The Jacobian Conjecture fails for pseudo-planes - Archive ouverte HAL
Article Dans Une Revue Advances in Mathematics Année : 2018

The Jacobian Conjecture fails for pseudo-planes

Résumé

A smooth complex variety satisfies the Generalized Jacobian Conjecture if all its étale endomorphisms are proper. We study the conjecture for $\mathbb{Q}$-acyclic surfaces of negative logarithmic Kodaira dimension. We show that $G$-equivariant counterexamples for infinite group $G$ exist if and only if $G=\mathbb{C}^*$ and we classify them relating them to Belyi–Shabat polynomials. Taking universal covers we get rational simply connected $\mathbb{C}^*$ -surfaces of negative logarithmic Kodaira dimension which admit non-proper $\mathbb{C}^*$-equivariant étale endomorphisms. We prove also that for every integers $r\geq 1, k\geq 2$ the $\mathbb{Q}$-acyclic rational hyperplane $u(1+u^{r}v)=w^k$, which has fundamental group $\mathbb{Z}_k$ and negative logarithmic Kodaira dimension, admits families of non-proper étale endomorphisms of arbitrarily high dimension and degree, whose members remain different after dividing by the action of the automorphism group by left and right composition.

Dates et versions

hal-01429264 , version 1 (07-01-2017)

Identifiants

Citer

Adrien Dubouloz, Karol Palka. The Jacobian Conjecture fails for pseudo-planes. Advances in Mathematics, 2018, 339, pp.248-284. ⟨10.1016/j.aim.2018.09.020⟩. ⟨hal-01429264⟩
138 Consultations
0 Téléchargements

Altmetric

Partager

More