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ABSTRACT

In this work we present a data-driven method for the recon-
struction of dynamical systems from noisy and incomplete
observation sequences. The key idea is to benefit from the
availability of representative datasets of trajectories of the
system of interest. These datasets provide an implicit rep-
resentation of the dynamics of this system, in contrast to
the explicit knowledge of the dynamical model. This data-
driven strategy is of particular interest in a large variety of
situations, e.g., modeling uncertainties and inconsistencies,
unknown explicit models, computationally demanding mod-
els, etc. We address this exemplar-based reconstruction issue
using a Hidden Markov Model (HMM) and we illustrate the
relevance of the method for missing data interpolation issues
in multivariate time series. As such, our contribution opens
new research avenues for a variety of application domains
to exploit the wealth of archived observation and simulation
data, aiming a better analysis and reconstruction of dynamical
systems using past and future observation sequences.

Index Terms— Exemplar-based model, Missing data es-
timation, Hidden Markov Models, Analog method.

1. PROBLEM STATEMENT AND RELATED WORK

In many practical problems, one is interested in estimating
an unobserved process {X}eq1,... 7] given a sequence of
observations {Y; };[1,... 7. State-space methods provide a
flexible framework to address this issue. They rely on the def-
inition of two key components. Firstly, the dynamical model
states the temporal dynamics of process {X;}icqi,... 77 typ-
ically Markovian dynamics (as an illustration, we consider
here a first-order Markov process). Secondly, the observation
model relates the unknown state X, at a given time ¢ to the
observed variable Y; at the same time. Formally, it resorts to:

(D
Yt|Xt =Tt Ng(.,xt)

{Xt|Xt1 =z~ f(2-1)

To be fully characterized, this state-space setting also
involves the definition of the prior distribution of X;. From
a Bayesian perspective, the reconstruction of the unknown

state sequence {X;} from a partial and/or noisy observation
sequence {Y;} comes to evaluate filtering and smoothing pos-
teriors, respectively P(X;|Y1.:) and P(X;|Y1.7). Among the
classical techniques to infer these posteriors, one may refer
to Kalman filtering and smoothing [1] for linear-Gaussian
cases, to particle filtering and smoothing [2, 3] for nonlinear
non-Gaussian cases, as well as further extensions for high-
dimensional systems, such as the Ensemble Kalman filter and
smoother [4]. All these models exploit the online evaluation
of the dynamical model to forecast the state from a given time
step to the next one. They then may be affected by modeling
inconsistencies and uncertainties.

Meanwhile, over the last decades, observation, simulation
and storage capabilities have been greatly enhanced, such that
one may be provided with representative and realistic exam-
ples of the trajectories of a dynamical system of interest. We
view these datasets as an implicit representation of system
dynamics to overtake inconsistencies and uncertainties of ex-
plicit models and the absence of known explicit models as
well. The key idea is to combine nearest neighbors search
(referred to Analog method in the geoscience community)
and stochastic filtering methods. Analog method introduced
by Lorenz in 1969 [5] refers to a non-parametric forecasting
method. It consists in searching for the state in historical data,
referred to as the analog, that resembles the most to some cur-
rent state and in forecasting the current state from the succes-
sor of the analog. This technique has recently gained much
interest with proliferation of experimental and observational
data, and have been applied in a variety of domains includ-
ing, among others, data assimilation [6], climate and weather
forecasting [7, 8], and the inpainting of dynamic textures [9].

Let us assume that we are provided with a representative
dataset of state sequence, that consists of historical realiza-
tions of that state. We are interested in state space methods
where instead of using the model equation, the forecasts are
sampled from the nearest-neighbors (analogs) of the current
state, this estimate is then updated using the observation at
that time. This idea was first introduced by Tandeo et al.
[6], where authors have proposed non-parametric Ensemble
Kalman Filters and Smoothers (EnKF and EnKS) and have
shown the relevance of their algorithm to reconstruct chaotic
systems from noisy observations. Here, we show that this



Fig. 1: The signal shown
represents the historical
trajectory of the system
of interest. The catalog
is built by matching ev-
ery analog with its suc-

Analog Successor Cessor.

non-parametric setting can be restated using a discrete hidden
Markov model, where the discrete state values refer to the dif-
ferent elements of the dataset. The key features of this HMM
setting are two-fold compared to Ensemble Kalman filtering
methods: the use of forward-backward procedures to derive
exact filtering and smoothing posteriors, and the ability to ad-
dress non-Gaussian multi-modal distributions.

This paper is organized as follows. Section 2 introduces
the Analog HMM and the Analog Forward-Backward algo-
rithms. In Section 3, we report numerical experiments for two
dynamical systems, namely chaotic and nonlinear Lorenz-63
dynamics and human motion data. Section 4 summarizes our
main contributions and states starting points for future work.

2. ANALOG HIDDEN MARKOV MODELS

2.1. Hidden Markov Models

With a view to formally introducing the considered HMM-
based setting, we consider the following definitions. Let us
denote by X, the state at time ¢, Y; the corresponding ob-
servation at time ¢. State X; will be here a discrete random
variable with values within a predefined finite set of possible
states, as detailed in the next section. The HMM describes the
joint probability of the hidden and observed discrete random
variables. Let us suppose that the HMM involves S discrete
states. Following [10], we denote by A = (A, B, ) the
parameters of the HMM. Without loss of generality, we here
consider a first-order HMM, where:

e The transition matrix is given by: A = {a;;} =
P(Xt = Sj|Xt_1 = Sl)

e The observation matrix (also called the emission
matrix) refers to the likelihoods of each observa-
tion Y; for each state s;: B = {b;(Y;)} where
b,(Y)) = P(Yi|X, = 5,).

o The initial state distribution (i.e. whent = 1) is given
by: w1 = {m;} where m; = P(X; = s;).

Knowing the above HMM parameters, for any given obser-
vation sequence, we can compute the filtering and smoothing
posteriors respectively P(X; | Y1.1) and P(X; | Y1.7) using

the classical forward-backward algorithm [10]. As applied in
the next section, these posteriors are the basic component of
different criterions for the inference of the state sequence best
matching the observation time series, such as the Maximum
A Posteriori, the Maximum Posterior Mode or the Posterior
mean.

2.2. Analog HMM

Let us assume we are provided with a database D stor-
ing historical trajectories of the system of interest. In a
pre-processing step, we extract from D every historical
state with its associated successor in time. We note by
D, = (8i)ieq,-.,p] the set of retrieved states that we re-
fer to as analogs, while corresponding successors will be
noted as Dy = (s;);cr, Where F contains indices of states
at future times i.e. sz(;) is the successor of s;. Keep in
mind that analogs and successors are just elements of D orga-
nized in such a way to simplify algorithmic implementation.
D, N D; is not empty, as an analog can be the successor of
another analog. The setting aforementioned helps us to build
a “catalog” C by coupling every analog with its successor,
this can be written as:

C:{(Sws}'(z))aze [Ila 7P]]} 2

An illustration of the construction of the catalog is given in
Fig.1. For practical applications, the construction of the cat-
alog may benefit from realistic numerical simulations of the
system of interest, as illustrated with Lorenz-63 case-study,
and/or available observation datasets, as illustrated by the
considered human motion case-study.

Unlike the classic state space formulation where X, is
a continuous variable (Eq.1), the Analog Hidden Markov
Model setting relies on the discrete state space formed by
the analogs D, and successors D,. Thereby the possible
values of X are restricted to S = D, U D,. The consid-
ered examplar-based state-space model is stated as a discrete
HMM with a large number of discrete states P —# (D, ND;).
We resort to the Analog HMM characterized by its states S
and by parameters A, = (A4, B, m):

Xt = Sj|Xt,1 = S§; ~ A= {aij}
Yi=ulXe =s; ~ B={bj(y)}

The parameterization of the transition matrix relies on the
determination of transitions between the states. We consider
a sparse parameterization of the transition matrix, where each
state s; € S involves K possible transitions as follows:

3)

e We search for the K -nearest neighbors of s; in set D,
according to a predefined kernel in the state space.

o Let {Sn}neI(i) denote the K nearest neighbors (analogs)
of s;, where Z(i) = {i1,i2, - ,ix} contains the K
indices of these analogs. From catalog C, we retrieve
their successors {5, }ne 7 (z(i))-



o the transition probabilities a;; = P(X; = s;|X¢—1 =
s;) from state s; € S to state s; € S are non-null for
SUCCESSOTS {8 fneF(2(i))

||si—si, H2 o .
a;j X exp (——525—) if j = F(ix)
0 else

“

where o can be thought as a scale parameter.

The parameterization of the transition matrix involves the
choice of the kernel, the number of nearest neighbors and
the scale parameter . One may consider cross-validation
schemes to set these parameters. In the reported experiments,
we adopt a Radial Basis Function kernel. We use an adaptive
setting for scale parameter o: for every s; we adapt o to be the
standard deviation of the K distances between s;. Regarding
parameter K, we typically consider between 5 and 15 states
in the reported experiments. Overall, the transition matrix is
a M x M matrix with only M x K non-null values.

The observation matrix of the HMM directly follows from
the observation model P(Y;|X;). The global observation ma-
trix is a M x T matrix b;(y:) = P(Y; = 3| Xy = s;). In the
reported numerical experiments, Gaussian observation mod-
els are considered:

(ye —s;)" R (ye — Sj))
2
where R is the observation covariance error matrix.
We may consider higher-order Markovian properties with
a view to accounting for longer time dependencies. For a
given time lag J, it comes to consider the augmented state:

bi(ye) x exp(— )

X = (Xt7Xt—17Xt—27 e 7Xt—(5—1)) (6)

Creating the catalog in this case and setting the parameters of
the Analog HMM follow the same steps as aforementioned.

2.3. Analog Forward-Backward (AnFB) Algorithms

Given the above parameterization of the Analog HMM, we
can apply the classical Forward-Backward procedure [10] to
numerically evaluate the exact values of smoothing posteriors
P(X:|Y1.7) and filtering posteriors P(X;|Y7.+) for any given
observation sequence Y7.7.

The straightforward application of this procedure may in-
volve matrix operations with very large matrices (depending
on the size of the catalog). To reduce the computational com-
plexity, we first benefit from the sparsity of the transition ma-
trix. In both the forward and backward recursions, the spar-
sity of the transition matrix implies that some states may have
a null posterior. Therefore, we do compute the terms of the
observation matrix within the recursions only for state val-
ues with non-null transition probabilities. It may be noted
that this implementation does not involve any approximation.
However, it does not guarantee that the computational com-
plexity does not evolve as O(M?), as one may expect that all

possible discrete states may be associated with non-null pos-
teriors whatever the initial priors for long-enough observation
sequence.

As a consequence, when a O(M?) complexity becomes
an issue, we introduce a truncated forward-backward proce-
dure. During the forward recursion, at any time ¢, we only
keep the N most likely states with respect to filtering pos-
teriors P(X;|Y7.:). We proceed as follows. We apply the
transition matrix to the states at time ¢ — 1 with non-null
posteriors. Only, the resulting states at time ¢ involve non-
null posteriors P(X;|Y1.4—1). We then determine posteriors
P(Xt|Y1;t) as P(th/lt) X P(Y%‘Xt)P(thylt) and only
retain the N most likely states according to P(X¢|Y7.¢). Pos-
teriors P(X;|Y7.¢) are renormalized to account for this selec-
tion. This scheme can be viewed as a truncating of the poste-
rior to force to zero M — N terms to speed up the procedure
and constrain the actual memory usage. A similar procedure
is applied for the backward recursion.

Overall, given the posteriors computed from the forward-
backward procedures, we may consider different criterions to
infer the hidden state sequence associated with a given obser-
vation sequence Y7.7:

e The MPM (Maximum Posterior Mode) sequence, given
by arg max,, P(X¢ = s; | Y1.7), maximizes the com-
puted local posteriors.

e argmaxy, . P(X1.7|Y1.r) Gives the MAP sequence.
To retrieve this sequence, Viterbi algorithm is the typi-
cal numerical solution.

e With a view to minimizing the mean square estimation
error, one resorts to conditional mean E(X, | Yi.r) =
> 8i-P(Xy = s; | Yi.r). This is the version that we
will consider in the experiments.

3. NUMERICAL EXPERIMENTS

To illustrate the relevance of the proposed exemplar-based
HMM framework, we consider applications to missing data
interpolation for two nonlinear dynamical systems, Lorenz-
63 dynamics and human motion data.

3.1. Lorenz 63 chaotic model

Lorenz-63 model is a simplified model for atmospheric con-
vection introduced by Edward Lorenz [11]. It consists of a
three-dimensional state, whose non-linear dynamics are given
by:

& = ply—a),
% =z(p—2)—y, (L63)
% =zxy — Bz.

where z, y, z form the state of the system, and u, p, 8 are the
parameters of the model. As in [11] we use the values p =
28, u = 10, and 8 = 8/3 which gives birth to the Lorenz
strange attractor. This model is widely used in the literature
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Fig. 2: Lorenz63 model:
1000 time steps of the true
Lorenz attractor and recon-
struction using the truncated
AnFB and the AnEnKS.

EnKS AnEnKS AnFB
dtops = 40 | Le3 M=10" [ M=10° | M=10* | M = 10°
RMSE 37799 | 4.3279 3.2788 1.3183 0.5774
7 (8) 2h 13 min 13h 8 min 14 min

Table 1: RMSE comparison when increasing )M between
EnKS (state-of-the-art algorithm, pure dynamical model), and
both the AnEnKS using 100 ensemble members and the trun-
cated AnFB with N = 1000 when dt ;s = 40

to benchmark assimilation and filtering schemes with respect
to nonlinear dynamics.

The reported experiments address the reconstruction of
the three-dimensional state sequence at a unit sampling rate
(dt = 1) from noisy observations of only the variable = pro-
vided at a lower sampling rate of dt,;s = 40. The construc-
tion of the catalog is issued from numerical simulations of
Lorenz-63 dynamics. Regarding the test sequence, we run an
independent simulation and sample the observation sequence
for variable x every dtps time step and add white noise sam-
ple with variance R = 2. We report in Fig.2 the reconstruc-
tion of Lorenz-63 attractor from only the partial and noisy ob-
servation of x. It shows the relevance of the AnFB algorithm
to address complex non-linear and chaotic dynamics. We fur-
ther compare the reconstruction performance of the AnFB
algorithm to those of the AnEnKS [6] and of the Ensemble
Kalman filter and Smoother (EnKS) [4] which uses explicit
dynamical model (Lg3). We report Root Mean Square Er-
ror (RMSE) performance calculated over the three variables
when increasing M in Table.1 in the case of dt,;s = 40. The
situation when dt,;s = 40 exhibits highly nonlinear patterns,
which can hardly be captured by a linear dynamical model.
Execution time 7 is also shown in the same table.

The proposed HMM-based setting, AnFB, clearly outper-
forms the other examplar-based filtering strategies (Fig.2). It
proves more robust than the AnEnKS, which assumes a Gaus-
sian distribution for the state sequence. Table.l shows how
performance improves when increasing M. With N = 1000
the truncated AnFB outperforms both the AnEnKS and the
state-of-the-art EnKS which relies on pure equations of the
model. With scarce observations both in time (dt,p,s = 40)
and space (observing only z), we still achieve a good and
faster reconstruction of the attractor trajectories.

Fig. 3: Color map representation of the 7 DOFs. From left
to right: the true dynamics of the test walking sequence, the
observations with missing data (blanks), the reconstruction
using the AnFB. Top is experiment (A), bottom is (B).

3.2. Human motion data

We also consider an application to motion capture data. Due
to sensor failure or lighting and environmental effects [12],
some markers may not be tracked correctly and one has to
deal with missing data interpolation. Whereas this issue is
often stated as an exemplar-driven synthesis [12], we apply
here the proposed exemplar-based filtering, which allows to
benefit from all the available observations.

In this section we report the results of using an Ana-
log HMM with data retrieved from the CMU Graphics Lab
Motion Capture Database. We consider series of 23 walk
sequences performed by subject 35. The last walking se-
quence was taken out to be used as test data, and we design
an Analog HMM using the others. We rescale data and eval-
uate the transition matrix which involves 9154 states. Test
data consists of 415 frames describing the body dynamics
by a 62-dimensional vector representing degrees of freedom
(DOF) of joint angles with respect to a skeletal structure. In
this work we consider only the dynamics of the left leg which
is 7-dimensional, the seven DOFs are ordered as the follow-
ing: femur (3), tibia (1), foot (2), and toes (1). We consider
two experiments: (A) Erasing randomly 50% of test data and
adding a white noise of covariance 0.517, (B) a case where we
erase all data from frame 50 to 150 and from 350 to 400 and
add a white noise of covariance 0.11;. We run the AnFB with
N = 500 and compare it with the AnEnKS [6]. Evaluation
is done by calculating the RMSE between the reconstruction
and ground truth data on the missing data values coordinates.
A cross validation step is done to tune the parameter K,
we test different values and get finally K = 6. We notice
that the AnFB perform very well when the variable presents
a repeated pattern like in DOFs {1,3,4,5,6}. Performance
degrades slightly when the variable may present a scenario



NNN AnEnKS AnFB
Experiment | A A B A B
RMSE 15.5247 | 1.7696 | 2.8151 | 1.7499 | 2.2576
7 (8) 05h 25s 25s 18 s 80 s

Table 2: RMSE comparison and time execution for the two
experiments A and B.

which is far from the scenarios of the catalog like for DOFs
{2,7}. In Fig.3 we show a color map of the ground truth for
the 7 DOFs, the positions of the missing data in the observa-
tions (blanks) and the reconstruction using the AnFB which
gives an idea of the quality of missing data estimation. Videos
of the observations with missing data and those of both the
AnFB and a naive nearest neighbors (NNN) reconstruction
can be seen at the website: perso.telecom-bretagne.
eu/redouanelguensat /anhmm. Table 2 shows how the
AnFB outperforms the AnEnKS in terms of RMSE and time
execution except for experiment B where the AnFB takes
more time in the frames where we do not have observations,
this is due to the fact that the AnFB tends to explore more
states when not directed by the observations.

4. CONCLUSION AND FUTURE WORK

In this study, we propose exemplar-based filtering techniques
for state-space models. We exploit discrete HMM and derive
sequential and exact computations of the posterior likelihoods
associated to the inference of the hidden state sequence given
a partial and noisy observation sequence. Our results show
that we achieve remarkably good performance when the size
of the database is sufficiently important with the advantage of
being model-free. In this work we used a special structure for
the transition matrix, where the user can tune two parameters
K and o, and choose a suitable kernel for the considered data.
We introduced a truncating scheme which can make execution
time reasonable in case of big data. Dealing with the curse
of dimensionality is our bigger challenge given that we work
with big HMMs and since k-NN algorithms performance de-
grades in high dimensions. Exploring kernel methods for a
better selection of the analogs and integration of dimension-
ality reduction methods is an assuring step to our future work.
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