OPTIMAL ADAPTIVE ESTIMATION OF LINEAR FUNCTIONALS UNDER SPARSITY - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

OPTIMAL ADAPTIVE ESTIMATION OF LINEAR FUNCTIONALS UNDER SPARSITY

Résumé

We consider the problem of estimation of a linear functional in the Gaussian sequence model where the unknown vector θ ∈ R^d belongs to a class of s-sparse vectors with unknown s. We suggest an adaptive estimator achieving a non-asymptotic rate of convergence that differs from the minimax rate at most by a logarithmic factor. We also show that this optimal adaptive rate cannot be improved when s is unknown. Furthermore, we address the issue of simultaneous adaptation to s and to the variance σ^2 of the noise. We suggest an estimator that achieves the optimal adaptive rate when both s and σ^2 are unknown.
Fichier principal
Vignette du fichier
article_HAL.pdf (451.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01425801 , version 1 (03-01-2017)
hal-01425801 , version 2 (06-10-2017)

Identifiants

Citer

O Collier, Laëtitia Comminges, A B Tsybakov, Nicolas Verzelen. OPTIMAL ADAPTIVE ESTIMATION OF LINEAR FUNCTIONALS UNDER SPARSITY. 2017. ⟨hal-01425801v1⟩
427 Consultations
166 Téléchargements

Altmetric

Partager

More