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On the tail behavior of a class of multivariate
conditionally heteroskedastic processes

Rasmus Søndergaard Pedersen∗ and Olivier Wintenberger†

January 31, 2017

Abstract

Conditions for geometric ergodicity of multivariate autoregressive condi-
tional heteroskedasticity (ARCH) processes, with the so-called BEKK (Baba,
Engle, Kraft, and Kroner) parametrization, are considered. We show for a
class of BEKK-ARCH processes that the invariant distribution is regularly
varying. In order to account for the possibility of different tail indices of the
marginals, we consider the notion of vector scaling regular variation, in the
spirit of Perfekt (1997, Advances in Applied Probability, 29, pp. 138-164). The
characterization of the tail behavior of the processes is used for deriving the
asymptotic properties of the sample covariance matrices.
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Keywords and phrases: Stochastic recurrence equations, Markov processes, reg-
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1 Introduction

We investigate the tail behavior of a class of multivariate conditionally heteroskedas-
tic processes. Specifically, we consider the BEKK-ARCH (or BEKK(1,0,l)) process,
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introduced by Engle and Kroner (1995), satisfying

Xt = H
1/2
t Zt, t ∈ N (1.1)

Ht = C +
l∑

i=1
AiXt−1X

ᵀ
t−1A

ᵀ
i , (1.2)

with (Zt : t ∈ N) i.i.d., Zt ∼ N(0, Id), C a d×d positive definite matrix, A1, ..., Al ∈
M(d,R) (the set of d × d real matrices), and some initial value X0. Due to the
assumption that Zt is Gaussian, it holds that Xt can be written as the stochastic
recurrence equation (SRE)

Xt = M̃tXt−1 +Qt, (1.3)

with

M̃t =
l∑

i=1
mitAi (1.4)

and (mit : t ∈ N) is an i.i.d. process mutually independent of (mjt : t ∈ N) for i 6= j,
with mit ∼ N(0, 1). Moreover (Qt : t ∈ N) is an i.i.d. process with Qt ∼ N(0, C)
mutually independent of (mit : t ∈ N) for all i = 1, ..., l.

The merit of the representation in (1.3) is two-fold. Firstly, based on the rep-
resentation, we find a new sufficient condition in terms of the matrices A1, ..., Al

in order for (Xt : t ≥ 0) to be geometrically ergodic. In particular, for the case
l = 1, we derive a condition directly related to the eigenvalues of A1, in line with the
strict stationarity condition found by Nelson (1990) for the univariate ARCH(1) pro-
cess. Secondly, the representation is used to characterize the tails of the stationary
solution to Xt.

Whereas the tail behavior of univariate GARCH processes is well-established, see
e.g. Basrak et al. (2002b), few results on the tail behavior of multivariate GARCH
processes exist. Some exceptions are the multivariate constant conditional correla-
tion (CCC) GARCH processes, see e.g. Stărică (1999), Pedersen (2016), and Matsui
and Mikosch (2016), and a class of factor GARCH processes, see Basrak and Segers
(2009). This existing body of literature relies on rewriting the (transformed) process
on companion form that obeys a non-negative multivariate SRE. The characteriza-
tion of the tails of the processes then follows by an application of Kesten’s Theorem
(Kesten (1973)) for non-negative SREs. Such approach is not feasible when analyz-
ing BEKK-ARCH processes, as these are stated in terms of an Rd-valued SRE in
(1.3). Importantly, we show that the classical results of Kesten (1973, Theorem 6),
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see also Alsmeyer and Mentemeier (2012), for SREs in Rd rely on rather restrictive
conditions that can be shown not to hold for certain types of BEKK-ARCH pro-
cesses. Hence alternative arguments are needed. Moreover, the classical results of
Kesten would imply that all marginals of Xt have the same index of regular varia-
tion (or tail index). On the contrary, we show that the BEKK-ARCH process with
diagonal matrices (called Diagonal BEKK-ARCH below) exhibits different marginal
tail indices. Thus, most of the paper will focus on the study of the extremal prop-
erties of this subclass of the BEKK-ARCH model. In order to analyze this class
of BEKK-ARCH processes, where the tail indices are allowed to differ among the
elements of Xt, we introduce a new notion of vector-scaling regular variation in the
spirit of Perfekt (1997) based on element-wise scaling of Xt instead of scaling by an
arbitrary norm of Xt. We show that under the crucial Assumption M one can still
express the regular variation properties thanks to a specific "pseudo-norm" denoted
‖ · ‖α, see Section 2.3 for details.

The rest of the paper is organized as follows. In Section 2, we state sufficient
conditions for geometric ergodicity of the BEKK-ARCH process and introduce the
notion of vector-scaling regular varying distributions. We show that the distribu-
tion of Xt satisfies this type of tail-behavior, under suitable conditions. Section 3
introduces the notion of vector scaling regularly varying time series and states that
certain BEKK-ARCH processes satisfy this property. Moreover, the section con-
siders the extremal behavior of the process, in terms of the asymptotic behavior of
maxima and extremal indices. In Section 4, we consider the limiting distribution of
the sample covariance matrix of Xt, which relies on characterizing the tail-behavior
of cross-products of the entries of Xt. Section 5 contains some concluding remarks
on future research directions.

Notation: Let GL(d,R) denote the set of d × d invertible real matrices. With
M(d,R) the set of d×d real matrices and A ∈M(d,R), let ρ(A) denote the spectral
radius of A. With ⊗ denoting the Kronecker product, for any real matrix A let
A⊗p = A⊗A⊗· · ·⊗A (p factors). For two matrices, A and B, of the same dimension,
A � B denotes the Hadamard product of A and B. Unless stated otherwise, ‖ · ‖
denotes an arbitrary matrix norm. For two positive functions f and g, f(x) ∼ g(x),
if limx→∞ f(x)/g(x) = 1. Let L(X) refer to the distribution of X. By default, the
mode of convergence for distributions is weak convergence.
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2 Stationary solution of the BEKK-ARCH model

2.1 Existence and geometric ergodicity

We start out by stating the following theorem that provides a sufficient condition
for geometric ergodicity of the BEKK-ARCH process. To our knowledge, this result
is new.

Theorem 2.1. Let Xt satisfy (1.1)-(1.2). With M̃t defined in (1.4), suppose that

inf
n∈N

{
1
n
E
[
log

(∥∥∥∥∥
n∏
t=1

M̃t

∥∥∥∥∥
)]}

< 0. (2.1)

Then (Xt : t = 0, 1, ...) is geometrically ergodic, and for the associated stationary
solution, E[‖Xt‖s] <∞ for some s > 0.

Proof. Exploiting that the process can be written as the SRE (1.3)-(1.4), the proof
is fairly standard, and we recall it here for completeness. We rely on the approach of
Alsmeyer (2003). The Markov chain (Xt) constitutes a sequence of iterated random
Lipschitz functions of the form

Xt = Φt(Xt−1), t ∈ N,

where Φt are i.i.d. maps of Rd that are Lipschitz with respect to the Euclidian norm
‖ · ‖ with coefficient ‖M̃t‖. As E[log+(‖M̃t‖)] <∞, a sub-additive argument implies
the existence of the top-Lyapunov exponent

lim
n→∞

1
n

log(‖M̃1 · · · M̃n‖) = inf
n∈N

{
1
n
E
[
log

(∥∥∥∥∥
n∏
t=1

M̃t

∥∥∥∥∥
)]}

, a.s.

Under (2.1), the top-Lyapunov coefficient is negative. Under the additional condi-
tion E[log+(‖Q1‖)] <∞, that is automatically satisfied in our context, there exists a
unique stationary solution (Xt) to (1.3). Moreover, as the conditional distributions
are Gaussian and so continuous, we apply Theorems 2.1 and 2.2 of Alsmeyer (2003)
to assert that (Xt) is an aperiodic positive Harris chain on Rd. Moreover, since
E[‖M̃t‖p] <∞ and E[‖Q1‖p] <∞ for any p > 0, we apply Theorem 3.2 of Alsmeyer
(2003) to conclude that (Xt) is geometrically ergodic and that E[‖Xt‖s] < ∞ for
some s > 0.

Remark 2.2. Sufficient conditions for higher-order moments of Xt can be obtained
from Theorem 5 of Feigin and Tweedie (1985). In particular, if ρ(E[M̃⊗2n

t ]) < 1
for some n ∈ N, then, for the strictly stationary solution, E[‖Xt‖2n] < ∞. For
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example, ρ(∑l
i=1A

⊗2
i ) < 1 implies that E[‖Xt‖2] < ∞. This result complements

Theorem C.1 of Pedersen and Rahbek (2014) that contains conditions for finite
higher-order moments for the case l = 1.

For the case where M̃t contains only one term, i.e. l = 1, the condition in (2.1)
simplifies and a condition for geometric ergodicity can be stated explicitly in terms
of the eigenvalues of the matrix A1:

Proposition 2.3. Let Xt satisfy (1.1)-(1.2) with l = 1 and let A := A1. Then a
necessary and sufficient condition for (2.1) is that

ρ(A) < exp
{1

2 [−ψ(1) + log(2)]
}

= 1.88736..., (2.2)

where ψ(·) is the digamma function.

Proof. The condition (2.1) holds if and only if there exists n ∈ N such that

E
[
log

(∥∥∥∥∥
n∏
t=1

Mt

∥∥∥∥∥
)]

< 0. (2.3)

Let mt := m1t. It holds that

E
[
log

(∥∥∥∥∥
n∏
t=1

Mt

∥∥∥∥∥
)]

= E
[
log

(∥∥∥∥∥An
n∏
t=1

mt

∥∥∥∥∥
)]

= log (‖An‖)− nE [− log(|mt|)]

= log (‖An‖)− n
{1

2 [−ψ(1) + log(2)]
}
,

and hence (2.3) is satisfied if

log
(
‖An‖1/n

)
<

1
2 [−ψ(1) + log(2)] .

The result now follows by observing that ‖An‖1/n → ρ(A) as n→∞.

Remark 2.4. It holds that ρ(A ⊗ A) = (ρ(A))2. Hence the condition in (2.2) is
equivalent to

ρ(A⊗ A) < exp {−ψ(1) + log(2)} = 1
2 exp

[
−ψ

(1
2

)]
= 3.56...,

which is similar to the strict stationary condition found for the ARCH coefficient of
the univariate ARCH(1) process with Gaussian innovations; see Nelson (1990).

Below we provide some examples of BEKK-ARCH processes that are geometri-
cally ergodic and that will be studied in detail throughout this paper.
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Example 2.5 (ID BEKK-ARCH). Following Alsmeyer and Mentemeier (2012),
we consider BEKK processes with corresponding SRE’s satisfying certain irreducibil-
ity and density conditions (ID), that is conditions (A4)-(A5) in Section A.1 in the
appendix. Specifically, we consider the bivariate BEKK-ARCH process in (1.1)-(1.2)
with

Ht = C +
4∑
i=1

AiXt−1X
ᵀ
t−1A

ᵀ
i ,

where

A1 =
 a1 0

0 0

 A2 =
 0 0
a2 0

 , A3 =
 0 a3

0 0

 , A4 =
 0 0

0 a4

 (2.4)

and

a1, a2, a3, a4 6= 0. (2.5)

Writing Xt as an SRE, we obtain

Xt = M̃tXt−1 +Qt, (2.6)

with

M̃t =
4∑
i=1

Aimit (2.7)

where (m1t), (m2t), (m3t), (m4t) are mutually independent i.i.d. processes withmit ∼
N(0, 1). Assuming that a1, a2, a3, a4 are such that the top Lyapunov exponent of
(M̃t) is strictly negative, we have that the process is geometrically ergodic.

Notice that one could consider a more general d-dimensional process with the
same structure as in (2.4)-(2.7), but with M̃t containing d2 terms such that M̃t has
a Lebesgue density on M(d,R), as clarified in Example 2.10 below. Moreover, one
could include additional terms to M̃t, say a term containing a full matrix A or an
autoregressive term, as presented in Remark 2.8 below. We will focus on the simple
bivariate process, but emphasize that our results apply to more general processes.
�

Example 2.6 (Similarity BEKK-ARCH). Consider the BEKK process in (1.1)-
(1.2) with l = 1 and A := A1 = aO, where a is a positive scalar and O is an
orthogonal matrix. This implies that the SRE (1.3) has M̃t = a|mt|sign(mt)O. By
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definition, M̃t is a similarity with probability one, where we recall that a matrix is
a similarity if it can be written as a product of a positive scalar and an orthogonal
matrix. From Proposition 2.3, we have that if a < exp {(1/2) [−ψ(1) + log(2)]} =
1.88736..., then the process is geometrically ergodic.

An important process satisfying the similarity property is the well-known scalar
BEKK-ARCH process, where Ht = C + aXt−1X

ᵀ
t−1, a > 0. Here A =

√
aId, with Id

the identity matrix. �

Example 2.7 (Diagonal BEKK-ARCH). Consider the BEKK-ARCH process
in (1.1)-(1.2) with l = 1 such that A := A1 is diagonal. We refer to this pro-
cess as the Diagonal BEKK-ARCH process. Relying on Proposition 2.3, we have
that the process is geometrically ergodic, if each diagonal element of A is less than
exp {(1/2) [−ψ(1) + log(2)]} = 1.88736... in modulus.

As discussed in Bauwens et al. (2006), diagonal BEKK models are typically used
in practice, e.g. within empirical finance, due to their relatively simple parametriza-
tion. As will be shown below, even though the parametrization is simple, the tail
behavior is rather rich in the sense that each marginal of Xt has different tail indices,
in general. �

Remark 2.8. As an extension to (1.1)-(1.2), one may consider the autoregressive
BEKK-ARCH (AR BEKK-ARCH) process

Xt = A0Xt−1 +H
1/2
t Zt, t ∈ N

Ht = C +
l∑

i=1
AiXt−1X

ᵀ
t−1A

ᵀ
i ,

with A0 ∈ M(R, d). This process has recently been studied and applied by Nielsen
and Rahbek (2014) for modelling the term structure of interest rates. Notice that
the process has the SRE representation

Xt = M̃tXt−1 +Qt, M̃t = A0 +
l∑

i=1
mitAi.

Following the arguments used for proving Theorem 2.1, it holds that the (AR BEKK-
ARCH) process is geometrically ergodic if condition (2.1) is satisfied. Interestingly,
as verified by simulations in Nielsen and Rahbek (2014) the Lyapunov condition
may hold even if the autoregressive polynomial has unit roots, i.e. if A0 = Id + Π,
where Π ∈M(R, d) has reduced rank.
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2.2 Multivariate regularly varying distributions

The stationary solution of the BEKK-ARCH process (see Theorem 2.1) can be
written as

Xt =
∞∑
i=0

i∏
j=1

M̃t−j+1Qt−i, t ∈ Z. (2.8)

Even if the random matrices M̃t are light-tailed under the Gaussian assumption, the
maximum of the products (∏T

t=1 M̃t)T≥0 may exhibit heavy tails when T →∞. More
precisely, the tails of the stationary distribution are suspected to have an extremal
behavior as a power law function: for any u ∈ Sd−1

P(uᵀX0 > x) ∼ C(u)x−α(u), x→∞, (2.9)

for C(u) > 0 and α(u) > 0. Cases α(u) = α, u ∈ Sd−1 are referred as Kesten’s cases,
because of the seminal paper Kesten (1973), and are the subject of the monograph
by Buraczewski et al. (2016). A class of multivariate distributions satisfying this
property is the class of multivariate regularly varying distributions (de Haan and
Resnick (1977)):

Definition 2.9. Let R̄d0 := R̄d\{0}, R̄ := R∪{−∞,∞}, and B̄d0 be the Borel σ-field
of R̄d0. For an Rd-valued random variable X and some constant scalar x > 0, define
µx(·) := P(x−1X ∈ ·)/P(‖X‖ > x). Then X and its distribution are multivariate
regularly varying if there exists a non-null Radon measure µ on B̄d0 which satisfies

µx(·)→ µ(·) vaguely, as x→∞. (2.10)

For any µ-continuity set C and t > 0, µ(tC) = t−αµ(C), and we refer to α as the
index of regular variation.

We refer to de Haan and Resnick (1977) for the notion of vague convergence and
additional details. Below, we provide two examples of multivariate regularly varying
BEKK processes.

Example 2.10 (ID BEKK-ARCH, continued). Consider the ID BEKK-ARCH
process (2.4)-(2.7) from Example 2.5. By verifying the conditions of Theorem 1.1
of Alsmeyer and Mentemeier (2012) (stated in Section A.1 in the appendix), we
establish that the process is multivariate regularly varying.

Since (m1t,m2t,m3t,m4t) and Qt are Gaussian, we have that (A1)-(A2) hold.
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Moreover,

M̃t =
 a1m1t a3m3t

a2m2t a4m4t

 (2.11)

is invertible with probability one, which ensures that (A3) is satisfied. From (2.11)
we also notice that the distribution of M̃t has a Lebesgue density on M(d,R) which
is strictly positive in a neighborhood of I2. This ensures that the irreducibility and
density conditions (A4)-(A5) are satisfied. The fact that Qt ∼ N(0, C) and inde-
pendent of M̃t implies that condition (A6) holds. Lastly, condition (A7) holds by
the fact that (m1t,m2t,m3t,m4t) and Qt are Gaussian. By Theorem 1.1 of Alsmeyer
and Mentemeier (2012) we have established the following proposition:

Proposition 2.11. Let Xt satisfy (2.4)-(2.7) such that the top Lyapunov exponent
of (M̃t) is strictly negative. Then for the stationary solution (Xt), there exists α > 0
such that

lim
t→∞

tαP(xᵀX0 > t) = K(x), x ∈ S1, (2.12)

for some finite, positive, and continuous function K on S1.

The proposition implies that each marginal of the distribution of X0 is regularly
varying of order α. By Theorem 1.1.(ii) of Basrak et al. (2002a), we conclude that
X0 is multivariate regularly varying whenever α is a non-integer. Moreover, since
X0 is symmetric, the multivariate regular variation does also hold if α is an odd
integer, see Remark 4.4.17 in Buraczewski et al. (2016).

The proposition does also apply if a1 = 0 or a4 = 0. This can be seen by
observing that ∏n

k=1 M̃k has a strictly positive density on M(d,R) for n sufficiently
large, which is sufficient for establishing conditions (A4)-(A5). �

Example 2.12 (Similarity BEKK-ARCH, continued). The Similarity BEKK-
ARCH, introduced in Example 2.6, fits into the setting of Buraczewski et al. (2009),
see also Section 4.4.10 of Buraczewski et al. (2016). Specifically, using the represen-
tation M̃t = a|mt|sign(mt)O, we have that

(i) E[log(|mta|)] < 0 if a < exp {(1/2) [−ψ(1) + log(2)]},

(ii) P(M̃tx+Qt = x) < 1 for any x ∈ Rd, and

(iii) log(|amt|) has a non-arithmetic distribution.

Then, due to Theorem 1.6 of Buraczewski et al. (2009), we have the following propo-
sition:
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Proposition 2.13. Let Xt satisfy (1.1)-(1.2) with l = 1 such that A := A1 = aO,
where a > 0 and O is an orthogonal matrix. If a < exp {(1/2) [−ψ(1) + log(2)]} =
1.88736..., then the process has a unique strictly stationary solution (Xt) with Xt

multivariate regularly varying with index α > 0 satisfying E[(|mt|a)α] = 1. �

In the following example, we clarify that the Diagonal BEKK-ARCH process, in-
troduced in Example 2.7, does not satisfy the conditions of Theorem 1.1 of Alsmeyer
and Mentemeier (2012). Moreover, we argue that the marginals may have different
tail indices, which motivates the notion of vector scaling regular variation, intro-
duced in the next section.

Example 2.14 (Diagonal BEKK-ARCH, continued). Consider the BEKK-ARCH
process in (1.1)-(1.2) with l = 1 such that A := A1, mt := m1t, and Mt := M̃t. Sup-
pose that A ∈ GL(d,R). For this process, the distribution of Mt is too restricted in
order to apply the results by Alsmeyer and Mentemeier (2012), as in Example 2.10.
Specifically, the irreducibility condition (A4) in Appendix A.1 can be shown not to
hold, as clarified next. It holds that

P
{
‖xᵀ

n∏
k=1

Mk‖−1
(
xᵀ

n∏
k=1

Mk

)
∈ U

}
= P

{
|
n∏
k=1

mk|−1‖xᵀAn‖−1
(

n∏
k=1

mk

)
xᵀAn ∈ U

}

= P
{

sign
(

n∏
k=1

mk

)
‖xᵀAn‖−1xᵀAn ∈ U

}
.

Hence for any x ∈ Sd−1 we can always find a non-empty open U ⊂ Sd−1 such that

max
n∈N

P
{

sign
(

n∏
k=1

mk

)
‖xᵀAn‖−1xᵀAn ∈ U

}
= 0. (2.13)

As an example, for d = 2 and A diagonal, choose x = (1, 0)ᵀ. Then ‖xᵀAn‖−1xᵀAn ∈
{(−1, 0)} ∪ {(1, 0)} for any n ∈ N. We conclude that condition (A4) does not hold
for the diagonal BEKK-ARCH process.

When A is diagonal, each element of Xt = (Xt,1, ..., Xt,d)′ can be written as an
SRE, given by

Xt,i = AiimtXt−1,i +Qt,i, t ∈ Z, i = 1, . . . , d.

By Theorem 4.1 of Goldie (1991), the stationary solution of the marginal equation
exists if and only if E[log(|Aiim0|)] < 0. In that case there exists a unique αi > 0
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such that E[|m0|αi ] = |Aii|−αi and

P(±X0,i > x) ∼ cix
−αi where ci = E[|X1,i|αi − |Aiim1X0,i|αi ]

2αiE[|Aiim1|αi log(|Aiim1|)]
.

Hence each marginal of X0 may in general have different tail indices. More precisely,
the tail indices are different if the diagonal elements of A, i.e. the Aiis, are, and the
heaviest marginal tail index αi0 corresponds to the largest diagonal coefficient Ai0i0 .
When i0 is unique, the distribution X0 can be considered as multivariate regularly
varying with index αi0 and with a limit measure µ with degenerate marginals i 6= i0.�

2.3 Vector scaling regularly varying distributions

The previous Example 2.14 shows that the Diagonal BEKK-ARCH process fits into
the case where α(u) in (2.9) is non-constant. Such cases have not attracted much at-
tention in the existing body of literature. However, recent empirical studies, such as
Matsui and Mikosch (2016), may suggest that it is more realistic to consider differ-
ent marginal tail behaviors when modelling multidimensional financial observations.
The idea is to use a vector scaling instead of the scaling P(‖X‖ > x) in Definition
2.9 that reduced the regular variation properties of the vector X to the regular
variation properties of the norm ‖X‖ only. More precisely, let (Xt) be a stationary
process in Rd and let x = (x1, . . . , xd)ᵀ ∈ Rd. Denote also x−1 = (x−1

1 , . . . , x−1
d )ᵀ.

We parameterize x by t such that xi(t) → ∞ as t → ∞ for any 1 ≤ i ≤ d as in
de Haan and Resnick (1977):

Definition 2.15. The distribution of X0 is vector scaling regularly varying if and
only if there exists a normalizing sequence x(t) and a Radon measure µ with non-null
marginals such that

tP(x(t)−1 �X0 ∈ ·)→ µ(·), vaguely. (2.14)

If the vague convergence holds, necessarily the normalizing sequences xi(t), 1 ≤
i ≤ d, are regularly varying of order αi:

xi(t) ∼ t1/αi`i(t), t→∞,

where `i is a slowly varying function satisfying `i(bt)/`i(t) → 1 as t → ∞ for any
b > 0. The limiting measure µ is also αi-homogeneous with respect to the ith
coordinate.

Remark 2.16. A vector scaling regularly varying distribution is also multivariate

11



regularly varying of index α = min1≤k≤d αk. Then the limiting measure µ in (2.10)
is degenerate at any marginal for which αk > α.

Remark 2.17. In light of the above remark and Examples 2.10 and 2.12, the sta-
tionary solution of the ID and Similarity BEKK-ARCH processes satisfy that X0

is vector scaling regularly varying with the same index of regular variation and the
same slowly varying function for each marginal.

In order to extend the vector scaling regular variation definition to stationary se-
quences it is useful to rephrase the definition in terms of convergence in distribution.
It is usually done thanks to the polar decomposition; see Theorem 3 of de Haan and
Resnick (1977). In the vector scaling regularly varying setting the natural radius
notion should be the function N : Rd → R+ having its ith marginal αi-regularly
varying so that N(x(t)) = t. However, this function is in general not marginally
homogenous due to the slowly varying function `i(t). To circumvent this issue, we
make the following assumption

Assumption M Each marginal of X0 is regularly varying of order αi > 0, i =
1, ..., d. If the αis are not equal, the slowly varying functions `i(t) → ci as
t→∞, for ci > 0 and i = 1, ..., d.

Remark 2.18. As explained above, it is reasonable in our setting to assume that
`i(t) ∼ ci, 1 ≤ i ≤ d. The Diagonal BEKK-ARCH process introduced in Example
2.14 satisfies AssumptionM. Moreover, any regularly varying distribution satisfying
the Kesten property (2.9) satisfies Assumption M. Finally, any multivariate regu-
larly varying distribution with non-degenerate marginal satisfies Assumption M. In
particular, the ID and Similarity BEKK-ARCH processes, introduced in Examples
2.5 and 2.6 respectively, satisfy Assumption M.

Under Assumption M, the natural radius notion can be chosen as N = ‖ · ‖α, where

‖x‖α := c−1
i max

1≤k≤d
|xk|αk , (2.15)

will play a crucial role in the following. Notice that the homogeneity of its marginals
will be essential for the proof.

Proposition 2.19. Under Assumption M, the random vector X0 is vector scal-
ing regularly varying if and only if there exists some Y0 ∈ Rd with non degenerate
marginals such that

L(((cit)−1/αi)1≤i≤d �X0 | ‖X0‖α > t)→t→∞ L(Y0), (2.16)

where ‖ · ‖α is defined in (2.15). Moreover ‖Y0‖α is standard Pareto distributed.
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Proof. Adapting Theorem 4 of de Haan and Resnick (1977), the definition of vector
scaling regularly varying distribution of X0 in (2.14) implies (2.16). Conversely,
under Assumption M, we have that |X0,k|αk is regularly varying of order 1 for all
1 ≤ k ≤ d with slowly varying functions `i(t) ∼ ci. Moreover ‖X0‖α is regularly
varying from the weak convergence in (2.16) applied on the Borel sets {‖X0‖α > ty},
y ≥ 1. Thus, ‖X0‖α is regularly varying of order 1 with slowly varying function `(t).
One can rewrite (2.16) as

`(t)−1tP(x(t)−1 �X0 ∈ ·, ‖X0‖α > t)→ P(Y0 ∈ ·).

Using the slowly varying property of `, we obtain, for any ε > 0,

`(t)−1tP(x(t)−1 �X0 ∈ ·, ‖X0‖α > tε)→ ε−1P(Y0 ∈ ·).

By marginal homogeneity of ‖ · ‖α one can rewrite it as

`(t)−1tP(x(t)−1 �X0 ∈ ·, ‖x(t)−1 �X0‖α > ε)→ ε−1P(Y0 ∈ ·).

Notice that `(t)t−1 > 0 is non increasing as it is the tail of N(X0). So there exists
a change of variable t = h(t′) so that `(t)−1t = t′ and

t′P(x(h(t′))−1 �X0 ∈ ·, ‖x(h(t′))−1 �X0‖α > ε)→ ε−1P(Y0 ∈ ·).

We obtain the existence of µ for x′ = x ◦h in (2.14) such that µ(·, ‖x‖α > ε) = P(·),
which is enough to characterize µ entirely, choosing ε > 0 as small as necessary.

Next, we consider the spectral properties of X0, satisfying Proposition 2.19.
Notice that for any u ∈ {+1, 0,−1}d,

lim
t→∞

P
(

max
1≤i≤d

(ciuiX0,i)αk
+ > t | ‖X0‖α > t

)
= c+(u) > 0.

Hence, by a continuous mapping argument, (c � u � X0)α+, with c = (c1, . . . , cd)ᵀ,
satisfies

L(t−1(c� u�X0)α+ | ‖(u�X0)+‖α > t)→t→∞ L(c+(u)−1(u� Y0)α+), (2.17)

and (c � u �X0)α+ is regularly varying of index 1. By homogeneity of the limiting
measure in the multivariate regular variation (2.10), we can also decompose the limit
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as a product

P((‖(c� u�X0)+‖α > ty, (c� u�X0)α+/‖(c� u�X0)+‖α ∈ ·)
P(‖(c� u�X0)+‖α > t) → y−αPΘu(·),

for any y ≥ 1. Such limiting distribution is called a simple max-stable distribution
and PΘu , supported by the positive orthant, is called the spectral measure of (u �
X0)α+, see de Haan and Resnick (1977) for more details. By identification of the two
expressions of the same limit, we obtain the following proposition.

Proposition 2.20. Under Assumption M, with Y0 defined in Proposition 2.19, the
distribution of (u � Y0)α+/‖(u � Y0)+‖α, if non-degenerate, is the spectral measure
of (c � u � X0)α+ ∈ [0,∞)d. Moreover, it is independent of ‖(u � Y0)+‖α, and
c+(u)−1‖(u� Y0)+‖α is standard Pareto distributed.

Proof. That c+(u)−1‖(u � Y0)+‖α is standard Pareto distributed follows from the
convergence in (2.17) associated with the regularly varying property, ensuring the
homogeneity of the limiting measure. Then, using again the homogeneity in (2.17),
it follows that (u�Y0)α+/‖(u�Y0)+‖α and c+(u)−1‖(u�Y0)+‖α are independent.

Example 2.21 (Diagonal BEKK-ARCH, continued). From Example 2.14 we
have that each element of X0, X0,i, belongs to the domain of attraction of the
Fréchet distribution with index αi and slowly varying function `i(t) ∼ ci > 0.
Thus, it satisfies Assumption M. However, we have not been able to establish that
X0 belongs to the multivariate domain of attraction of the Fréchet distribution. In
Section A.2 in the appendix we have included some estimates of the spectral measure
of X0 for the bivariate case. The plots suggest that the tails of the process are indeed
dependent. They might be vector scaling regularly varying. �

3 Vector-scaling regularly varying time series and
their extremal behavior

Proposition 2.19 from the previous section allows us to extend the asymptotic results
of Perfekt (1997) to random vectors taking possibly negative values. In this section,
we adapt the definition of a tail chain defined by Perfekt (1997) to the context of
eventually different tail indices of the marginals.

3.1 Vector scaling regularly varying time series

In this section we introduce a new notion of multivariate regularly varying time
series in the spirit of Basrak and Segers (2009) based on vector scaling of Xt. Let
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|X0| = (|X0,1|, ..., |X0,d|)ᵀ.

Definition 3.1. Under Assumption M, the stationary process (Xt) is vector scaling
regularly varying if and only if there exists a process (Yt)t≥0 with Yt non-degenerate
for all t, such that

L((cit)−1/αi)1≤i≤d � (X0, X1, . . . , Xk) | ‖X0‖α > t)→t→∞ L(Y0, . . . , Yk),

for all k ≥ 0. The sequence (Yt)t≥0 is called the tail process.

Remark 3.2. We recover the usual notion of multivariate regularly varying stationary
processes of Basrak and Segers (2009) when αi = α, for all 1 ≤ i ≤ d.

Following Basrak and Segers (2009), we extend the notion of spectral measure
to the one of spectral processes for any vector scaling regularly varying stationary
processes:

Definition 3.3. Under Assumption M, the vector scaling regularly varying station-
ary process (Xt) admits the spectral process (Θt) if and only if

L(‖X0‖−1
α (X0, X1, . . . , Xk) | ‖X0‖α > t)→t→∞ L(Θ0, . . . ,Θk),

for all k ≥ 0.

By arguments similar to the ones given above, it follows that the vector scaling
regular variation properties also characterise the spectral process of ((c�u�Xt)α+)t≥0,
with X0 following the stationary distribution, which has the distribution of ((u �
Yt)α+/‖(u� Y0)+‖α)t≥0. We have the following proposition.

Proposition 3.4. Under Assumption M, the spectral process of any non-degenerate
((c� u�Xt)α+)t≥0 is distributed as ((u� Yt)α+/‖(u� Y0)+‖α)t≥0 and independent of
‖(u� Y0)+‖α. Moreover c+(u)−1‖(u� Y0)+‖α is standard Pareto distributed.

3.2 The tail chain

In the following, we will focus on the dynamics of the tail process (Yt)t≥1 in Definition
3.1, given the existence of Y0. We will restrict ourselves to the case where (Xt) is a
Markov chain, which implies that (Yt) is also a Markov chain called the tail chain;
see Perfekt (1997). We have the following proposition.

Proposition 3.5. Let (Xt) satisfy (1.1)-(1.2) such that the stationary distribution is
vector scaling regularly varying satisfying Assumption M. With M̃t defined in (1.4),
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the tail process, (Yt), admits the multiplicative form

Yt+1 = M̃t+1Yt, t ≥ 0. (3.1)

Proof. Following the approach of Janssen and Segers (2014), one first notices that
the existence of the kernel of the tail chain does not depend on the marginal dis-
tribution. Thus the characterization of the kernel extends automatically from the
usual multivariate regular variation setting to the vector scaling regular variation
one. It is straightforward to check Condition 2.2 of Janssen and Segers (2014). We
conclude that the tail chain has multiplicative structure in (3.1).

In light of the tail process dynamics in (3.1), under the existence of Y0, we have
that

Y ᵀt = Y ᵀ0

t∏
i=1

M̃i.

3.3 Asymptotic behavior of the maxima

From the previous section, we have that the tail chain (Yt) quantifies the extremal
behavior of (Xt) in (1.1)-(1.2). Let us consider the asymptotic behavior of the
component-wise maxima

max(X1, . . . , Xn) = max(X1,k, . . . , Xn,k)1≤k≤d.

Let u = (1, . . . , 1) = 1 ∈ Rd and assume that c+(1) = limt→∞ P(X0 
 x(t) |
|X0| 
 x(t)) is positive. Recall that for (Xt) i.i.d., the suitably scaled maxima
converge to the Fréchet distribution; see de Haan and Resnick (1977), i.e. for any
x = (x1, . . . , xd)ᵀ ∈ Rd+, defining un(x) such that nP(X0,i > un,i(x)) ∼ x−1

i , 1 ≤ i ≤
d, we have

P(max(X1, . . . , Xn) ≤ un(x))→ exp(−A∗(x)),

if and only if (X0)+ is vector scaling regularly varying. In such case, due to As-
sumption M, one has the expression

A∗(x) = c+(1)E
[

1
‖(Y0)+‖α

max
1≤i≤d

(Y0,i)αk
+

cixi

]
. (3.2)

Theorem 3.6. Let Xt satisfy (1.1)-(1.2). With M̃t defined in (1.4), suppose that
condition (2.1) holds. Suppose that the stationary distribution is vector scaling reg-
ularly varying satisfying Assumption M. Assuming the existence of Y0 in Definition
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3.1, we have that

P(max(Xm, . . . , Xn) ≤ un(x))→ exp(−A(x)),

where A(x) admits the expression

c+(1)E

max
1≤i≤d

maxk≥0
((
Y ᵀ0

∏
1≤j≤k M̃j

)
i

)αk

+
‖(Y0)+‖αcixi

− max
1≤i≤d

maxk≥1
((
Y ᵀ0

∏
1≤j≤k M̃j

)
i

)αk

+
‖(Y0)+‖αcixi

 .(3.3)
Proof. We verify the conditions of Theorem 4.5 of Perfekt (1997). Condition B2 of
Perfekt (1997) is satisfied under the more tractable Condition 2.2 of Janssen and
Segers (2014). Indeed, the tail chain depends only on the Markov kernel and one
can apply Lemma 2.1 of Janssen and Segers (2014), because it extends immediately
to the vector scaling regularly varying setting. Condition D(un) of Perfekt (1997)
holds by geometric ergodicity of the Markov chain for a separate sequence C log n,
with C > 0 sufficiently large. Lastly, the finite clustering condition,

lim
m→∞

lim supn→∞P[max(|Xm|, . . . , |XC logn|) 
 un(x) | |X0| 
 un(x)] = 0, (3.4)

holds for any C > 0 using the proof of Theorem 7.2 of Mikosch and Wintenberger
(2014) under the drift condition (DCp) for p < α = min{αi : 1 ≤ i ≤ d} and as (Xt)
is α regularly varying. Finally, as (3.4) is a special case of Condition D∞(c log n)
of Perfekt (1997), we obtain the desired result with the characterization given in
Theorem 4.5 of Perfekt (1997)

A(x) =
∫

(0,∞)d\(0,x)
P (Tj ≤ x, k ≥ 1 | T0 = y) ν(dy),

where (Tk)k≥0 is the tail chain of the standardized Markov chain (c−1
i (Xk,i)αi

+ )1≤i≤d,
k ≥ 0. As µ restricted to (0,∞)d \ (0, 1)d is the distribution of the tail chain, we
assume that xi ≥ 1 for all 1 ≤ i ≤ d so that we identify ν as the distribution of

(c−1
i (Y0,i)αi

+ )1≤i≤d under the constraint max
1≤i≤d

c−1
i (Y0,i)αi

+ /xi > 1.

Thus we have

A(x) = P
(
c−1
i (Yk,i)αi

+ /xi ≤ 1, i ≥ 1, 1 ≤ i ≤ d, max
1≤i≤d

c−1
i (Y0,i)αi

+ /xi > 1
)
.

To obtain an expression that is valid for any xi > 0, we exploit the homogeneity
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property, and we obtain

A(x) = P
(

max
k≥0

max
1≤i≤d

(cixi)−1Y αi
k,i > 1

)
− P

(
max
k≥1

max
1≤i≤d

(cixi)−1Y αi
k,i > 1

)
= c+(1)E

[
maxk≥0 max1≤i≤d(cixi)−1(Yk,i)αi

+

‖(Y0)+‖α
− maxk≥1 max1≤i≤d(cixi)−1(Yk,i)αi

+

‖(Y0)+‖α

]

because c+(1)−1‖(Y0)+‖α is standard Pareto distributed and independent of the
spectral process (Yk)α+/‖(Y0)+‖α. This expression is homogeneous and extends to
any possible x by homogeneity.

3.4 Extremal indices

As the random coefficients M̃t in (1.4) may be large, consecutive values of Xt can be
large. In the univariate case, one says that the extremal values appear in clusters.
An indicator of the average length of the cluster is the inverse of the extremal index,
an indicator of extremal dependence; see Leadbetter et al. (1983).
Thus, the natural extension of the extremal index is the function θ(x) = A(x)/A∗(x),
with A∗(x) and A(x) defined in (3.2) and (3.3), respectively. Notice that there is no
reason why θ should not depend on x. When xi ≥ c+(1), for 1 ≤ i ≤ d, we have the
more explicit expression in terms of the spectral process,

θ(x) = P
(
Y αi
k,i ≤ cixi, k ≥ 1, 1 ≤ i ≤ d | Y αi

0,i > cixi, 1 ≤ i ≤ d
)
. (3.5)

However, the extremal index θi of the marginal index (Xt,i) is still well-defined. It
depends on the complete dependence structure of the multivariate Markov chain
thanks to the following proposition:

Proposition 3.7. Let Xt satisfy (1.1)-(1.2). With M̃t defined in (1.4) satisfying
(2.1) and assuming the existence of Y0 in Definition 3.1, the extremal index θ, defined
in (3.5), is a positive continuous function bounded from above by 1 that can be
extended to (0,∞]d\{∞, . . . ,∞}. The extremal indices of the marginals are obtained
due to the formula

θi = θ(∞, . . . ,∞, xi,∞, . . . ,∞)

=
E
[
‖(Y0)+‖−1

α

(
maxk≥0

((
Y ᵀ0

∏
1≤j≤k M̃j

)
i

)αk

+
−maxk≥1

((
Y ᵀ0

∏
1≤j≤k M̃j

)
i

)αi

+

)]
E
[
‖(Y0)+‖−1

α (Y0,i)αi

+

] .

Proof. Except for the positivity of the extremal index, the result follows by Propo-
sition 2.5 in Perfekt (1997). The positivity is ensured by applying Corollary 2 in
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Segers (2005).

Example 3.8 (Diagonal BEKK-ARCH, continued). Assuming that X0 is vector
scaling regularly varying, it follows from the tail chain approach of Janssen and
Segers (2014) that the stationary Markov chain (Xt) is regularly varying. Thanks to
the diagonal structure of the matrices M̃k = Amk, one can factorize ‖(Y0)+‖−1

α (Y0,i)αi

in the expression of θi provided in Proposition 3.7. Thanks to the independence of
‖(Y0)+‖−1

α (Y0,i)αi with mk, k ≥ 1, we recover a similar expression as in the remarks
after Theorem 2.1 in de Haan et al. (1989):

θi = E
max
k≥0

Akii ∏
1≤j≤k

mj

αk

+

−max
k≥1

Akii ∏
1≤j≤k

mj

αi

+

 .
We did not manage to provide a link between the θi and the extremal index θ(x) of
the (multivariate) stationary solution (Xt) of the Diagonal BEKK-ARCH. Due to the
different normalising sequences in the asymptotic extremal result given in Theorem
3.6, the extremal index θ(x) depends on the constants cis. For x∗i = c+(1), 1 ≤ i ≤ d,
the expression (3.5) gets more simple because c+(1)−1‖(Y0)+‖α is standard Pareto
distributed and supported on [1,∞):

θ(x∗) = P
Akii ∏

1≤j≤k
mjY0,i ≤ (cic+(1))1/αi , k ≥ 1, 1 ≤ i ≤ d

 .
One can check that θ(x∗) ≥ θi0 where 1 ≤ i0 ≤ d satisfies Ai0i0 ≥ Aii, 1 ≤ i ≤ d.
Using similar expressions for θi, one can check that θi0 ≤ θii, 1 ≤ i ≤ d, i.e that
i0 is the marginal containing the largest clusters. Thus the inverse of the extremal
index of the multidimensional Diagonal BEKK-ARCH is not larger than the largest
average length of the marginals clusters. However, it is not clear whether the inverse
of the extremal index has a nice interpretation in terms of cluster lengths in the
multivariate setting. �

4 Sample covariances

In this section, we derive the limiting distribution of the sample covariances for
certain BEKK-ARCH processes. The derivation of the limiting distribution relies
on considering the tail behavior of the cross-products of the entries of Xt.
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4.1 Extension of Kesten’s theory to matrices with null en-
tries

Consider the general SRE

Yt = AtYt−1 +Bt, t ∈ Z, (4.1)

where (At, Bt) are i.i.d. copies with At ∈M(R, d) and Bt taking values in Rd. We are
interested in the case where At has possible null-entries motivated by the following
remark:

Remark 4.1. Let (Xt) satisfy the Diagonal BEKK-ARCH model in Example 2.7. In
order to study the regularly varying properties of the products Xt,kXt,k′ , we write


Xt,kXt,k′

Xt,k

Xt,k′

 =


M̃k,tM̃k′,t M̃k,tQt,k′ M̃k′tQt,k

0 M̃kt 0
0 0 M̃k′t



Xt−1,kXt−1,k′

Xt−1,k

Xt−1,k′

+ Q̃t.

Hence the vector (Xt,kXt,k′ , Xt,k, Xt,k′)ᵀ satisfies a SRE (4.1) with an upper triangu-
lar multiplicative matrix At.

We seek to characterize the regular variation properties of the SRE in the above
remark. Unfortunately, the conditions (A3), (A4), (A5) and (A7) of Theorem 1.1
of Alsmeyer and Mentemeier (2012) (see the Appendix A.1) are not satisfied because
some entries of the matrix At are potentially null. On the other hand, the remaining
conditions can be shown to hold: Condition (A6) follows since Q̃t is independent of
the diagonal elements (M̃k,tM̃k′,t, M̃kt, M̃k′t), whereas the moment conditions, (A1)
and (A2), hold since M̃t and Qt are Gaussian.

In the following we extend the result of Alsmeyer and Mentemeier (2012) for
the general SRE (4.1) satisfying (A1), (A2) and (A6), but with ∏n

t=1At contain-
ing some null entries for all n ≥ 1. For that, we replace the assumptions (A3),
(A4), (A5) and (A7) of Alsmeyer and Mentemeier (2012) by the less restrictive
assumptions (A3’), (A4’), (A5’) and (A7’) below. The main idea is to focus on
a subspace of Rd stable under the multiplication of At. Let d′ be an integer so that
1 ≤ d′ ≤ d:

• (A3’) The subset Rd′ × {0} × · · · × {0} is invariant under the multiplication
by any matrix in the support of A0. Moreover, the corresponding d′ × d′

sub-matrices are invertible.
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• (A4’) maxn∈N P {‖xᵀ
∏n
i=1Ai‖−1 (xᵀ∏n

i=1Ai) ∈ U} > 0, for any x = (x′ᵀ, 0, . . . , 0)ᵀ

with x′ ∈ Sd′−1 and any U = U ′ × {0} × · · · × {0} such that open U ′ ∈ Sd′−1.

• (A5’) Let Vδ denote the open δ-ball in GL(d,R) and let LEB denote the
Lebesgue measure on Rd2 . Then P {∏n0

i=1Ai ∈ A} ≥ γ01Vc(Γ0)(A)LEB(A), for
some Γ0 ∈ GL(d,R), n0 ∈ N, c, γ0 > 0 and A = A′ × Rd2−d′2 with A′ ⊂ Rd′2 .

• (A7’) There exists 0 < κ′0 such that E[infSd′−1×{0}×···×{0} ‖A0x‖κ
′
0 ] ≥ 1 and

E[‖Y0,k‖κ
′
0 ] < ∞ for k = d′ + 1, . . . , d. Moreover ‖B0‖ > 0 and ‖A0‖ have

finite moments of any order.

We then have the following extension of Theorem 1.1 of Alsmeyer and Mentemeier
(2012):

Theorem 4.2. Consider the SRE in (4.1). Under the assumptions (A1), (A2),
(A3’), (A4’), (A5’), (A6) and (A7’) there exists 0 < κ′ ≤ κ′0 such that

lim
n→∞

sup
x∈Sd′−1×{0}×···×{0}

E
[∥∥∥∥xᵀ n∏

i=1
Ai

∥∥∥∥κ′]1/n
= 1,

and
lim
y→∞

yκ
′P(uᵀY0 > y) = wα(u) u = (u′ᵀ, 0, . . . , 0)ᵀ with u′ ∈ Sd′−1,

for some finite, positive, and continuous function wα on Sd′−1 × {0} × · · · × {0}.

Proof. The existence of a unique stationary solution is already proved. The ex-
tension follows by the same steps as the ones of Theorem 1.1 of Alsmeyer and
Mentemeier (2012). For instance, Lemma 2.1 of Alsmeyer and Mentemeier (2012)
can be extended to the following Lemma. Its proof follows the lines of the proof
of Lemma 2.1 of Alsmeyer and Mentemeier (2012) and is thus omitted. Define
P n
C(x, ·) := P(‖xᵀ∏n

i=1Ai‖−1xᵀ
∏n
i=1Ai ∈ ·,

∏n
i=1Ai ∈ C). We have

Lemma 4.3. Suppose that (A4’) and (A5’) hold. Then there exists a compact
subset C of GL(d′,R) such that, for each x ∈ Sd′−1 × {0} × · · · × {0}, there are
δ, p > 0, m ∈ N, and a probability measure φ on Bδ(x) satisfying

Pm(y, A) ≥ Pm
C (y, A) ≥ pφ(A)

for all y ∈ Sd′−1 × {0} × · · · × {0} and A = A′ × Rd2−d′2 with A′ ⊂ Rd′2.

It implies that one can consider a Markov Random Walk as (Un, Vn) with

Un =
∥∥∥∥xᵀ n∏

i=1
Ai

∥∥∥∥−1
xᵀ

n∏
i=1

Ai and Vn = log
∥∥∥∥xᵀ n∏

i=1
Ai

∥∥∥∥,
21



for any initial value x ∈ Rd′ × {0} × · · · × {0}. The Markov chain (Yt) is then
Harris recurrent on Sd with a small set of the form A′×Rd2−d′2 with A′ ⊂ Rd′2 . One
can then apply the Markov Renewal Theorem of Alsmeyer stated as Theorem 4.2
in Alsmeyer and Mentemeier (2012) to the MRW under a change of measure. We
obtain an equivalent of Theorem 5.1 in Alsmeyer and Mentemeier (2012):

Theorem 4.4. Under the assumptions of Theorem 4.2, there exists 0 < κ′ ≤ κ′0

and a positive function r : Sd′−1 → (0,∞) such that for all bounded functions f and
all n

1
r(x)Ex[r(Yn)eκ′Vnf(U0, V0, U1, V1, · · · , Un, Vn)]

defines a distribution Pκx for any x ∈ Rd′ × {0} × · · · × {0}. Under this change
of measure, the MRW (Un, Vn) has a positive drift and satisfies the assumptions of
Theorem 4.2 of Alsmeyer and Mentemeier (2012). The constant κ′ is the unique
value determined by

lim
n→∞

sup
x∈Sd′−1×{0}×···×{0}

E
[∥∥∥∥xᵀ n∏

i=1
Ai

∥∥∥∥κ′]1/n
= 1.

The long proof follows the lines of the one of Theorem 5.1 in Alsmeyer and
Mentemeier (2012). The strategy is to consider the Markov chain restricted on
Sd′−1 × {0} × · · · × {0} rather than on Sd′ .

The conclusion follows from the implicit Markov renewal theory of Goldie (1991).
It applies similarly to the restricted MRW as to the unrestricted one, following
arguments similar to the ones in Section 6 of Alsmeyer and Mentemeier (2012). The
crucial step is to check the integrability property

sup
x∈Sd′−1×{0}×···×{0}

E|(xᵀA0Y0 + xᵀB0)κ′+ − (xᵀA0Y0)κ′+ | <∞.

One has to consider the d′ first coordinates of the product A0Y0 where Y0 is the
unique stationary solution of the SRE on Rd (and not Rd′ × {0} × · · · × {0}).
The d′ first coordinates of A0Y0 may involve all the coordinates of Y0. Consider,
without loss of generality, the case where A0 is blockwise upper-triangular. Denote
by D0 the first block diagonal of size d′ × d′ and T0 the upper diagonal block.
Then xᵀA0Y0 = xᵀD0(Y0,1, . . . , Y0,d′)ᵀ + xᵀU0(Y0,d′+1, . . . , Y0,d)ᵀ. Then, one adapts
Corollary 4.3 of Goldie (1991) and we obtain an upper bound

3κ′−1(E[|xᵀB0|κ
′ ] + E[|xᵀB0||xᵀT0(Y0,d′+1, . . . , Y0,d)ᵀ|κ

′ ] + E[|xᵀB0|]E[|xᵀD0Y0|κ
′−1]).
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The two first terms admit finite moments of order κ′0 and hence of order κ′, due to
Assumption (A7’). Turning to the last term, notice that E[|xᵀB0|] is finite due to
Assumption (A7’). For the second factor, we have that

E[|xᵀD0Y0|κ
′−1]1/(κ′−1) ≤ cn

1− E[‖xᵀ∏n
i=1Ai‖κ

′−1]1/(κ′−1) ,

by a recursive argument, such that for n sufficiently large, −E[‖xᵀ∏n
i=1Ai‖κ

′−1] < 1,
and cn > 0 is a constant that does only depend on moments of finite products of
B−t and A−t, 1 ≤ t ≤ n.

The reasoning in Sections 7 and 8 of Alsmeyer and Mentemeier (2012) also
applies to the stationary solution restricted to its first d′ coordinates in uᵀY0 for
u = (u′ᵀ, 0, . . . , 0)ᵀ with u′ ∈ Sd′−1. More precisely, the key Lemma 8.1 of Alsmeyer
and Mentemeier (2012) is valid when restricted to any u ∈ Sd′−1 × {0} × · · · × {0}:
for any t > 0 we have

P(uᵀY0 ≤ t) < 1.

Then the support of uᵀY0 is unbounded and the limiting constant wα(u) is positive.

4.2 Regular variation properties of cross-products

We are now ready to apply this extension of Theorem 1.1 of Alsmeyer and Mente-
meier (2012) in the context of products of BEKK-ARCH coordinates:

Proposition 4.5. Let Xt satisfy (1.1)-(1.2), and let M̃t be defined as in (1.4) satis-
fying (2.1). Assume that Y0 in Definition 3.1 exists (and hence that Assumption M
holds). Assume moreover that E[|M̃k,tM̃k′,t|αkk′ ] = 1 for some αkk′ < αi, 1 ≤ i ≤ d,
and that Zt = (Xt,kXt,k′ , Xt,1, . . . , Xt,d)ᵀ ∈ Rd+1, t ≥ 0, satisfies the assumptions of
Theorem 4.2 with d′ = 1. Then (Xt,kXt,k′) is regularly varying of order αkk′ and its
tail process is given by

Y ᵀn,kk′ = Y ᵀ0,kk′
n∏
t=1

M̃k,tM̃k′,t,

with Y0,kk′ is a symmetric r.v. such that |Y0,kk′| is Pareto distributed with index αkk′.

Proof. The proof follows from the application of Theorem 4.2 to the process Zt
with d′ = 1. The regular variation of the linear combination uᵀZ0 = X0,kX0,k′ with
u = (1, 0, . . . , 0) and u = (−1, 0, . . . , 0) is equivalent to the regular variation of the
marginal X0,kX0,k′ because the other marginals have larger tail indices αi > αkk′ ,
1 ≤ i ≤ d, thanks to the existence of Y0 in Definition 3.1. The tails are equally
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balanced applying Theorem 2.3 (Case b) of Goldie (1991). The regular variation
of the process and the determination of its tail process follow by similar arguments
than in Basrak and Segers (2009).

Under the assumptions of Proposition 4.5, it follows from an application of The-
orem 2.3 in Goldie (1991) that the αkk′ moments of X0,k and X0,k′ are finite. If
αkk′ ≥ αk∧αk′ the proposition does not apply and we conjecture that in this case the
product X0,kX0,k′ might be regularly varying of order αk∧αk′ . The proposition does
not provide any multi scaling regular variation properties on (X0,kX0,k′ , X0,k, X0,k′)ᵀ.
However, it is still useful to assert the convergence of the empirical covariances, as
clarified in the next section.

Example 4.6 (Diagonal BEKK-ARCH, continued). Consider the case d = 2
with α1 < α2 ≤ 2α1. Then |Aii|αi = 1/E[|m0|αi ] so that and

E[|A11m0A22m0|α1 ] =
E
[
m2α1

0

]
E[|m0|α1 ]E[|m0|α2 ]α1/α2

.

From Jensen’s inequality we have E[|m0|α2 ] ≤ E[|m0|2α1 ]α2/(2α1) so that

E[|A11m0A22m0|α1 ] =
E
[
m2α1

0

]
E[|m0|α1 ]E[|m0|α2 ]α1/α2

≥
E
[
m2α1

0

]1/2
E[|m0|α1 ] > 1

by applying Jensen’s inequality a second time. Then α1 > α12 the unique positive
index so that E[|A11m0A22m0|α12 ] = 1. One can apply Proposition 4.5 and obtain
that the cross products series (Xt,1Xt,2) is regularly varying with index α12 < α1∧α2.
�

4.3 Asymptotic properties of the sample covariances

We now consider the asymptotic properties of the sample covariance matrix for the
BEKK-ARCH process. Let

Γ̂ = 1
n

n∑
t=1

XtX
ᵀ
t .

Applying Theorems 2.2 and 4.1 of Mikosch and Wintenberger (2014) yields the
following result.

Theorem 4.7. Assume that (Xt) is the unique stationary solution of (1.1)-(1.2)
under (2.1). Assume that (X0,kX0,k′)k,k′ is multivariate regularly varying with a
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single index α > 0 with the associated slowly varying `(t) ∼ c as t→∞. Then

n1−2/αvech(Γ̂)→ Sα, if 0 < α < 2,

n1−2/αvech
(
Γ̂− E[X0X

ᵀ
0 ]
)
→ Sα, if 2 < α < 4,

n1/2vech
(
Γ̂− E[X0X

ᵀ
0 ]
)
→ N, if α > 4,

where Sα is a symmetric non-degenerate (but singular) α-stable random vector and
N is a non-degenerate Gaussian random vector.

Notice that the multiple indices case is embedded into this framework when the
smallest index αk,k′ is unique and equal to α. In that case, Sα,i,j = 0 a.s. except for
i = k, j = k′, where Sα,k,k′ is the element of Sα that corresponds to X0,kX0,k′ .

Example 4.8 (Similarity BEKK-ARCH, continued). Consider the scalar BEKK-
ARCH process introduced in Example 2.6. Here A =

√
aId, with Id the identity

matrix, such that M̃t is diagonal. This enables us to establish that the scalar BEKK
process satisfies Proposition 4.5. Specifically, maintaining the assumption of Propo-
sition 2.13 that a < exp {(1/2) [−ψ(1) + log(2)]}, notice that the index of regular
variation for each marginal of Xt is given by α satisfying E[|

√
amt|α] = 1. Moreover,

it holds that M̃k,tM̃k′,t = am2
t , and hence for a suitable choice of a there exists αx

satisfying E[(am2
t )αx ] = 1 such that αx < α. One example is when a = 1, implying

that αx = 1 and α = 2.
In the case αx < α with 1 < αx < 2, we have from Theorem 4.7 that all sample

covariances have a stable limiting distribution. �

Example 4.9 (Diagonal BEKK-ARCH, continued). Consider the case d = 2
with α1 < α2 ≤ 2α1. Then |A11| > |A22| and

E[|A11m0A22m0|α1/2] < E[|A11m0A11m0|α1/2] = E[|A11m0|α1 ] = 1

so that α1/2 < α12. So (X2
t,1, Xt,1Xt,2, X

2
t,2)ᵀ is multivariate regularly varying with

index α1/2 and degenerate tail marginal processes (Y0,2, Y0,3) = (0, 0), Y0,1 being a
symmetric r.v. so that |Y0,1| is α1/2-Pareto distributed. As α = α1, one marginal
having infinite fourth moments makes the empirical covariances approximation of
the order n1−2/α1 = o(

√
n) only. This rate of convergence does not provide any

information about the more precise (α1/2 < α12) approximation of E[Xt,1Xt,2] by
its empirical covariance. �

The two previous examples are important in relation to variance targeting esti-
mation of the BEKK-ARCH model, as considered in Pedersen and Rahbek (2014).
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For the univariate GARCH process, Vaynman and Beare (2014) have shown that
the limiting distribution of the (suitably scaled) variance targeting estimator follows
a singular stable distribution when the tail index of the process lies in (2, 4). We
expect a similar result to hold for the BEKK-ARCH process.

5 Concluding remarks

We exhibit the interesting special extremal behavior of the simple Diagonal BEKK-
GARCH model among the BEKK-GARCH model class. We want to investigate
further the use of the simple Diagonal BEKK-GARCH on financial data. The results
contained in this paper are expected to be important for future research related to
the statistical analysis of the Diagonal BEKK-ARCH model. As recently shown
by Avarucci et al. (2013), the (suitably scaled) maximum likelihood estimator for
the general BEKK-ARCH model (with l = 1) does only have a Gaussian limiting
distribution, if the second-order moments of Xt is finite. In order to obtain the
limiting distribution in the presence of very heavy tails, i.e. when E[‖Xt‖2] = ∞,
we believe that non-standard arguments are needed, and in particular the knowledge
of the tail-behavior is expected to be crucial for the analysis. We leave additional
considerations in this direction to future research.
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A Appendix

A.1 Theorem 1.1 of Alsmeyer and Mentemeier (2012)

Consider the general SRE
Yt = AtYt−1 +Bt (A.1)

with (At, Bt) a sequence of i.i.d. random variables with generic copy (A,B) such
that A is a d × d real matrix and B takes values in Rd. Consider the following
conditions of Alsmeyer and Mentemeier (2012):

• (A1) E[log+(‖A‖)] <∞, where ‖ · ‖ denotes the operator norm.

• (A2) E[log+(‖B‖)] <∞.

• (A3) P[A ∈ GL(d,R)] = 1.

• (A4) maxn∈N P {‖xᵀ
∏n
i=1Ai‖−1 (xᵀ∏n

i=1Ai) ∈ U} > 0, for any x ∈ Sd−1 and
any non-empty open subset U of Sd−1.

• (A5) Let Vδ denote the open δ-ball in GL(d,R) and let LEB denote the
Lebesgue measure on M(d,R). It holds that for any Borel set A ∈ M(d,R),
P(∏n0

i=1Ai ∈ A) ≥ γ01Vc(Γ0)(A)LEB(A) for some Γ0 ∈ GL(d,R), n0 ∈ N, and
c, γ0 > 0.

• (A6) P(A0v +B0 = v) < 1 for any v ∈ Rd.

• (A7) There exists κ0 > 0 such that

E[ inf
x∈Sd−1

‖A0x‖κ0 ] ≥ 1, E[‖A0‖κ0 log+ ‖A0‖] <∞, and 0 < E[‖B0‖κ0 ] <∞.

Theorem A.1 (Alsmeyer and Mentemeier (2012, Theorem 1.1)). Consider the SRE
in (A.1)) suppose that β := limn→∞ n

−1 log(‖∏n
i=1Ai‖) < 0 and that (A1)-(A7)

hold, then there exists a unique κ ∈ (0, κ0] such that

lim
n→∞

n−1 log(‖
n∏
i=1

Ai‖κ) = 0.

Moreover, the SRE has a strictly stationary solution satisfying,

lim
t→∞

tκP(xᵀY0 > t) = K(x) for all x ∈ Sd−1,

where K is a finite positive and continuous function on Sd−1.

29



A.2 Estimation of the spectral measure for the bivariate
diagonal BEKK-ARCH process

In this section we consider the estimation of the spectral measure of the diagonal
BEKK-ARCH process presented in Example 2.14. Specifically, we consider a special
case of the BEKK-ARCH process in (1.1)-(1.2), where d = 2:

Xt = mtAXt−1 +Qt,

with {Qt : t ∈ N} an i.i.d. process with Qt ∼ N(0, C) independent of {mt : t ∈ N},
and

A =
A11 0

0 A22

 .
Following the approach for i.i.d. sequences of vectors given in Einmahl et al.

(2001), we consider the following estimator of the spectral measure ofXt = (Xt,1, Xt,2)ᵀ:

Φ̂(θ) = 1
k

T∑
t=1

1
{R(1)

t ∨R
(2)
t ≥T+1−k,arctan

T +1−R
(2)
t

T +1−R
(1)
t

≤θ}
, θ ∈ [0, π/2],

where R(j)
t denotes the rank of Xt,j among X1,j, ..., XT,j, j = 1, 2, i.e.

R
(j)
t :=

T∑
i=1

1{Xi,j≥Xt,j}.

Here k is a sequence satisfying k(T )→∞ and k(T ) = o(T ). Einmahl et al. (2001)
showed that this estimator is consistent for i.i.d. series. We expect a similar result to
hold for geometrically ergodic processes. The reason is that the asymptotic behavior
of the empirical tail process used in Einmahl et al. (2001) has been extended to such
cases in Kulik et al. (2015).

We consider the estimation of the spectral measure for different values of C, A11,
and A22. In particular, the matrix C is

C = 10−5

1 c

c 1

 , c ∈ {0, 0.5},

and the values A11 and A22 are determined according to choices of the tail indices
of Xt,1 and Xt,2, respectively. I.e. A11 and A22 satisfy E[|mt|αi ] = |Aii|−αi and are
determined by analytical integration. Specifically, with φ(·) the pdf of the standard

30



normal distribution,

αi = 0.5⇒ Aii = (
∫ ∞
−∞
|m|0.5φ(m)dm)−1/0.5 ≈ 1.479

αi = 2.0⇒ Aii = 1

αi = 3.0⇒ Aii = (8/π)−1/6 ≈ 0.8557

αi = 4.0⇒ Aii = 3−1/4 ≈ 0.7598

Figure A.1 contains plots of the estimates of the spectral measure. The estimates
Φ̂(θ) are based on one realization of the process with T = 2,000 and a burn-in period
of 10,000 observations.
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Figure A.1: Nonparametric estimates for k = 100, 200, 300, 400, 500 and for various
choices of α1, α2, and c.
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