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OPTIMAL ADAPTIVE ESTIMATION OF LINEAR FUNCTIONALS
UNDER SPARSITY

O. COLLIER, L. COMMINGES, A.B. TSYBAKOV AND N. VERZELEN

Abstract. We consider the problem of estimation of a linear functional in the Gaussian
sequence model where the unknown vector θ ∈ Rd belongs to a class of s-sparse vectors
with unknown s. We suggest an adaptive estimator achieving a non-asymptotic rate of
convergence that differs from the minimax rate at most by a logarithmic factor. We also
show that this optimal adaptive rate cannot be improved when s is unknown. Furthermore,
we address the issue of simultaneous adaptation to s and to the variance σ2 of the noise.
We suggest an estimator that achieves the optimal adaptive rate when both s and σ2 are
unknown.

1. Introduction

We consider the model

(1) yj = θj + σξj , j = 1, . . . , d,

where θ = (θ1, . . . , θd) ∈ Rd is an unknown vector of parameters, ξj are i.i.d. standard normal
random variables, and σ > 0 is the noise level. We study the problem of estimation of the
linear functional

L(θ) =
d∑
i=1

θi,

based on the observations y = (y1, . . . , yd).
For s ∈ {1, . . . , d}, we denote by Θs the class of all θ ∈ Rd satisfying ‖θ‖0 ≤ s, where

‖θ‖0 denotes the number of non-zero components of θ. We assume that θ belongs to Θs for
some s ∈ {1, . . . , d}. Parameter s characterizes the sparsity of vector θ. The problem of
estimation of L(θ) in this context arises, for example, if one wants to estimate the value of
a function f at a fixed point from noisy observations of its Fourier coefficients knowing that
the function admits a sparse representation with respect to the first d functions of the Fourier
basis. Indeed, in this case the value f(0) is equal to the sum of Fourier coefficients of f with
even indices.

As a measure of quality of an estimator T̂ of the functional L(θ) based on the sample
(y1, . . . , yd), we consider the maximum squared risk

ψT̂s , sup
θ∈Θs

Eθ(T̂ − L(θ))2,

where Eθ denotes the expectation with respect to the distribution Pθ of (y1, . . . , yd) satisfy-
ing (1). For each fixed s ∈ {1, . . . , d}, the best quality of estimation is characterized by the
minimax risk

ψ∗s , inf
T̂

sup
θ∈Θs

Eθ(T̂ − L(θ))2,
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where the infimum is taken over all estimators. An estimator T ∗ is called rate optimal on
Θs if ψT ∗s � ψ∗s . Here and in the following we write a(d, s, σ) � b(d, s, σ) for two functions
a(·) and b(·) of d, s and σ if there exist absolute constants c > 0 and c′ > 0 such that
c < a(d, s, σ)/b(d, s, σ) < c′ for all d, all s ∈ {1, . . . , d} and all σ > 0.

The problem of estimation of the linear functional from the minimax point of view has been
analyzed in [6, 1, 2, 4, 5, 8] among others. Most of these papers study minimax estimation of
linear functionals on classes of vectors θ different from Θs. Namely, θ is considered as a vector
of first d Fourier or wavelet coefficients of functions belonging to some smoothness class, such
as Sobolev or Besov classes. In particular, the class of vectors θ is assumed to be convex,
which is not the case of class Θs. Cai and Low [1] were the first to address the problem
of constructing rate optimal estimators of L(θ) on the sparsity class Θs and evaluating the
minimax risk ψ∗s . They studied the case s < da for some a < 1/2, with σ = 1/

√
d, and

established upper and lower bounds on ψ∗s that are accurate up to a logarithmic factor in
d. The sharp non-asymptotic expression for the minimax risk ψ∗s is derived in [3] where it is
shown that, for all d, all s ∈ {1, . . . , d} and all σ > 0

ψ∗s � σ2s2 log(1 + d/s2).

Furthermore, [3] proves that a simple estimator of the form

(2) L̂∗s =

{∑d
j=1 yj1y2j>2σ2 log(1+d/s2), if s <

√
d,∑d

j=1 yj , otherwise,

is rate optimal. Here and in the following, 1{·} denotes the indicator function.
Note that the minimax risk ψ∗s critically depends on the parameter s that in practice is

usually unknown. More importantly, the rate optimal estimator L̂∗s depends on s as well,
which makes it inaccessible in practice.

In this paper, we suggest adaptive estimators of L(θ) that do not depend on s and achieve
a non-asymptotic rate of convergence ΦL(σ, s) that differs from the minimax rate ψ∗s at most
by a logarithmic factor. We also show that this rate cannot be improved when s is unknown
in the sense of the definition that we give in Section 2 below. Furthermore, in Section 3
we address the issue of simultaneous adaptation to s and σ. We suggest an estimator that
achieves the best rate of adaptive estimation ΦL(σ, s) when both s and σ are unknown.

2. Main results

We assume throughout the paper that d ≥ 3. Our aim is to show that the optimal adaptive
rate of convergence is of the form

ΦL(σ, s) = σ2s2 log(1 + d(log d)/s2)

and to construct an adaptive estimator attaining this rate. Note that

(3) ΦL(σ, s) � σ2d(log d), for all
√
d log d ≤ s ≤ d.

Indeed, since the function x 7→ x log(1 + 1/x) is increasing for x > 0,

(4) d(log d)/2 ≤ s2 log(1 + d(log d)/s2) ≤ d(log d), ∀
√
d log d ≤ s ≤ d, d ≥ 3.
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To construct an adaptive estimator, we first consider a collection of non-adaptive estimators
indexed by s = 1, . . . , d:

(5) L̂s =

{∑d
j=1 yj1y2j>ασ2 log(1+d(log d)/s2), if s ≤

√
d log d,∑d

j=1 yj , otherwise,

where α > 0 is a constant that will be chosen large enough. Note that if in definition (5) we
replace d(log d) by d, and α by 2, we obtain the estimator L̂∗s suggested in [3], cf. (2). It is
proved in [3] that the estimator L̂∗s is rate optimal in the minimax non-adaptive sense. The
additional log d factor is necessary to achieve adaptivity as it will be clear from the subsequent
arguments.

We obtain an adaptive estimator via data-driven selection in the collection of estimators
{L̂s}. The selection is based on a Lepski type scheme. For s = 1, . . . , d, consider the thresholds
ωs > 0 given by

ω2
s = βσ2s2 log(1 + d(log d)/s2) = βΦL(σ, s),

where β > 0 is a constant that will be chosen large enough. We define the selected index ŝ by
the relation

(6) ŝ , min
{
s ∈ {1, . . . , b

√
d log dc} : |L̂s − L̂s′ | ≤ ωs′ for all s′ > s

}
with the convention that ŝ = b

√
d log dc+1 if the set in (6) is empty. Here, b

√
d log dc denotes

the largest integer less than
√
d log d. Finally, we define an adaptive to s estimator of L as

(7) L̂ , L̂ŝ.

The following theorem exhibits an upper bound on its risk.

Theorem 1. There exists an absolute constant α0 > 0 such that the following holds. Let L̂ be
the estimator defined in (7) with parameters α > α0 and β > 37α. Then, for all σ > 0, and
all integers d ≥ 3, s ∈ {1, . . . , d} we have

sup
θ∈Θs

Eθ(L̂− L(θ))2 ≤ CΦL(σ, s),

where C > 0 is an absolute constant.

Observe that for small s (such that s ≤ db for b < 1/2), we have 1 ≤ ΦL(σ, s)/ψ∗s ≤ c′ where
c′ > 0 is an absolute constant. Therefore, for such s our estimator L̂ attains the best possible
rate on Θs given by the minimax risk ψ∗s and it cannot be improved, even by estimators
depending on s. Because of this, the only issue is to check that the rate ΦL(σ, s) cannot be
improved if s is greater than db with b < 1/2. For definiteness, we consider below the case
b = 1/4 but with minor modifications the argument applies to any b < 1/2. Specifically, we
prove that any estimator whose maximal risk over Θs is smaller (within a small constant)
than ΦL(σ, s) for some s ≥ d1/4, must have a maximal risk over Θ1 of power order in d instead
of the logarithmic order ΦL(σ, 1) corresponding to our estimator. In other words, if we find
an estimator that improves upon our estimator only slightly (by a constant factor) for some
s ≥ d1/4, then this estimator inevitably loses much more for small s, such as s = 1, since there
the ratio of maximal risks of the two estimators behaves as a power of d.
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Theorem 2. Let d ≥ 3 and σ > 0. There exist two small absolute constants C0 > 0 and
C1 > 0 such that the following holds. Any estimator T̂ that satisfies

sup
θ∈Θs

Eθ
[(
T̂ − L(θ)

)2] ≤ C0ΦL(σ, s) for some s ≥ d1/4

has a degenerate maximal risk over Θ1, that is

sup
θ∈Θ1

Eθ
[(
T̂ − L(θ)

)2] ≥ C1σ
2d1/4 .

The property obtained in Theorem 2 can be paraphrased in an asymptotic context to
conclude that ΦL(σ, s) is the adaptive rate of convergence on the scale of classes {Θs, s =
1, . . . , d} in the sense of the definition in [10]. Indeed, assume that d → ∞. Following
[10], we call a function s 7→ Ψd(s) the adaptive rate of convergence on the scale of classes
{Θs, s = 1, . . . , d} if the following holds.

(i) There exists an estimator L̂ such that, for all d,

(8) max
s=1,...,d

sup
θ∈Θs

Eθ(L̂− L(θ))2/Ψd(s) ≤ C,

where C > 0 is a constant (clearly, such an estimator L̂ is adaptive since it cannot
depend on s).

(ii) If there exist another function s 7→ Ψ′d(s) and a constant C ′ > 0 such that, for all d,

(9) inf
T̂

max
s=1,...,d

sup
θ∈Θs

Eθ(T̂ − L(θ))2/Ψ′d(s) ≤ C ′,

and

(10) min
s=1,...,d

Ψ′d(s)

Ψd(s)
→ 0 as d→∞,

then there exists s̄ ∈ {1, . . . , d} such that

(11)
Ψ′d(s̄)

Ψd(s̄)
min

s=1,...,d

Ψ′d(s)

Ψd(s)
→∞ as d→∞.

In words, this definition states that the adaptive rate of convergence Ψd(s) is such that any
improvement of this rate for some s (cf. (10)) is possible only at the expense of much greater
loss for another s̄ (cf. (11)).

Corollary 1. The rate ΦL(σ, s) is the adaptive rate of convergence on the scale of classes
{Θs, s = 1, . . . , d}.

It follows from the above results that the rate ΦL(σ, s) cannot be improved when adaptive
estimation on the family of sparsity classes {Θs, s = 1, . . . , d} is considered. The ratio between
the best rate of adaptive estimation ΦL(σ, s) and the minimax rate ψ∗s is equal to

φ∗s =
ΦL(σ, s)

ψ∗s
=

log(1 + d(log d)/s2)

log(1 + d/s2)
.

As mentioned above, φ∗s � 1 if s ≤ db for b < 1/2. In a vicinity of s =
√
d we have φ∗s �

log log d, whereas for s ≥
√
d log d the behavior of this ratio is logarithmic: φ∗s � log d. Thus,

there are three different regimes and we see that, in all of them, rate adaptive estimation of
the linear functional on the sparsity classes is impossible without loss of efficiency as compared
to the minimax estimation. However, this loss is at most logarithmic in d.
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3. Adaptation to s when σ is unknown

In this section we discuss a generalization of our adaptive estimator to the case when the
standard deviation σ of the noise is unknown.

To treat the case of unknown σ, we first construct an estimator σ̂ of σ such that, with high
probability, σ ≤ σ̂ ≤ 10σ. Then, we consider the family of estimators defined by a relation
analogous to (5):

(12) L̂′s =

{∑d
j=1 yj1y2j>ασ̂2 log(1+d(log d)/s2), if s ≤

√
d log d,∑d

j=1 yj , otherwise,

where α > 0 is a constant to be chosen large enough. The difference from (5) consists in the
fact that we replace the unknown σ by σ̂. Then, we define a random threshold ω′s > 0 as

(ω′s)
2 = βσ̂2s2 log(1 + d(log d)/s2),

where β > 0 is a constant to be chosen large enough. The selected index ŝ′ is defined by the
formula analogous to (6):

(13) ŝ′ , min
{
s ∈ {1, . . . , b

√
d log dc} : |L̂′s − L̂′s′ | ≤ ω′s′ for all s′ > s

}
.

Finally, the adaptive estimator when σ is unknown is defined as

L̂′ , L̂′ŝ′ .

The aim of this section is to show that the risk of the estimator L̂′ admits an upper bound
with the same rate as in Theorem 1 for all d large enough. Consequently, L̂′ attains the best
rate of adaptive estimation as follows from Section 2.

Different estimators σ̂ can be used. By slightly modifying the method suggested in [3], we
consider the statistic

(14) σ̂ = 9
( 1

bd/2c
∑
j≤d/2

y2
(j)

)1/2

where y2
(1) ≤ · · · ≤ y2

(d) are the order statistics associated to y2
1, . . . , y

2
d. This statistic has the

properties stated in the next proposition. In particular, σ̂ overestimates σ but it turns out to
be without prejudice to the attainment of the best rate by the resulting estimator L̂′s.

Proposition 1. There exists an absolute constant d0 ≥ 3 such that the following holds. Let
σ̂ be the estimator defined in (14). Then, for all integers d ≥ d0 and s < d/2 we have

(15) inf
θ∈Θs

Pθ(σ ≤ σ̂ ≤ 10σ) ≥ 1− d−5,

and

(16) sup
θ∈Θs

Eθ(σ̂
4) ≤ C̄σ4,

where C̄ is an absolute constant.

The proof of this proposition is given in Section 4. Using Proposition 1 we establish the
following bound on the risk of the estimator L̂′.
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Theorem 3. There exist large enough absolute constants α > 0, β > 0, and d0 ≥ 3 such that
the following holds. Let σ̂ be the estimator defined in (14). Then, for the estimator L̂′ with
tuning parameters α and β, for all σ > 0, and all integers d ≥ d0 and s < d/2 we have

(17) sup
θ∈Θs

Eθ(L̂
′ − L(θ))2 ≤ CΦL(σ, s),

where C > 0 is an absolute constant.

Thus, the estimator L̂′, which is independent of both s and σ achieves the rate ΦL(σ, s)
that is the best possible rate of adaptive estimation established in Section 2.

The condition s < d/2 in this theorem can be generalized to s ≤ ζd for some ζ ∈ (0, 1). In
fact, for any ζ ∈ (0, 1), we can modify the definition of (14) by summing only over the (1−ζ)d
smallest values of y2

i . Then, changing the numerical constants α and β in the definition of ω′s,
we obtain that the corresponding estimator L̂′ achieves the best possible rate simultaneously
for all s ≤ ζd with a constant C in (17) that would depend on ζ. However, we cannot set
ζ = 1. Indeed, the following proposition shows that it is not possible to construct an estimator,
which is simultaneously adaptive to all σ > 0 and to all s ∈ [1, d].

Proposition 2. Let d ≥ 3 and σ > 0. There exists a small absolute constant C0 > 0 such
that the following holds. Any estimator T̂ that satisfies

(18) sup
θ∈Θ1

Eθ
[(
T̂ − L(θ)

)2] ≤ C0σ
2d , ∀σ > 0,

has a degenerate maximal risk over Θd, that is, for any fixed σ > 0,

(19) sup
θ∈Θd

Eθ
[(
T̂ − L(θ)

)2]
=∞ .

In other words, when σ is unknown, any estimator, for which the maximal risk over Θd is
finite for all σ, cannot achieve over Θ1 a risk of smaller order than σ2d, and hence cannot be
minimax adaptive. Indeed, as shown above, the adaptive minimax rate over Θ1 is of the order
σ2 log d.

4. Proofs of the upper bounds

In the following, we will denote by c1, c2, . . . absolute positive constants. We will write for
brevity L instead of L(θ).

4.1. Proof of Theorem 1. Let s ∈ {1, . . . , d} and assume that θ belongs to Θs. We have

(20) Eθ(L̂− L)2 = Eθ
[
(L̂ŝ − L)21ŝ≤s

]
+ Eθ

[
(L̂ŝ − L)21ŝ>s

]
.

Consider the first summand on the right hand side of (20). Set for brevity s0 = b
√
d log dc+1.

Using the definition of ŝ we obtain, on the event {ŝ ≤ s},

(L̂ŝ − L)2 ≤ 2ω2
s + 2(L̂s − L)2 if s < s0 or s ≥ s0, ŝ < s0.

Thus,

∀ s < s0 : Eθ
[
(L̂ŝ − L)21ŝ≤s

]
≤ 2β2ΦL(σ, s) + 2Eθ(L̂s − L)2,(21)

∀ s ≥ s0 : Eθ
[
(L̂ŝ − L)21ŝ≤s

]
≤ Eθ

[
(L̂ŝ − L)2(1ŝ≤s,ŝ<s0 + 1ŝ=s0)

]
(22)

≤ 2β2ΦL(σ, s) + 2Eθ(L̂s − L)2 + Eθ(L̂s0 − L)2.



OPTIMAL ADAPTIVE ESTIMATION OF LINEAR FUNCTIONALS UNDER SPARSITY 7

By Lemma 6 proved at the end of this section, for any tuning constant α > 0 large enough
we have

sup
θ∈Θs

Eθ(L̂s − L)2 ≤ c1ΦL(σ, s), s = 1, . . . , s0 − 1.

Note that, in view of (3), for all s ∈ [s0, d] we have

ΦL(σ, s0) ≤ σ2d log d ≤ 2σ2s2 log(1 + (d log d)/s2) = 2ΦL(σ, s),

and by definition of L̂s, for all s ∈ [s0, d] and all θ ∈ Rd, we have Eθ(L̂s − L)2 = σ2d ≤
2ΦL(σ, s). Combining these remarks with (21) and (22) yields

(23) sup
θ∈Θs

Eθ
[
(L̂ŝ − L)21ŝ≤s

]
≤ c2ΦL(σ, s), s = 1, . . . , d.

Consider now the second summand on the right hand side of (20). Since ŝ ≤ s0 we obtain the
following two facts. First,

(24) sup
θ∈Θs

Eθ
[
(L̂ŝ − L)21ŝ>s

]
= 0, ∀ s ≥ s0.

Second, on the event {ŝ > s},

(L̂ŝ − L)4 ≤
∑

s<s′≤s0

(L̂s′ − L)4.

Thus,

sup
θ∈Θs

Eθ
[
(L̂ŝ − L)21ŝ>s

]
≤ sup

θ∈Θs

[√
Pθ(ŝ > s)(d log d)1/4 max

s<s′≤s0

√
Eθ(L̂s′ − L)4

]
≤ (d log d)1/4 sup

θ∈Θs

√
Pθ(ŝ > s) max

s′≤s0

[
sup
θ∈Θs′

√
Eθ(L̂s′ − L)4

]
(25)

where for the second inequality we have used that Θs ⊂ Θs′ for s < s′. To evaluate the right
hand side of (25) we use the following two lemmas.

Lemma 1. For all s ≤ s0 we have

sup
θ∈Θs

Eθ
(
L̂s − L

)4 ≤ c3σ
4d4(log d)2, sup

θ∈Θs

Eθ
(
L̂′s − L

)4 ≤ c3σ
4d4(log d)2.

Lemma 2. There exist absolute constants c4 > 0 and α0 > 0 such that the following holds.
(i) For all α > α0 and β > 37α we have

(26) max
s≤
√
d log d

sup
θ∈Θs

Pθ(ŝ > s) ≤ c4d
−5.

(ii) There exist α > α0 and β > α0 such that

max
s≤
√
d log d

sup
θ∈Θs

Pθ(ŝ
′ > s) ≤ c4d

−5.

From (24), (25), the first inequality in Lemma 1, and part (i) of Lemma 2 we find that

sup
θ∈Θs

Eθ
[
(L̂ŝ − L)21ŝ>s

]
≤ c5σ

2 ≤ c6ΦL(σ, s), s = 1, . . . , d.

Combining this inequality with (20) and (23) we obtain the theorem.
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4.2. Proofs of the lemmas.

Proof of Lemma 1. For s = s0, L̂s − L = L̂′s − L = σ
∑d

i=1 ξi. As a consequence

Eθ(L̂s − L)4 = Eθ(L̂
′
s − L)4 = 3σ4d2 ≤ 3σ4d4(log d)2 .

Henceforth, we focus on the case s ≤
√
d log(d). We have

(27) L̂s − L = σ

d∑
i=1

ξi −
d∑
i=1

yi1y2i≤ασ2 log(1+d(log d)/s2).

Thus,

Eθ(L̂s − L)4 ≤ 8
(
σ4E

( d∑
i=1

ξi

)4
+ d4α2σ4 log2(1 + d(log d)/s2)

)
≤ c3σ

4d4(log d)2.

In a similar way,

(28) L̂′s − L = σ
d∑
i=1

ξi −
d∑
i=1

yi1y2i≤ασ̂2 log(1+d(log d)/s2),

and

Eθ(L̂
′
s − L)4 ≤ 8

(
σ4E

( d∑
i=1

ξi

)4
+ d4α2Eθ(σ̂

4) log2(1 + d(log d)/s2)
)
.

The desired bound for Eθ(L̂′s − L)4 follows from this inequality and (16). �

Proof of Lemma 2. We start by proving part (i) of Lemma 2. Note first that, for s ≤
√
d log d

and all θ we have

(29) Pθ

(
|L̂s − L| > ωs′/2

)
≤ Pθ

(
|L̂s − L| > ωs/3

)
, ∀ s < s′ ≤ d.

Indeed, if s < s′ we have ωs′ > ωs since the function t 7→ ωt is increasing for t > 0. If√
d log d ≤ s′ ≤ d, we use (4), which yields ω2

s′ ≥ βσ2d(log d)/2 ≥ ω2√
d log d

/2 and since
s ≤
√
d log d we obtain ω2

s′ ≥ ω2
s/2 using again the fact that the function t 7→ ωt is increasing.

From (29) we obtain that, for s ≤
√
d log d, all s′ such that s < s′ ≤ d and all θ,

Pθ

(
|L̂s′ − L̂s| > ωs′

)
≤ Pθ

(
|L̂s′ − L| > ωs′/2

)
+ Pθ

(
|L̂s − L| > ωs/3

)
.

This inequality and the definition of ŝ imply that, for all s ≤
√
d log d and all θ,

Pθ(ŝ > s) ≤
∑

s<s′≤d
Pθ

(
|L̂s′ − L̂s| > ωs′

)
(30)

≤ dPθ

(
|L̂s − L| > ωs/3

)
+
∑

s<s′≤d
Pθ

(
|L̂s′ − L| > ωs′/2

)
.

Note that, for
√
d log d < s′ ≤ d, we have L̂s′ =

∑d
i=1 yi, and ωs′ ≥ σ

√
βd log d/

√
2 due to (4).

Hence, for
√
d log d < s′ ≤ d, and all θ,

Pθ

(
|L̂s′ − L| > ωs′/2

)
≤ P

(∣∣ d∑
i=1

ξi
∣∣ > √βd log d

2
√

2

)
≤ 2d−β/16,
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where we have used that ξi are i.i.d. standard Gaussian random variables. This inequality
and (30) imply that, for s ≤

√
d log d, and all θ,

Pθ(ŝ > s) ≤
√
d log d max

s<s′≤
√
d log d

Pθ

(
|L̂s′ − L| > ωs′/2

)
(31)

+ dPθ

(
|L̂s − L| > ωs/3

)
+ 2d1−β/16.

As Θs ⊂ Θs′ for s < s′, we have

max
s<s′≤

√
d log d

sup
θ∈Θs

Pθ

(
|L̂s′ − L| > ωs′/2

)
≤ max

s′≤
√
d log d

sup
θ∈Θs′

Pθ

(
|L̂s′ − L| > ωs′/2

)
.

Together with (31) this implies

max
s≤
√
d log d

sup
θ∈Θs

Pθ(ŝ > s) ≤ 2d max
s′≤
√
d log d

sup
θ∈Θs′

Pθ

(
|L̂s′ − L| > ωs′/3

)
+ 2d1−β/16.

For β > 96 the last summand in this inequality does not exceed 2d−5. Thus, to prove (26) it
is enough to show that

(32) max
s≤
√
d log d

sup
θ∈Θs

Pθ

(
|L̂s − L| > ωs/3

)
≤ c7d

−6.

The rest of this proof consists in demonstrating that (32) is satisfied if the tuning constants
α and β are properly chosen. Fix s ≤

√
d log d and let θ belong to Θs. We will denote by S

the support of θ and we set for brevity

a ,
√

log(1 + d(log d)/s2).

From (27) and the fact that yi = θi + σξi we have

|L̂s − L| =
∣∣∣σ∑

i∈S
ξi −

∑
i∈S

yi1y2i≤ασ2a2 + σ
∑
i 6∈S

ξi1ξ2i>αa2
∣∣∣(33)

≤σ
∣∣∣∑
i∈S

ξi

∣∣∣+ σ
∣∣∣∑
i 6∈S

ξi1ξ2i>αa2
∣∣∣+
√
ασsa.

In the following we assume that β > 37α. Using this and recalling that ωs =
√
βσsa we find

Pθ

(
|L̂s − L| > ωs/3

)
≤ P

(∣∣∣∑
i 6∈S

ξi1ξ2i>αa2
∣∣∣ >√βsa/6)+ P

(∣∣∣∑
i∈S

ξi

∣∣∣ > (
√
β/6−

√
α)sa

)
≤ P

(∣∣∣∑
i 6∈S

ξi1ξ2i>αa2
∣∣∣ > √αsa)+ P

(∣∣∣∑
i∈S

ξi

∣∣∣ > c8

√
αsa

)
.(34)

Since ξi are i.i.d. N (0, 1) random variables, we have

(35) P
(∣∣∣∑

i∈S
ξi

∣∣∣ > c8

√
αsa

)
≤ 2 exp

(
− c2

8

2
αsa2

)
.

We now use the relation

(36) sa2 = s log(1 + d(log d)/s2) ≥ (log d)/2 for all s ∈ [1,
√
d log d].

Indeed, for s ∈ [1,
√
d log d/3] the left hand side of (36) is monotone increasing in s, while for

s ∈ [
√
d log d/3,

√
d log d] the inequality in (36) is trivial. It follows from (35) and (36) that,
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for all β > 37α and all suitably large α,

(37) P
(∣∣∣∑

i∈S
ξi

∣∣∣ > c8

√
αsa

)
≤ d−6.

Next, consider the first probability on the right hand side of (34). To bound it from above,
we invoke the following lemma.

Lemma 3. For any absolute constant α > 0 large enough, for all s ≤
√
d log d, and all

U ⊆ {1, . . . , d},
P
(

sup
t∈[1,10]

∣∣∣∑
i∈U

ξi1|ξi|>
√
αat

∣∣∣ > √αsa) ≤ c9d
−6.

Combining (34), (37) and Lemma 3 we obtain (32). Thus, part (i) of Lemma 2 follows.
We now proceed to the proof of part (ii) of Lemma 2. Proposition 1 implies that, for

s ≤
√
d log d and θ ∈ Θs,

Pθ(ŝ
′ > s) ≤ Pθ(ŝ

′ > s, σ̂ ∈ [σ, 10σ]) + d−5.

On the event {σ̂ ∈ [σ, 10σ]}, we can replace σ̂ in the definition of ŝ′ either by σ or by 10σ
according to cases, thus making the analysis of Pθ(ŝ

′ > s, σ̂ ∈ [σ, 10σ]) equivalent, up to the
values of numerical constants, to the analysis of Pθ(ŝ > s) given below. The only non-trivial
difference consists in the fact that the analog of (33) when L̂s is replaced by L̂′s contains
the term σ

∣∣∣∑i 6∈S ξi1ξ2i>ασ̂2a2/σ2

∣∣∣ instead of σ
∣∣∣∑i 6∈S ξi1ξ2i>αa2

∣∣∣ while σ̂ depends on ξ1, . . . , ξd.
This term is evaluated using Lemma 3 and the fact that

P
(∣∣∣∑

i 6∈S
ξi1|ξi|>

√
ασ̂a/σ

∣∣∣ > √αsa, σ̂ ∈ [σ, 10σ]
)
≤ P

(
sup

t∈[1,10]

∣∣∣∑
i 6∈S

ξi1|ξi|>
√
αat

∣∣∣ > √αsa).
We omit further details that are straightforward from inspection of the proof of part (i) of
Lemma 2 given above. Thus, part (ii) of Lemma 2 follows. �

For the proof of Lemma 3, recall the following fact about the tails of the standard Gaussian
distribution.

Lemma 4. Let X ∼ N (0, 1), x > 1 and q ∈ N. There exists a constant C∗q depending only
on q such that

E
[
X2q1|X|>x

]
≤ C∗qx2q−1e−x

2/2.

We will also use the Fuk-Nagaev inequality [9, page 78] that we state here for reader’s
convenience.

Lemma 5 (Fuk-Nagaev inequality). Let p > 2 and v > 0. Assume that X1, . . . , Xn are
independent random variables with E(Xi) = 0 and E|Xi|p <∞, i = 1, . . . , n. Then,

P
( n∑
i=1

Xi > v
)
≤ (1 + 2/p)p

n∑
i=1

E|Xi|pv−p + exp

(
− 2v2

(p+ 2)2ep
∑n

i=1 EX
2
i

)
.

Proof of Lemma 3. We have

p0 , P
(

sup
t∈[1,10]

∣∣∑
i∈U

ξi1|ξi|>
√
αat

∣∣ > √αsa)
= E

[
P
(

sup
t∈[1,10]

∣∣∑
i∈U

εi|ξi|1|ξi|>√αat
∣∣ > √αsa ∣∣∣ |ξi|, i ∈ U)]
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where εi denotes the sign of ξi. Consider the function g(x) = supt∈[1,10]

∣∣∑
i∈U xi|ξi|1|ξi|>√αat

∣∣
where x = (xi, i ∈ U) with xi ∈ {−1, 1}. For any i0 ∈ U , let gi0,u(x) denote the value of this
function when we replace xi0 by u ∈ {−1, 1}. Note that, for any fixed (|ξi|, i ∈ U), we have
the bounded differences condition:

sup
x
|g(x)− gi0,u(x)| ≤ 2|ξi|1|ξi|>√αa , 2Zi ∀u ∈ {−1, 1}, i0 ∈ U.

The vector of Rademacher random variables (ε1, . . . , εd) is independent from (|ξ1|, . . . , |ξd|).Thus,
for any fixed (|ξi|, i ∈ U) we can use the bounded differences inequality, which yields

p0 ≤ E
[

exp
(
− αs2a2

2
∑

i∈U Z
2
i

)]
≤ exp

(
− αs2a2

2∆

)
+ P

(∑
i∈U

Z2
i > ∆

)
, ∀ ∆ > 0.(38)

We now set ∆ =
∑

i∈U EZ2
i + d exp

(
−αa2/(2p)

)
for some integer p > 2 that will be chosen

large enough.
To finish the proof, it remains to show that each of the two summands on the right hand

side of (38) does not exceed c9d
−6/2 if p and α are large enough. To bound from above

the probability P
(∑

i∈U Z
2
i > ∆

)
we apply Lemma 5 with Xi = Z2

i − E(Z2
i ) and v =

d exp
(
−αa2/(2p)

)
. The random variables Xi are centered and satisfy, in view of Lemma 4,

(39) E|Xi|p ≤ 2p−1E|Zi|2p ≤ 2p−1C∗p(
√
αa)2p−1e−αa

2/2

for any p ∈ N∗. Thus, Lemma 5 yields

P
(∑
i∈U

Z2
i > ∆

)
≤ C∗p2p−1(1 + 2/p)p

(
√
αa)2p−1

dp
+ exp

(
−d exp(αa2(1/2− 1/p))

(p+ 2)2epC∗2 (
√
αa)3

)
.

The expression in the last display can be rendered smaller than c9d
−6/2 for some absolute

constant c9 > 0 and all d ≥ 3 by choosing p large enough.
Finally, using (39) we find

αs2a2

2∆
≥ αs2a2

2d(C∗1
√
αa exp(−αa2/2) + exp(−αa2/(2p)))

≥ c10
√
αas2 exp(αa2/(2p))

d
,

whereas

s2 exp(αa2/(2p))

d
=
s2

d

(
1 +

d log d

s2

)α/(2p)
≥ log d

(d log d

s2

)α/(2p)−1
≥ log d

for any α ≥ 2p and any s ≤
√
d log d. Hence, for such α and s,

exp
(
− αs2a2

2∆

)
≤ exp

(
−c10

√
αa log d

)
that is smaller than c9d

−6/2 for all d ≥ 3 provided that the absolute constant α is large
enough. Thus, Lemma 3 follows.

�

Lemma 6. There exists an absolute constant c1 > 0 such that, for all α > 0 large enough,

sup
θ∈Θs

Eθ(L̂s − L)2 ≤ c1ΦL(σ, s), sup
θ∈Θs

Eθ(L̂
′
s − L)2 ≤ c1ΦL(σ, s), ∀s ≤

√
d log d.
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Proof. We easily deduce from (33) that

Eθ(L̂s − L)2 ≤ 3σ2
(
s+ dE

[
X21X2>αa2

]
+ αs2a2

)
,

where X ∼ N (0, 1). By (39),

dE
[
X21X2>2a2

]
≤ 2C∗1ad exp(−a2) =

2C∗1ads
2

s2 + d log d
≤ 2C∗1s

2a

log d
,

which implies that the desired bound for Eθ(L̂s − L)2 holds whenever α ≥ 2. Next, we prove
the bound of the lemma for Eθ(L̂′s − L)2. Similarly to (33),

L̂′s − L =σ
∑
i∈S

ξi −
∑
i∈S

yi1y2i≤ασ̂2a2 + σ
∑
i 6∈S

ξi1σ2ξ2i>ασ̂
2a2 .

This implies

Eθ

[
(L̂′s − L)21σ̂∈[σ,10σ]

]
≤ Eθ

(
σ
∣∣∣∑
i∈S

ξi

∣∣∣+
√
ασ̂sa+ σW

)2
(40)

≤ 3
(
σ2s+ αEθ(σ̂

2)a2s2 + σ2E(W 2)
)
,

where W , supt∈[1,10]

∣∣∣∑i 6∈S ξi1|ξi|>
√
αat

∣∣∣. Using Lemma 3 we find that, for all α > 0 large
enough,

E(W 2) ≤ (
√
αsa)2 + E

(∑
i 6∈S
|ξi|
)2
1W>

√
αsa

≤ αs2a2 +
[
E
(∑
i 6∈S
|ξi|
)4]1/2

c9d
−3 ≤ αs2a2 + c9

√
3d−1.

Plugging this bound in (40) and using (16) we get

Eθ

[
(L̂′s − L)21σ̂∈[σ,10σ]

]
≤ c11ΦL(σ, s).

On the other hand, by virtue of Lemma 1 and (15),

Eθ

[
(L̂′s − L)21σ̂ 6∈[σ,10σ]

]
≤
√

Pθ(σ̂ 6∈ [σ, 10σ])

√
Eθ(L̂′s − L)4 ≤

√
c3σ

2 log d

d1/2
≤ c12ΦL(σ, s).

The desired bound for Eθ(L̂′s − L)2 follows from the last two displays.
�

4.3. Proofs of Proposition 1 and of Theorem 3.

Proof of Proposition 1. Since s ≤ d/2, there exists a subset T of size bd/2c such that T∩S = ∅.
By Definition of σ̂2, we obtain that

σ̂2 ≤ 81σ2

bd/2c
∑
i∈T

ξ2
i .

This immediately implies (16). To prove (15), note that the Gaussian concentration inequality
(cf. [7]) yields

P
((∑

i∈T
ξ2
i

)1/2
>
√

100bd/2c/81
)
≤ exp(−cd) ,
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for a positive constant c. Therefore,

(41) Pθ(σ̂ ≤ 10σ) ≥ 1− exp(−cd).

Next, let G be the collection of all subsets of {1, . . . , d} of cardinality bd/2c. We now establish
a bound on the deviations of random variables ZG = 1

σ2

∑
i∈G y

2
i uniformly over all G ∈ G.

Fix any G ∈ G. The random variable ZG has a chi-square distribution with bd/2c degrees of
freedom and non-centrality parameter

∑
i∈G θ

2
i . In particular, this distribution is stochasti-

cally larger than a central chi-square distribution with d′ = bd/2c degrees of freedom. Let Z
be a random variable with this central chi-square distribution. By Lemma 11.1 in [12],

P
(
Z ≤ d′

e
x2/d′

)
≤ x, ∀ x > 0.

Take x =
(
d
d′

)−1
e−d

′/2. Using the bound log
(
d
d′

)
≤ d′ log(ed/d′) it follows that log(1/x) ≤

d′(3
2 + log( dd′ )) ≤ d

′(3
2 + log 2) + 1. Taking the union bound over all G ∈ G we conclude that

P

(
inf
G∈G

ZG ≤
d′

4e3

(
1− 2

d′

))
≤ e−d′/2 < d−5/2

for all d large enough. Since σ̂2 = σ2 81
d′ infG∈G Z

2
G, we obtain that σ̂2 ≥ σ2 with probability

at least 1− d−5/2 for all d large enough. Combining this with (41), we get (15) for all d large
enough.

�

Proof of Theorem 3. We repeat the proof of Theorem 1 replacing there L̂s by L̂′s and ŝ by ŝ′.
The difference is that, in view of (16), the relation (21) now holds with c15β

2ΦL(σ, s) instead
of β2ΦL(σ, s), and we use the results of Lemmas 1, 2 and 6 related to L̂′s rather than to L̂s. �

5. Proofs of the lower bounds

5.1. Proof of Theorem 2. Theorem 2 is an immediate consequence of the following lemma.

Lemma 7. For all d ≥ 3 and all s ≥ d1/4,

(42) R(s) , inf
L̃

{
sup
θ∈Θ1

Eθ(L̃− L)2σ−2d−1/4 + sup
θ∈Θs

Eθ(L̃− L)2
(
ΦL(σ, s)

)−1
}
≥ 1

160
.

Proof. We first introduce some notation. For a probability measure µ on Θs, we denote by Pµ
the mixture probability measure Pµ =

∫
Θs

Pθµ(dθ). Let S(s, d) denote the set of all subsets of
{1, . . . , d} of size s, and let S be a set-valued random variable uniformly distributed on S(s, d).
For any ρ > 0, denote by µρ the distribution of the random variable σρ

∑
j∈S ej where ej is

the jth canonical basis vector in Rd. Next, let χ2(Q,P ) =
∫

(dQ/dP )2dP − 1 denote the
chi-square divergence between two probability measures Q and P such that Q � P , and
χ2(Q,P ) = +∞ if Q 6� P .

Take any s ≥ d1/4 and set

ρ ,
√

log(1 + d(log d)/s2)/2 =
(
ΦL(σ, s)

)1/2
/(2sσ).
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Consider the mixture distribution Pµρ with this value of ρ. For any estimator L̃, we have
supθ∈Θs Eθ(L̃− L)2 ≥ Eµρ(L̃− L)2 ≥ Eµρ(L̃− Eµρ(L))2 = Eµρ(L̃− σsρ)2. Therefore,

R(s) ≥ inf
L̃

{
E0(L̃2)σ−2d−1/4 + Eµρ(L̃− σsρ)2

(
ΦL(σ, s)

)−1
}

≥ 1

16
inf
L̃

{
P0(L̃ > σsρ/2)σ−2d−1/4ΦL(σ, s) + Pµρ(L̃ < σsρ/2)

}
≥ 1

16
inf
A

{
P0(A)σ−2d−1/4ΦL(σ, s) + Pµρ(Ac)

}
,(43)

where infA denotes the infimum over all measurable events A, and Ac denotes the complement
of A. It remains to prove that the expression in (43) is not smaller than 1/160. This will be
deduced from the following lemma, the proof of which is given at the end of this section.

Lemma 8. Let P and Q be two probability measures on a measurable space (X,U). Then, for
any q > 0,

inf
A∈U
{P (A)q +Q(Ac)} ≥ max

0<τ<1

[
qτ

1 + qτ

(
1− τ(χ2(Q,P ) + 1)

)]
.

We now apply Lemma 8 with P = P0, Q = Pµρ , and

(44) q = σ−2d−1/4ΦL(σ, s) = s2d−1/4 log
(

1 +
d(log d)

s2

)
.

By Lemma 1 in [3], the chi-square divergence χ2(Pµρ ,P0) satisfies

χ2(Pµρ ,P0) ≤
(

1− s

d
+
s

d
eρ

2
)s
− 1 ≤

(
1 +

s

d

(
eρ

2 − 1
))s

.

Since ρ2 =
(

log
(
1 + d(log d)

s2

))
/4, we find

χ2(Pµρ ,P0) ≤ exp

[
s log

[
1 +

s

d

((
1 +

d(log d)

s2

)1/4
− 1

)]]
(45)

≤ exp

[
s log

(
1 +

log d

4s

)]
≤ d1/4 ,

where we have used that (1 + x)1/4 ≤ 1 + x/4 for x > 0. Take

(46) τ = (d1/4 + 1)−1/2.

Then, using (44) and the inequality s ≥ d1/4 we find

(47) qτ =
s2 log

(
1 + d(log d)

s2

)
2d1/4(d1/4 + 1)

≥ d1/2 log(1 + d1/2(log d))

2d1/4(d1/4 + 1)
>

1

4
, ∀ d ≥ 3.

Lemma 8 and inequalities (45) – (47) imply

inf
A

{
P0(A)σ−2d−1/4ΦL(σ, s) + Pµρ(Ac)

}
≥ qτ

2(1 + qτ)
≥ 1

10
.

�
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Proof of Lemma 8. We follow the same lines as in the proof of Proposition 2.4 in [11]. Thus,
for any τ ∈ (0, 1),

P (A) ≥ τ(Q(A)− v), where v = Q

(
dP

dQ
< τ

)
≤ τ(χ2(Q,P ) + 1).

Then,

inf
A
{P (A)q +Q(Ac)} ≥ inf

A
{qτ(Q(A)− v) +Q(Ac)}

≥ min
0≤t≤1

max(qτ(t− v), 1− t) =
qτ(1− v)

1 + qτ
.

�

5.2. Proof of Corollary 1. First, note that condition (8) with Ψd(s) = CΦL(σ, s) is satisfied
due to Theorem 1. Next, the minimum in condition (10) with Ψd(s) = CΦL(σ, s) can be only
attained for s ≥ d1/4, since for s < d1/4 we have ΦL(σ, s) � ψ∗s where ψ∗s is the minimax
rate on Θs. Thus, it is not possible to achieve a faster rate than ΦL(σ, s) for s < d1/4, and
therefore (10) is equivalent to the condition

min
s≥d1/4

Ψ′d(s)

ΦL(σ, s)
→ 0,

and

min
s=1,...,d

Ψ′d(s)

ΦL(σ, s)
� min

s≥d1/4

Ψ′d(s)

ΦL(σ, s)
.

Obviously, Ψ′d(s) cannot be of smaller order than the minimax rate ψ∗s , which implies that

min
s≥d1/4

Ψ′d(s)

ΦL(σ, s)
≥ min

s≥d1/4

cψ∗s
ΦL(σ, s)

= min
s≥d1/4

c log(1 + d/s2)

log(1 + d(log d)/s2)
≥ c′

log d

where c, c′ > 0 are absolute constants. On the other hand, Theorem 2 yields

C ′Ψ′d(1)

ΦL(σ, 1)
≥ C ′C1σ

2d1/4

ΦL(σ, 1)
=

C ′C1d
1/4

log(1 + d(log d))
.

Combining the last three displays, we find

Ψ′d(1)

ΦL(σ, 1)
min

s=1,...,d

Ψ′d(s)

ΦL(σ, s)
≥ c′C ′C1d

1/4

(log d) log(1 + d(log d))
→∞,

as d→∞, thus proving (11) with s̄ = 1.

5.3. Proof of Proposition 2. Since in this proof we consider different values of σ, we denote
the probability distribution of (y1, . . . , yd) satisfying (1) by Pθ,σ2 . Let Eθ,σ2 be the correspond-
ing expectation. Assume that T̂ satisfies (18) with C0 = 1/512. We will prove that (19) holds
for σ = 1. The extension to arbitrary σ > 0 is straightforward and is therefore omitted.

Let a > 1 be a positive number and let µ be the d-dimensional normal distribution with
zero mean and covariance matrix a2Id where Id is the identity matrix. In what follows, we
consider the mixture probability measure Pµ =

∫
Θd

Pθ,1µ(dθ). Observe that Pµ = P0,1+a2 .
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Fixing θ = 0 and σ2 = 1 + a2 in (18), we get E0,1+a2
[
T̂ 2
]
≤ 2C0a

2d and therefore
P0,1+a2(|T̂ | ≥ 1

8a
√
d) ≤ 1

4 . Since Pµ = P0,1+a2 , this implies

(48) Pµ
(
|T̂ | < 1

8
a
√
d
)
>

3

4
.

For θ distributed according to µ, L(θ) has a normal distribution with mean 0 and variance
a2d. Hence, using the table of standard normal distribution, we find

µ
(
|L(θ)| ≤ a

4

√
d
)
<

1

4
.

Combining this with (48), we conclude that, with Pµ-probability greater than 1/2, we have
simultaneously |L(θ)| > a

√
d/4 and |T̂ | < a

√
d/8. Hence,

sup
θ∈Θd

Eθ,1
[(
T̂ − L(θ)

)2] ≥ Eµ
[
(T̂ − L(θ))2

]
≥ 1

128
a2d

where Eµ denotes the expectation with respect to Pµ. The result now follows by letting a tend
to infinity.
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