(1 + e).
The previous rounding model is called “simple” in contrast with more improved
rounding model. Given the function pc(x) = maxk∈Z{2k : 2k < x}, then the
improved rounding model is defined by: opFP(x) = op(x) + pc(op(x)), for all
x ∈ R

n. As the function pc is piecewise constant, this rounding model needs
design of algorithms based on successive subdivisions, which is not currently
handled in our methods. Combining branch and bound algorithms with interval
arithmetic is adapted to roundoff error computation with such rounding model,
which is the case with FLUCTUAT[7], Gappa[6], and FPTaylor [25].

2.2 Bernstein Expansion of Polynomials

In this section we give mandatory background on the Bernstein expansion for the
contribution detailed in Section 3.1. Given a multivariate polynomial f ∈ R[x],
we recall how to compute a lower bound of f∗ := minx∈[0,1]n f(x). The next
result can be retrieved in [9, Theorem 2]:

Theorem 1 (Multivariate Bernstein expansion). Given a multivariate
polynomial f and a degree k ≥ d with d the multi-degree of f , then the
Bernstein expansion of multi-degree k of f is given by:

f(x) =
∑

γ

aγx
γ =

∑

α≤k

b(f)α Bk,α(x). (2)

where b
(f)
α (also denoted by bα when there is no confusion) are the Bernstein coef-

ficients (of multi-degree k) of f , and Bk,α(x) are the Bernstein basis polynomials

defined by Bk,α(x) :=
∏n

i=1Bki,αi
(xi) and Bki,αi

(xi) :=
(

ki

αi

)

xαi

i (1 − xi)
ki−αi .

The Bernstein coefficients are given by the following formulas:

bα =
∑

β<α

(

α
β

)

(

k

β

)aβ, 0 ≤ α ≤ k. (3)

5 The fma operator is defined by fma(x, y, z)=x× y + z.
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The Bernstein expansion having numerous properties, we give only four of them
which are useful for Section 3.1. For a more exhaustive introduction to Bernstein
expansion, as well as some proof of the basic properties, we refer the interested
reader to [23].

Property 1 (Cardinality [23, (3.14)]). The number of Bernstein coefficients in
the Bernstein expansion (of multi-degree k) is equal to (k+1)1 =

∏n
i=1(ki+1) .

Property 2 (Linearity [23, (3.2.3)]). Given two polynomials p1 and p2, one has:

b(cp1+p2)
α = cb(p1)

α + b(p2)
α , ∀c ∈ R,

where Bernstein expansions with same multi-degrees are considered.

Property 3 (Enclosure [23, (3.2.4)]). The minimum (resp. maximum) of a poly-
nomial f over [0, 1]n can be lower bounded (resp. upper bounded) by the mini-
mum (resp. maximum) of its Bernstein coefficients:

min
α≤k

bα ≤ f(x) ≤ max
α≤k

bα, ∀x ∈ [0, 1]n .

Property 4 (Sharpness [23, (3.2.5)]). If the minimum (resp. maximum) of the
bα is reached for α in a corner of the box [0, k1] × · · · × [0, kn], then bα is the
minimum (resp. maximum) of f over [0, 1]n.

Property 1 gives the maximal computational cost needed to find a lower
bound of f∗ for a Bernstein expansion of fixed multi-degree k. Property 3 is
used to bound from below optimal values, while Property 4 allows to determine
if the lower bound is optimal.

2.3 Dense and Sparse Krivine-Stengle Representations

In this section, we first give the necessary background on Krivine-Stengle repre-
sentations, used in the context of polynomial optimization. Then, we present a
sparse version based on [11]. These notions are applied later in Section 3.2.

Dense Krivine-Stengle representations. Krivine-Stengle certificates for
positive polynomials can first be found in [14,26] (see also [16, Theorem 1(b)]).
Such certificates give representations of positive polynomials over a set K =
{x ∈ R

n : 0 ≤ gi(x) ≤ 1, i = 1, . . . , p}, with g1, . . . , gp ∈ R[x]. The compact set
K is a basic semialgebraic set, since it is defined as a conjunction of polynomial
inequalities.
Given α = (α1, . . . , αp) and β = (β1, . . . , βp), let us define the polynomial
hα,β(x) = gα(1− g)β =

∏p
i=1 g

αi

i (1 − gi)
βi .

For instance on the two-dimensional unit box, one has n = p = 2, K = [0, 1]2 =
{x ∈ R

2 : 0 ≤ x1 ≤ 1 , 0 ≤ x2 ≤ 1}. With α = (2, 1) and β = (1, 3), one has
hα,β(x) = x21x2(1− x1)(1− x2)

3.
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Theorem 2 (Dense Krivine-Stengle representations). Let ψ ∈ R[x] be
a positive polynomial over K. Then there exist k ∈ N and a finite number of
nonnegative weights λα,β ≥ 0 such that:

ψ(x) =
∑

|α+β|≤k

λα,βhα,β(x), ∀x ∈ R
n. (4)

It is possible to compute the weights λα,β by identifying in the monomial basis
the coefficients of the polynomials in the left and right sides of (4). Denoting by
(ψ)γ the monomial coefficients of ψ, with γ ∈ N

n
k := {γ ∈ N

n : |γ| ≤ k}, the
λα,β fulfill the following equalities:

ψγ =
∑

|α+β|≤k

λα,β(hα,β)γ , ∀γ ∈ N
n
k . (5)

Global optimization using the dense Krivine-Stengle representations.

Here we consider the polynomial minimization problem f∗ := minx∈K f(x), with
f a polynomial of degree d. We can rewrite this problem as the following infinite
dimensional problem:

f∗ :=max
t∈R

t,

s.t. f(x)− t ≥ 0 , ∀x ∈ K.
(6)

The idea is to look for a hierarchy of finite dimensional linear programming (LP)
relaxations by using Krivine-Stengle representations of the positive polynomial
ψ = f − t involved in Problem (6). Applying Theorem 2 to this polynomial, we
obtain the following LP problem for each k ≥ d:

p∗k := max
t,λα,β

t,

s.t (f − t)γ =
∑

|α+β|≤k

λα,β(hα,β)γ , ∀γ ∈ N
n
k ,

λα,β ≥ 0.

(7)

As in [16, (4)], one has:

Theorem 3 (Dense Krivine-Stengle LP relaxations). The sequence of op-
timal values (p∗k) satisfies p∗k → f∗ as k → +∞. Moreover each p∗k is a lower
bound of f∗.

At fixed k, the total number of variables of Problem (7) is given by the number
of λα,β and t, that is

(

2n+k
k

)

+ 1. The number of constraints is equal to the

cardinality of Nn
k , which is

(

n+k
k

)

.

Sparse Krivine-Stengle representations. We now explain how to derive
less computationally expensive LP relaxations, by relying on sparse Krivine-
Stengle representations. For I ⊆ {1, . . . , n}, let R[x, I] be the ring of polynomials
restricted to the variables {xi : i ∈ I}. We borrow the notion of a sparsity
pattern from [27, Assumption 1]:
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Definition 1 (Sparsity Pattern). Given m ∈ N, Ij ⊆ {1, . . . , n}, and Jj ⊆
{1, . . . , p} for all j = 1, . . . ,m, a sparsity pattern is defined by the four following
conditions:

– f can be written as: f =
∑m

j=1 fj with fj ∈ R[x, Ij ],
– gi ∈ R[x, Ij ] for all i ∈ Jj, for all j = 1, . . . ,m,
–

⋃m
j=1 Ij = {1, . . . , n} and

⋃m
j=1 Jj = {1, . . . , p},

– (Running Intersection Property) for all j = 1, . . . ,m− 1, there exists s ≤ j

s.t. Ij+1 ∩
⋃j

i=1 Ii ⊆ Is.

As an example, the four conditions stated in Definition 1 are satisfied while
considering f(x) = x1x2 + x21x3 on the hypercube K = [0, 1]3. Indeed, one has
f1(x) = x1x2 ∈ R[x, I1], f2(x) = x21x3 ∈ R[x, I2] with I1 = {1, 2}, I2 = {1, 3}.
Taking J1 = I1 and J2 = I2, one has gi = xi ∈ R[x, Ij ] for all i ∈ Ij , j = 1, 2.

Let us consider a given sparsity pattern as stated above. By noting nj = |Ij |,
pj = |Jj |, then the set K = {x ∈ R

n : 0 ≤ gi(x) ≤ 1, i = 1, . . . , p} yields subsets
Kj = {x ∈ R

nj : 0 ≤ gi(x) ≤ 1, i ∈ Jj}, with j = 1, . . . ,m. If K is a compact
subset of Rn then each Kj is a compact subset of Rnj . As in the dense case, let
us note hαj ,βj

:= gαj (1− g)βj , for given αj ,βj ∈ N
nj .

The following result, a sparse variant of Theorem 2, can be retrieved from [27,
Theorem 1] but we also provide here a shorter alternative proof by using [11].

Theorem 4 (Sparse Krivine-Stengle representations). Let f, g1, . . . , gp ∈
R[x] be given and assume that there exist Ij and Jj, j = 1, . . . ,m, which satisfy
the four conditions stated in Definition 1. If f is positive over K, then there
exist φj ∈ R[x, Ij ], j = 1, . . . ,m such that f =

∑m
j=1 φj and φj > 0 over Kj.

In addition, there exist k ∈ N and finitely many nonnegative weights λαj ,βj
,

j = 1, . . . ,m, such that:

φj =
∑

|αj+βj |≤k

λαj ,βj
hαj ,βj

, j = 1, . . . ,m. (8)

Proof. From [11, Lemma 3], there exist φj ∈ R[x, Ij ] such that f =
∑m

j=1 φj and
φj > 0 on Kj . Applying Theorem 2 on each φj , there exist kj ∈ N and finitely
many nonnegative weights λαj ,βj

such that φj =
∑

|αj+βj |≤kj
λαj ,βj

hαj ,βj
.

With k = max1≤j≤m{kj}, we complete the representations with as many zero λ
as necessary, we obtain the desired result. ⊓⊔

In Theorem 4, one assumes that f can be written as the sum f =
∑m

j=1 fj ,
where each fj is not necessarily positive. The first result of the theorem states
that that f can be written as another sum f =

∑m
j=1 φ

j , where each φj is now
positive. As in the dense case, the λαj ,βj

can be computed by equalizing the
coefficients in the monomial basis. We also obtain a hierarchy of LP relaxations
to approximate the solution of polynomial optimization problems. For the sake
of conciseness, we only provide these relaxations as well as their computational
costs in the particular context of roundoff error bounds in Section 3.2.



10 A.Rocca, V.Magron, T.Dang

3 Two new methods to compute roundoff errors bounds

This section is dedicated to our main contributions. We provide two new methods
to compute absolute roundoff error bounds using either Bernstein expansions or
sparse Krivine-Stengle representations. Here we consider a given program which
implements a polynomial expression f with input variables x satisfying a set of
input constraints encoded by X. We restrict ourselves to the case where X is
the unit box [0, 1]n.

Following the simple rounding model described in Section 2.1, we note f̂(x, e)
the rounded expression of f after introduction of the rounding variables e
(one additional variable is introduced for each real variable xi or constant
as well as for each arithmetic operation +,× or −). For a given machine
epsilon ε, these error variables also satisfy a set of constraints encoded by
the box [−ε, ε]m. As explained in [19, Section 3.1], we can decompose the

roundoff error as follows: r(x, e) := f̂(x, e) − f(x) = l(x, e) + h(x, e), where

l(x, e) :=
∑m

j=1
∂r(x,e)
∂ej

(x, 0)ej =
∑m

j=1 sj(x)ej . One obtains an enclosure of h

using interval arithmetic to bound second-order error terms in the Taylor ex-
pansion of r w.r.t. e (as in [25,19]).
We note d the degree of l. After dividing each error variable ej by ε, we now con-
sider the optimization of the (scaled) linear part l′ := l/ε of the roundoff error.
In other words, we focus on computing upper bounds of the maximal absolute
value l′∗ := max(x,e)∈X×E |l′(x, e)| where E = [−1, 1]m.

3.1 Bernstein expansions of roundoff errors

The first method is the approximation of l′∗ with the Bernstein expansions. Let
d be the multi-degree of l′e. From the above definition of l, note that d is also

the multi-degree of f . For each k ≥ d, let us note l′
k
:= maxα≤k

∑m
j=1 |b

(sj)
α | and

l′
k
:= −l′

k
. Our procedure is based on the following lemma:

Lemma 1. For each k ≥ d, the polynomial l′(x, e) can be bounded as follows:

l′
k
≤ l′(x, e) ≤ l′

k
, ∀(x, e) ∈ X×E . (9)

Proof. We write l′
e
∈ R[x] the polynomial l′(x, e) for a given e ∈ E. Property 3

provides the enclosure of l′e(x) w.r.t. x for a given e ∈ E:

min
α≤k

b
(l′

e
)

α ≤ l′e(x) ≤ max
α≤k

b
(l′

e
)

α , ∀x ∈ [0, 1]n , (10)

where each Bernstein coefficient satisfies b
(l′

e
)

α =
∑m

j=1 ejb
(sj)
α by Property 2 (each

ej being a scalar in [−1, 1]). The proof of the left inequality comes from:

min
e∈[−1,1]m

(

min
α≤k

(

m
∑

j=1

ejb
(sj)
α )

)

= min
α≤k

(

min
e∈[−1,1]m

(

m
∑

j=1

ejb
(sj)
α )

)

= min
α≤k

m
∑

j=1

−|b(sj)α | = −max
α≤k

m
∑

j=1

|b(sj)α | .
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The proof of the right inequality is similar. ⊓⊔

Remark 1. The computational cost of l′
k
is m(k+ 1)1 since we need to compute

the Bernstein coefficients for each sj(x). This cost is polynomial in the degree and
exponential in n but is linear in m. In the implementation described in Section

4, we first compute each b
(l′

e
)

α as a function of e and then optimize afterwards
over [−1, 1]m.

Example 1. For the polynomial l defined in (1) (Section 1.1), one has l(x, e) =
(2x2 − x)e1 + x2e2 + (x2 − x)e3. Applying the above method with k = d = 2,
one considers the following Bernstein coefficients:

b
(l′

e
)

0 = 0, b
(l′

e
)

1 = −e1
2

− e3
2
, b

(l′
e
)

2 = e1 + e2.

The number of Bernstein coefficients w.r.t. x is 3, which is much lower than the
one w.r.t. (x, e), which is equal to 24. One can obtain an upper bound (resp. lower
bound) by taking the maximum (resp. minimum) of the Bernstein coefficients. In

this case, maxe∈[−1,1]3 b
(l′

e
)

1 = 0, maxe∈[−1,1]3 b
(l′

e
)

2 = 1 and maxe∈[−1,1]3 b
(l′

e
)

3 = 2.

Thus, one obtains l′
k
= 2 as an upper bound of l′∗ yielding l∗ ≤ 2ε.

3.2 Sparse Krivine-Stengle representations of roundoff errors

Here we explain how to compute lower bounds of l′ := min(x,e)∈X×E l
′(x, e)

by using sparse Krivine-Stengle representations. We obtain upper bounds of
l′ := max(x,e)∈X×E l

′(x, e) in a similar way.
For the sake of consistency with Section 2.3, we introduce the variable y ∈

R
n+m defined by yj := xj , j = 1, . . . , n and yj := ej−n, j = n + 1, . . . , n +m.

Then, one can write the set K = X×E as follows:

K = {y ∈ R
n+m : 0 ≤ gj(y) ≤ 1 , j = 1, . . . , n+m} , (11)

with gj(y) := xj , for each j = 1, . . . , n and gj(y) := 1
2 +

ej
2 , for each j =

n+ 1, . . . , n+m.

Lemma 2. For each j = 1, . . . ,m, let us define Ij := {1, . . . , n, n+j} and Jj :=
Ij . Then the sets Ij and Jj satisfy the four conditions stated in Definition 1.

Proof. The first condition holds as l′(y) = l′(x, e) =
∑m

j=1 sj(x, e)ej =
∑m

j=1 sj(y)ej , with sj(y) ∈ R[y, Ij ]. The second and third condition are obvious.
The running intersection property comes from Ij+1 ∩ Ij = {1, . . . , n} ⊆ Ij . ⊓⊔

Given α,β ∈ N
n+1, one can write α = (α′, γ) and β = (β′, δ), for α′,β′ ∈ N

n,
γ, δ ∈ N. In our case, this gives the following formulation for the polynomial
hαj ,βj

(y) = gαj (1− g)βj :

hαj ,βj
(y) = hα′

j
,β′

j
,γj,δj (x, e) = xα′

j (1− x)β
′

j (
1

2
+
ej
2
)γj (

1

2
− ej

2
)δj .
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For instance, with the polynomial l′ considered in Section 1.1 and depending on
x, e1, e2, e3, one can consider the multi-indices α1 = (1, 2), β1 = (2, 3) associated
to the roundoff variable e1. Then hα1,β1

(y) = x(1 − x)2(12 + e1
2 )

2(12 − e1
2 )

3.
Now, we consider the following hierarchy of LP relaxations, for each k ≥ d:

l′k := max
t,λαj ,βj

t ,

s.t l′ − t =
m
∑

j=1

φj ,

φj =
∑

|αj+βj |≤k

λαj ,βj
hαj ,βj

, j = 1, . . . ,m ,

λαj ,βj
≥ 0 , j = 1, . . . ,m .

(12)

Similarly, we obtain l′k while replacing max by min and l′− t by t− l′ in LP (12).

Lemma 3. The sequence of optimal values (l′k) (resp. (l′k)) satisfies l′k ↑ l′

(resp. l′k ↓ l′) as k → +∞. In addition, l′k := max{|l′k|, |l′k|} → l′∗ as k → +∞.

Proof. By construction (l′k) is monotone nondecreasing. For a given arbitrary

ε′ > 0, the polynomial l′ − l′ + ε′ is positive over K. By Lemma 2, the subsets
Ij and Jj satisfy the four conditions stated in Definition 1, so we can apply
Theorem 4 to l′ − l′ + ε′. This yields the existence of φj , j = 1, . . . ,m, such
that l′ − l′ + ε′ =

∑m
j=1 φj and φj =

∑

|αj+βj |≤k λαj ,βj
hαj ,βj

, j = 1, . . . ,m.

Hence, (l′ − ε′, φj , λαj ,βj
) is feasible for LP (12). It follows that there exists k

such that l′k ≥ l′ − ε′. Since l′k ≤ l′, and ε′ has been arbitrary chosen, we obtain

the convergence result for the sequence (l′k). The proof is analogous for (l′k) and

yields max{|l′k|, |l′k|} → max{|l′|, |l′|} = l′∗ as k → +∞, the desired result. ⊓⊔

Remark 2. In the special case of roundoff error computation, one can prove
that the number of variables of LP (12) is m

(

2(n+1)+k
k

)

+ 1 with a number of

constraints equal to [ mk
n+1+1]

(

n+k
k

)

. This is in contrast with the dense case where

the number of LP variables is
(

2(n+m)+k
k

)

+1 with a number of constraints equal

to
(

n+m+k
k

)

.

Proof of Remark 2. As we replace a function φ of dimension (n+m) by a sum
of m functions φj of dimension (n + 1), the number of coefficients λαj ,βj

is

m
(

2(n+1)+k
k

)

. This leads to a total of m
(

2(n+1)+k
k

)

+ 1 variables when adding t.
The number of equality constraints is the number of monomials involved

in
∑m

j=1 φj . Each φj has
(

(n+1)+k
k

)

monomials. However there are redundant
monomials between all the φj : the ones depending of only x, and not e. These
(

n+k
k

)

monomials should appear only once. This leads to a final number of

m
(

(n+1)+k
k

)

− (m− 1)
(

n+k
k

)

monomials which is equal to [ mk
n+1 + 1]

(

n+k
k

)

. ⊓⊔
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Example 2. Continuing Example 1, for the polynomial l defined in (1) (Sec-
tion 1.1), we consider LP (12) at the relaxation order k = d = 3. This problem

involves 3
(

2×(1+1)+3
3

)

+ 1 = 106 variables and [ 3×3
2 + 1]

(

4
3

)

= 22 constraints.
This is in contrast with a dense Krivine-Stengle representation, where the cor-
responding LP involves 35 linear equalities and 166 variables. Computing the
values of l′k and l′k provides an upper bound of 2 for l′∗, yielding l∗ ≤ 2ε.

4 Implementation & Results

The FPBern and FPKriSten software packages. We provide two distinct soft-
ware packages to compute certified error bounds of roundoff errors for programs
implementing polynomial functions with floating point precision. The first tool
FPBern relies on the method from Section 3.1 and the second tool FPKriSten
on the method from Section 3.2.
FPBern is built on top of the software presented in [8] to manipulate Bern-
stein expansions, which includes a C++ module FPBern(a) and a Matlab module
FPBern(b). Their main difference is that Bernstein coefficients are computed
with double precision floating point arithmetic in FPBern(a) and with rational
arithmetic in FPBern(b). Polynomial operations are handled with GiNaC [2] in
FPBern(a) and with Matlab Symbolic Toolbox in FPBern(b). Note that the
Bernstein coefficient computations are not fully certified with FPBern(a) yet.
We plan to obtain verified upper bounds by using the framework in [10].
FPKriSten is built on top of the SBSOS software related to [27] which han-
dles sparse polynomial optimization problems by solving a hierarchy of convex
relaxations. This hierarchy is obtained by mixing Krivine-Stengle and Putinar
representations of positive polynomials. To improve the overall performance in
our particular case, we only consider the former representation yielding the hi-
erarchy of LP relaxations (12). Among several LP solvers, Cplex [13] yields the
best performance in our case (see also [1] for more comparisons). Polynomials
are handled with the Yalmip [18] toolbox available for Matlab. Even though the
semantics of programs considered in this paper is actually much simpler than
that considered by other tools such as Rosa [5] or Fluctuat [7], we empha-
size that those tools may be combined with external non-linear solvers to solve
specific sub-problems, a task that either FPBern or FPKriSten can fulfill.

Experimental results. We tested our two software packages with 20 pro-
grams (see Appendix A) where 12 are existing benchmarks coming from bi-
ology, space control and optimization fields, and 8 are generated as follows, with
x = (x1, . . . , xn) ∈ [−1, 1]n.

ex-n-nSum-deg(x) :=

nSum
∑

j=0

(

deg
∏

k=1

(

n
∑

i=1

xi)) . (13)

The first 9 programs are used for similar comparison in [19, Section 4.1], the
following 3 come from [24]. Eventually the 8 generated benchmarks allow to

https://github.com/roccaa/FPBern
https://github.com/roccaa/FPKriSten
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evaluate independently the performance of the tools w.r.t. either the number
of input variables (through the variable n), the degree (through deg) or the
number of error variables (through nSum). Taking x ∈ [−1, 1]n allows avoiding
monotonicity of the polynomial (which could be exploited by the Bernstein tech-
niques).
We recall that each program implements a polynomial function f(x) with box
constrained input variables. To provide an upper bound of the absolute roundoff
error |f(x) − f̂(x, e)| = |l(x, e) + h(x, e)|, we rely on Real2Float to generate l
and to bound h (see [19, Section 3.1]). Then the optimization methods of Sec-
tion 3 are applied to bound a function l′, obtained after linear transformation
of l, over the unit box.
At a given multi-degree k, FPBern computes the bound l′

k
(see Lemma 1). Sim-

ilarly, at a given relaxation order k, FPKriSten computes the bound l′k (see
Lemma 3). To achieve fast computations, the default value of k is the multi-
degree d of l′

e
(equal to the multi-degree of the input polynomial f) and the

default value of k is the degree d of l′ (equal to the successor of the degree of f).
The experiments were carried out on an Intel Core i7-5600U (2.60Ghz, 16GB)
with Ubuntu 14.04LTS, Matlab 2015a, GiNaC 1.7.1, and Cplex 12.63. Our
benchmark settings are similar to [19, Section 4] as we compare the accuracy
and execution times of our two tools with Rosa real compiler [5](version from
May 2014), Real2Float [19](version from July 2016) and FPTaylor [25] (version
from May 2016) on programs implemented in double precision while considering
input variables as real variables. All these tools use a simple rounding model
(see Section 2.1) and have been executed with their default parameters.

Table 1 shows the result of the absolute roundoff error while Table 2 displays
execution times obtained through averaging over 5 runs. For each benchmark,
we indicate the number n (resp. m) of input (resp. error) variables as well as the
degree d of l′. For FPKriSten the Cplex solving time in Table 2 is given between
parentheses. Note that the overall efficiency of the tool could be improved by
constructing the hierarchy of LP (12) with a C++ implementation.

Our two methods yield more accurate bounds for the 3 benchmarks kepler1,
sineTaylor and kepler2, which is the program involving the largest number of
error variables.
For kepler1, FPBern(a) and FPKriSten are less precise than FPBern(b) but
are still 6% more precise than Real2Float and FPTaylor and 53% more precise
than Rosa. For kepler2, our two tools are 3% (resp. 42%) more precise than
FPTaylor and Real2Float (resp. Rosa). In addition, Property 4 holds for these
three programs with FPBern(b), which ensures bound optimality. For all other
benchmarks FPTaylor provides the most accurate upper bounds. Our tools are
more accurate than Real2Float except for sineOrder3 and himmilbeau. In
particular, for himmilbeau, FPBern and FPKriSten are 40% (resp. 50%) less
precise than Real2Float (resp. FPTaylor). One way to obtain better bounds
would be to increase the degree k (resp. relaxation order k) within FPBern
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Table 1. Comparison results of upper bounds for absolute roundoff errors. The best
results are emphasized using bold fonts.

Benchmark n m d FPBern(a) FPBern(b) FPKriSten Real2Float Rosa FPTaylor

rigidBody1 3 10 3 5.33e–13 5.33e–13 5.33e–13 5.33e–13 5.08e–13 3.87e–13

rigidBody2 3 15 5 6.48e–11 6.48e–11 6.48e–11 6.48e–11 6.48e–11 5.24e–11

kepler0 6 21 3 1.08e–13 1.08e–13 1.08e–13 1.18e–13 1.16e–13 1.05e–13

kepler1 4 28 4 4.23e–13 4.04e–13 4.23e–13 4.47e–13 6.49e–13 4.49e–13
kepler2 6 42 4 2.03e–12 2.03e–12 2.03e–12 2.09e–12 2.89e–12 2.10e–12
sineTaylor 1 13 8 5.51e–16 5.48e–16 5.51e–16 6.03e–16 9.56e–16 6.75e–16
sineOrder3 1 6 4 1.35e–15 1.35e–15 1.25e–15 1.19e–15 1.11e–15 9.97e–16

sqroot 1 15 5 1.29e–15 1.29e–15 1.29e–15 1.29e–15 8.41e–16 7.13e–16

himmilbeau 2 11 5 2.00e–12 2.00e–12 1.97e–12 1.43e–12 1.43e–12 1.32e–12

schwefel 3 15 5 1.48e–11 1.48e–11 1.48e–11 1.49e–11 1.49e–11 1.03e–11

magnetism 7 27 3 1.27e–14 1.27e–14 1.27e–14 1.27e–14 1.27e–14 7.61e–15

caprasse 4 34 5 4.49e–15 4.49e–15 4.49e–15 5.63e–15 5.96e–15 3.04e–15

ex-2-2-5 2 9 3 2.23e–14 2.23e–14 2.23e–14 2.23e–14 2.23e–14 1.96e–14

ex-2-2-10 2 14 3 5.33e–14 5.33e–14 5.33e–14 5.33e–15 5.33e–14 4.85e–14

ex-2-2-15 2 19 3 9.55e–14 9.55e–14 9.55e–14 9.55e–14 9.55e–14 8.84e–14

ex-2-2-20 2 24 3 1.49e–13 1.49e–13 1.49e–13 TIMEOUT 1.49e–13 1.40e–13

ex-2-5-2 2 9 6 1.67e–13 1.67e–13 1.67e–13 1.67e–13 1.67e–13 1.41e–13

ex-2-10-2 2 14 11 1.05e–11 1.05e–11 1.34e–11 1.05e–11 1.05e–11 8.76e–12

ex-5-2-2 5 12 3 8.55e–14 8.55e–14 8.55e–14 8.55e–14 8.55e–14 7.72e–14

ex-10-2-2 10 22 3 5.16e–13 TIMEOUT 5.16e–13 5.16e–13 5.16e–13 4.82e–13

(resp. FPKriSten). Preliminary experiments indicate modest accuracy improve-
ment at the expense of performance.

FPBern(a) is the fastest for almost all benchmarks (except program
ex-10-2-2 where Rosa yields best performance). FPBern(b) is much slower due
to its Matlab implementation, and the use of certified rational arithmetic. We
plan to implement a similar certification scheme within FPBern(a).
On the first 12 benchmarks, FPBern(a) is always the fastest while having a sim-
ilar precision to Real2Float or Rosa.
The results obtained with the 8 generated benchmarks emphasize the limitations
of each method. The Bernstein method performs very well when the number of
input variables is low, even if the degree increases, as shown in the results for the
6 programs from ex-2-2-5 to ex-2-10-2. This is related to the polynomial de-
pendancy w.r.t. the degree when fixing the number of input variables. However,
for the last 2 programs ex-5-2-2 and ex-10-2-2 where the dimension increases,
the computation time increases exponentially. This confirms the theoretical re-
sult stated in Remark 1 as the number of Bernstein coefficients is exponential
w.r.t. the dimension at fixed degree.

On the same programs, the method based on Krivine-Stengle representations
performs better when the dimension increases, at fixed degree. This confirms the
constraint dependency w.r.t. [ mk

n+1 + 1]
(

n+k
k

)

stated in Remark 2.
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Table 2. Comparison of execution times (in seconds) for absolute roundoff error
bounds. For each model, the best results are emphasized using bold fonts.

Benchmark n m d FPBern(a) FPBern(b) FPKriSten Real2Float Rosa FPTaylor

rigidBody1 3 10 3 5e–4 0.88 0.22(0.02) 0.58 0.13 1.84
rigidBody2 3 15 5 2e–3 1.87 2.78(0.47) 0.26 2.17 3.01
kepler0 6 21 3 4e–3 9.62 1.93(0.18) 0.22 3.78 4.93
kepler1 4 28 4 6e–3 6.91 3.93(0.53) 17.6 63.1 9.33
kepler2 6 42 4 5e–2 64.9 20.5(3.75) 16.5 106 19.1
sineTaylor 1 13 8 6e–4 0.50 0.92(0.27) 1.05 3.50 2.91
sineOrder3 1 6 4 2e–4 0.27 0.08(0.01) 0.40 0.48 1.90
sqroot 1 15 5 2e–4 0.34 0.24(0.02) 0.14 0.77 2.70
himmilbeau 2 11 5 1e–3 1.72 0.77(0.22) 0.20 2.51 3.28
schwefel 3 15 5 2e–3 3.04 2.90(0.56) 0.23 3.91 0.53
magnetism 7 27 3 9e–2 176 3.07(0.26) 0.29 1.95 5.91
caprasse 4 34 5 6e–3 6.03 18.8(4.89) 3.63 17.6 12.2

ex-2-2-5 2 9 3 4e–4 0.69 0.12(0.01) 0.07 4.20 2.30
ex-2-2-10 2 14 3 5e–4 0.71 0.17(0.01) 0.35 4.75 3.42
ex-2-2-15 2 19 3 6e–4 0.72 0.23(0.02) 9.75 5.33 4.91
ex-2-2-20 2 24 3 8e–4 0.73 0.28(0.02) TIMEOUT 6.28 6.27
ex-2-5-2 2 9 6 2e–2 2.34 1.23(0.26) 0.27 4.26 2.53
ex-2-10-2 2 14 11 2e–2 7.34 96.9(58.5) 49.2 9.37 5.07
ex-5-2-2 5 12 3 8e–3 18.3 0.70(0.08) 0.21 4.45 12.3
ex-10-2-2 10 22 3 39.5 TIMEOUT 6.11(0.6) 30.7 5.34 34.6

Results for the 4 programs from ex-2-2-5 to ex-2-2-20 also indicate that
our methods are the least sensible to an increase of error variables. We note that
FPKriSten is often the second fastest tool.

Let us now provide an overall evaluation of our tools. Our tools are compa-
rable with Real2Float (resp. Rosa) in terms of accuracy and faster than them.
In comparison with FPTaylor, our tools are in general less precise but still very
competitive in accuracy, and they outperform FPTaylor in computation time. A
salient advantage of our tools, in particular FPKriSten, over FPTaylor is a good
trade-off between computation time and accuracy for large polynomials. As we
can see from the experimental results, for ex-10-2-2, FPKriSten took only 6.11s
while FPTaylor took 34.6s for comparable precisions. Note that the experimen-
tations were done with FPBern(b) and FPKriSten implemented in Matlab; their
C++ implementations would allow a significant speed-up.

The good time performances of our tools come from the exploitation of spar-
sity. Indeed, a direct Bernstein expansion of the polynomial l associated to
kepler2 leads to compute 36 × 242 coefficients against 42 × 36 with FPBern.
Similarly, dense Krivine-Stengle representations yield an LP with

(

100
4

)

+ 1 =

3 921 226 variables while LP (12) involves 42
(

18
4

)

+ 1 = 128 521 variables.
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5 Conclusion and Future Works

We propose two new methods to compute upper bounds of absolute round-
off errors occurring while executing polynomials programs with floating point
precision. The first method uses symbolic Bernstein expansions of polynomi-
als while the second one relies on a hierarchy of LP relaxations derived from
sparse Krivine-Stengle representations. The overall computational cost is dras-
tically reduced compared to the dense problem, thanks to a specific exploitation
of the sparsity pattern between input and error variables, yielding promising
experimental results.

Our approach is currently limited to programs implementing polynomials
with box constrained variables. First, a direction of further research investi-
gation is an extension to handle more complicated input sets. Extending to
semialgebraic sets is theoretically possible with the hierarchy of LP relaxations
based on sparse Krivine-Stengle representations but requires careful implemen-
tation in order not to compromise efficiency. For our method based on Bernstein
expansions, it would be worth adapting the techniques described in [20] to ob-
tain polygonal approximations of semialgebraic sets. Second, we intend to aim
at formal verification of bounds by interfacing either FPBern with the PVS li-
braries [22] related to Bernstein expansions, or FPKirSten with the Coq libraries
available in Real2Float [19]. Finally, a delicate but important open problem
is to apply such optimization techniques in order to handle roundoff errors of
programs implementing finite or infinite loops as well as conditional statements.
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– rigibody1 : (x1, x2, x3) 7→ −x1x2 − 2x2x3 − x1 − x3 defined on [−15, 15]3.
– rigibody2 : (x1, x2, x3) 7→ 2x1x2x3+6x23−x22x1x3−x2 defined on [−15, 15]3.
– kepler0 : (x1, x2, x3, x4, x5, x6) 7→ x2x5+x3x6−x2x3−x5x6+x1(−x1+x2+
x3 − x4 + x5 + x6) defined on [4, 6.36]6.

– kepler1 : (x1, x2, x3, x4) 7→ x1x4(−x1 + x2 + x3 − x4) + x2(x1 − x2 + x3 +
x4)+x3(x1+x2−x3+x4)−x2x3x4−x1x3−x1x2−x4 defined on [4, 6.36]4.

– kepler2 : (x1, x2, x3, x4, x5, x6) 7→ x1x4(−x1 + x2 + x3 − x4 + x5 + x6) +
x2x5(x1 − x2 + x3 + x4 − x5 + x6) + x3x6(x1 + x2 − x3 + x4 + x5 − x6) −
x2x3x4 − x1x3x5 − x1x2x6 − x4x5x6 defined on [4, 6.36]6.

– sineTaylor : x 7→ x − x3

6.0 + x5

120.0 − x7

5040.0 defined on
[−1.57079632679, 1.57079632679].

– sineOrder3 : x 7→ 0.954929658551372x− 0.12900613773279798x3 defined on
[−2, 2].

– sqroot : x 7→ 1.0+0.5x− 0.125x2+0.0625x3− 0.0390625x4 defined on [0, 1].
– himmilbeau : (x1, x2) 7→ (x21 + x2 − 11)2+(x1 + x22 − 7)2 defined on [−5, 5]2.
– schwefel : (x1, x2, x3) 7→ (x1−x2)2+(x2−1)2+(x1−x23)2+(x3−1)2 defined

on [−10, 10]3.
– magnetism : (x1, x2, x3, x4, x5, x6, x7) 7→ x21 +2x22 +2x23 +2x24 +2x25 +2x26 +

2x27 − x1 defined on [−1, 1]7.
– caprasse : (x1, x2, x3, x4) 7→ x1x

3
3 + 4x2x

2
3x4 + 4x1x3x

2
4 + 2x2x

3
4 + 4x1x3 +

4x23 − 10x2x4 − 10x24 + 2 defined on [−0.5, 0.5]4.
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