On the tail behavior of a class of multivariate conditionally heteroskedastic processes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

On the tail behavior of a class of multivariate conditionally heteroskedastic processes

Résumé

Conditions for geometric ergodicity of multivariate autoregressive conditional heteroskedasticity (ARCH) processes, with the so-called BEKK (Baba, Engle, Kraft, and Kroner) parametrization, are considered. We show for a class of BEKK-ARCH processes that the invariant distribution is regularly varying. In order to account for the possibility of different tail indices of the marginals, we consider the notion of vector scaling regular variation, in the spirit of Perfekt (1997, Advances in Applied Probability, 29, pp. 138-164). The characterization of the tail behavior of the processes is used for deriving the asymptotic properties of the sample covariance matrices.
Fichier principal
Vignette du fichier
RV_of_BEKK-ARCH_30Jan2017.pdf (522.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01436267 , version 1 (16-01-2017)
hal-01436267 , version 2 (02-02-2017)
hal-01436267 , version 3 (01-12-2017)

Identifiants

Citer

Rasmus Søndergaard Pedersen, Olivier Wintenberger. On the tail behavior of a class of multivariate conditionally heteroskedastic processes. 2017. ⟨hal-01436267v2⟩
193 Consultations
439 Téléchargements

Altmetric

Partager

More