An Exemplar-based Hidden Markov Model framework for nonlinear state-space models - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

An Exemplar-based Hidden Markov Model framework for nonlinear state-space models

Résumé

In this work we present a data-driven method for the reconstruction of dynamical systems from noisy and incomplete observation sequences. The key idea is to benefit from the availability of representative datasets of trajectories of the system of interest. These datasets provide an implicit representation of the dynamics of this system, in contrast to the explicit knowledge of the dynamical model. This data-driven strategy is of particular interest in a large variety of situations, e.g., modeling uncertainties and inconsistencies, unknown explicit models, computationally demanding mod- els, etc. We address this exemplar-based reconstruction issue using a Hidden Markov Model (HMM) and we illustrate the relevance of the method for missing data interpolation issues in multivariate time series. As such, our contribution opens new research avenues for a variety of application domains to exploit the wealth of archived observation and simulation data, aiming a better analysis and reconstruction of dynamical systems using past and future observation sequences.
Fichier principal
Vignette du fichier
PID4292033.pdf (359.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01444213 , version 1 (26-01-2017)

Identifiants

Citer

Redouane Lguensat, Ronan Fablet, Pierre Ailliot, Pierre Tandeo. An Exemplar-based Hidden Markov Model framework for nonlinear state-space models. EUSIPCO 2016 : European Signal Processing Conference, Aug 2016, Budapest, Hungary. pp.1 - 5, ⟨10.1109/EUSIPCO.2016.7760667⟩. ⟨hal-01444213⟩
495 Consultations
201 Téléchargements

Altmetric

Partager

More