Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders - Archive ouverte HAL
Article Dans Une Revue Acta Mathematica Année : 2017

Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders

Résumé

We prove a form of Arnold diffusion in the a priori stable case. Let H0(p) + εH1(θ, p, t), θ ∈ T n , p ∈ B n , t ∈ T = R/T be a nearly integrable system of arbitrary degrees of freedom n 2 with a strictly convex H0. We show that for a " generic " εH1, there exists an orbit (θ, p)(t) satisfying p(t) − p(0) > l(H1) > 0, where l(H1) is independent of ε. The diffusion orbit travels along a co-dimension one resonance , and the only obstruction to our construction is a finite set of additional resonances. For the proof we use a combination geometric and variational methods, and manage to adapt tools which have recently been developed in the a priori unstable case.
Fichier principal
Vignette du fichier
NHIC-2016-Bernard-Kaloshin-zhang.pdf (572.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01435608 , version 1 (14-01-2017)

Identifiants

Citer

Patrick Bernard, K Kaloshin, K Zhang. Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders. Acta Mathematica, 2017, 217 (1), pp.1-79. ⟨10.1007/s11511-016-0141-5⟩. ⟨hal-01435608⟩
166 Consultations
110 Téléchargements

Altmetric

Partager

More