Oriented Triplet Markov Field for Hyperspectral Image Segmentation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Oriented Triplet Markov Field for Hyperspectral Image Segmentation

Résumé

Hyperspectral image processing benefits greatly from using spatial information. Markov field modeling is a well-known statistical model class for considering spatial relationships between sites of an image. Often, the model restricts to Hidden Markov Field, therefore cannot handle non-stationarities in the images. This paper presents a Triplet Markov Field model for hyperspectral image segmentation, allowing the joint retrieving of image classes and local orientations. Segmentation results on synthetic data validate the methods, and results on real astronomical data are presented.
Fichier principal
Vignette du fichier
whispers-final.pdf (1.16 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01421883 , version 1 (23-12-2016)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-01421883 , version 1

Citer

Jean-Baptiste Courbot, Emmanuel Monfrini, Vincent Mazet, Christophe Collet. Oriented Triplet Markov Field for Hyperspectral Image Segmentation. IEEE Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing, Aug 2016, Los Angeles, United States. ⟨hal-01421883⟩
176 Consultations
74 Téléchargements

Partager

More