
HAL Id: hal-01421883
https://hal.science/hal-01421883v1

Submitted on 23 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Oriented Triplet Markov Field for Hyperspectral Image
Segmentation

Jean-Baptiste Courbot, Emmanuel Monfrini, Vincent Mazet, Christophe
Collet

To cite this version:
Jean-Baptiste Courbot, Emmanuel Monfrini, Vincent Mazet, Christophe Collet. Oriented Triplet
Markov Field for Hyperspectral Image Segmentation. IEEE Workshop on Hyperspectral Image and
Signal Processing : Evolution in Remote Sensing, Aug 2016, Los Angeles, United States. �hal-01421883�

https://hal.science/hal-01421883v1
https://hal.archives-ouvertes.fr


ORIENTED TRIPLET MARKOV FIELDS
FOR HYPERSPECTRAL IMAGE SEGMENTATION

Jean-Baptiste Courbot1,3 , Emmanuel Monfrini2, Vincent Mazet1, Christophe Collet1
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ABSTRACT

Hyperspectral image processing benefits greatly from using
spatial information. Markov field modeling is a well-known
statistical model class for considering spatial relationships
between sites of an image. Often, the model restricts to Hidden
Markov Field, therefore cannot handle non-stationarities in the
images. This paper presents a Triplet Markov Field model for
hyperspectral image segmentation, allowing the joint retrieving
of image classes and local orientations. Segmentation results
on synthetic data validate the methods, and results on real
astronomical data are presented.

Index Terms— Triplet Markov Field, Bayesian Segmen-
tation, Orientation Retrieving.

1. INTRODUCTION

Cosmological theory predicts the existence of a “cosmic
web”, that is weak gas concentration, linking galaxies through
elongated structures [1]. These structures are assumed to
trace galaxy formation. The Multi-Unit Spectroscopic Ex-
plorer (MUSE) instrument is designed to reveal such features
in deep field hyperspectral images (HSI) [2]. The purpose of
this paper is to study the relevance of Triplet Markov Fields
(TMF) [3] for segmenting oriented, faint structures in HSI. In-
deed, modeling local orientation of elongated structures can be
performed within TMF and could improve the segmentation.

Priors used for HSI segmentation are generally either spec-
tral or spatial. For instance, spectral priors are used in super-
vised anomaly detection [4]. On the other hand, spatial priors
can translate into object-wise processing [5], morphology-
based processing [6] or local priors, as in the case of Markov
Fields. In this framework, numerous works were published
for HSI processing, most of them using Hidden Markov Field
(HMF) models [7–12]. Despite its common use, standard
HMF modeling has significant lacks: especially, spatial noise
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correlation and non-stationarity are not modeled. Generalizing
HMF, pairwise [13] and triplet [3] Markov field models handle
these two aspects.

In addition, spatial priors can enhance directions, meaning
that oriented object are searched for. To our knowledge, there
exist only a few works reporting the search for orientations in
HSI. Most of them are related to edge detection techniques,
targeting for instance road network detection in remote sens-
ing [14]. Varying local orientations in images can be seen as
varying stationarities of the underlying stochastic processes.
Hence, it is desirable to provide an accurate modeling in the
context of HSI statistical segmentation.

This paper presents a TMF model for segmentation in HSI,
recovering jointly classes of interest and local orientations in
the image. The main objective is to enhance the segmentation
of oriented structures in HSI. The novelties of the approach
are both the use of TMF and the estimation of orientations in
HSI.

This paper uses the following notations. S is the set of
sites in the image. A set of random variables over the image is
noted A = (As)s∈S and the corresponding realization set is
a = (as)s∈S . We will note ANs

the set of random variables
over the local neighborhood Ns of the site s, and AS\s the
random variable set over the image, except in the site s. In
the remainder of this paper, Section 2 introduces the proposed
model and corresponding methods, and Section 3 presents
some experimental validations on HSI.

2. MODEL

2.1. Oriented Triplet Markov Fields

Triplet Markov Fields (TMF) [3] are Markov fields with three
constituting processes: T = (Y,X,V). The process Y repre-
sents the observed HSI, containing the spectra Ys ∈ RΛ, with
Λ bands per site s. The class process X takes its value from a
finite set Ωx = {ω1, . . . ωK}. Similarly, the auxiliary process
V takes values from Ωv = {ν1, . . . , νL}.

TMF, while generalizing HMF modeling, still benefit
from posterior Markovianity: (X,V) conditionally to Y is a



0 1 2

3

456

7 s Vs

Fig. 1. Binary clique indexing and local orientation measur-
ment within a local neighborhood.

Markov field [3]. This ensures that statistical segmentation is
possible, as in HMF. The model verifies:

p(Y,X,V) ∝ p(Y|X,V)p(X,V)

∝ p(Y|X,V)p(X|V)p(V).

For Maximum Posterior Mode (MPM) segmentation [15],
posterior probabilities must be computed on each site. In our
model, V is a Markov field. Besides, p(X|V) is a Markov field
distribution, in which V rules X in each site independently.

Then, for each site s on the lattice S:

p(Xs,Vs|Y,XS\s,VS\s)

∝ p(Y|X,V)p(Xs|XNs ,V)p(Vs|VNs)

∝ p(Y|X,V)p(Xs|XNs ,Vs)p(Vs|VNs).

(1)

Conditionally to X, Y and V are assumed independent.
Furthermore, we assume that the Ys are independent condi-
tionally to X. Finally, each Ys depends only on the corre-
sponding Xs:

p(Y|X,V) = p(Y|X)

=
∏
s∈S

p(Ys|X) =
∏
s∈S

p(Ys|Xs).

V relies on a Ising/Potts potential (as used in [16]), ruled
by a positive, real-valued parameter αv:

∀s : p(Vs|VNs) ∝ exp

[
αv

∑
s′∈Ns

1− 2δ(Vs,Vs′)

]
. (2)

We restrict to binary cliques, covering the site s and a neigh-
boring site s′ within a 8-neighborhood.

Similarly, the distribution p(Xs|XNs ,Vs), parametrized
by αx|v ∈ R+, is expressed as:

∀s : p(Xs|XNs
,Vs)

∝ exp

[
αx|v

∑
s′∈Ns

φs
′
(Vs) (1− 2δ(Xs,Xs′))

]
; (3)

where φs
′

is an orientation function, defining the clique poten-
tial weights used for X in the case of Oriented TMF (OTMF)

Algorithm 1 SEM algorithm for OTMF
Input: Observed realization y, stop criterion
Output: Parameter estimation ΘSEM

Initialization: Θnoise (0), Θfield (0)

while stop criterion not reached – iteration q do
Simulate (xq,vq) from pΘq−1(X,V|y).
Estimate Θnoise (q) through MLE on (xq,y).
Estimate Θfield (q) with DE, with (xq,vq).

end while

accounting for the favored direction described in Vs. The
orientation function is:

φs
′
(Vs) =


| cos(Vs)| if s′ ∈ {3, 7}
| cos (Vs − π/4) | if s′ ∈ {4, 0}
| cos (Vs − π/2) | if s′ ∈ {5, 1}
| cos (Vs − 3π/4) | if s′ ∈ {6, 2}

;

where s′ denotes the index within the neighborhood Ns (see
Fig. 1).

To summarize, the distributions expressed in Eqs (2)
and (3), together with the knowledge of the noise behavior,
enable the Bayesian segmentation according to the MPM
criterion [15]. ∀s ∈ S:

(x̂s, v̂s)
MPM = arg max

(ω,ν)∈Ωx×Ωv

p(Xs = ω, Vs = v|y). (4)

There is no exact analytical expression for these estimations,
however simulations are possible through Gibbs sampling [17].
Then, MPM estimates amount to choose for each site the most
frequent Gibbs sampler realization.

2.2. Parameter Estimation

When performing unsupervised segmentation, the model pa-
rameters must be estimated. The parameter set Θ splits into
field parameters, Θfields = {αv, αx|v} and noise parameters,
Θnoise. From a realization (x,v), the parameter set Θfields is
estimated by the method from Derin and Elliott (DE) [16].
From complete data (y,x,v), Θnoise is obtained through
the Maximum Likelihood Estimator (MLE). Complete data
are however unavailable: this is why we use the Stochastic
Expectation-Maximization (SEM) algorithm [18], whose prin-
ciple is to mimic complete realization with iterative simula-
tions. Let us note that it has been shown in [19][20] that SEM
provides in practice slightly better results than the Expectation-
Maximization (EM) [21] or the Iterative Conditional Estimator
(ICE) [22]. The SEM algorithm is reported in Alg. 1.

The stop criterion is a similarity measure between con-
secutive estimations, to ensure that convergence is reached.
Initial parameters are estimated through simple estimates: K-
means clustering [23] provides an initial X, and the initial V
is obtained through image gradient measure on the initial X.



3. EXPERIMENTS

3.1. Observation model
Detection aims at segmenting significant signal versus noise
only. Therefore, Ωx contains two labels ω0 = 0 and ω1 = 1,
denoting signal absence and presence, respectively. Further-
more, the spectral noise behavior is assumed identical with
respect to the considered band, and correlated over three adja-
cent bands. The spectral covariance matrix is written as:

Σ =

σ2 ρ1 ρ2 0 0

ρ1

ρ2 0

0 ρ2

ρ1

0 0 ρ2 ρ1 σ2




Assuming a zero-mean, additive Gaussian spectral noise

implies that Θnoise = {µ, σ, ρ1, ρ2}. µ is the spectrum to
detect, σ stands for the noise standard deviation, and ρ1, ρ2

are the spectral noise correlation parameters. In this paper,
we use two orthogonal directions for the auxiliary process:
Ωv = {π/4, 3π/4} ; to ensure a proper discrimination be-
tween orientations. Note that we restrict to a simple instance,
but that generalizing to more subdivisions is straightforward.

3.2. Images
Three images are used for experiments:

– an image generated through OTMF;
– a synthetic image generated conditionally to a fixed aux-

iliary process V, which is not a Markov field realization;
– a real HSI from the MUSE instrument [2], obviously

without V nor X ground truths for such data.
The synthetic images, of size 128 × 128 px, are presented
in Figs. 2a and 2b. We use a weak average signal spectrum,
presenting a few non-zero coefficient (see Fig. 2c) over Λ =
20 spectral bands. Let us remark that we consider that the
images are hyperspectral in the sense that they correspond to
very fine and close bandwidths. Two cases are investigated:
SNR = −5 dB and SNR = −10 dB. The SNR is defined as:

SNR = 10log10

(
‖µ‖22/Tr(Σ)

)
= 10log10

(
‖µ‖22/Λσ2

)
.

Finally, the correlation coefficients were set to ρ1 = 0.5σ2

and ρ2 = 0.25σ2.
The MUSE HSI has 90×55 px over Λ = 50 spectral bands,

and is illustrated in Fig. 3. Segmentation on this image should
reveal faint, spectrally-sparse and spatially wide light emission
(called the Lyman-alpha line) located in the vicinity of distant
galaxies. In such deep field observation, these galaxies occupy
no more than 5 to 10 pixels. Detection of an oriented structure
in this image may be a clue for a filamentary inter-galactic
structure.

(a) First synthetic image, at SNR = −5 dB.
x

v

y spectral average

y at λ = 5

x̂MPM

v̂MPM

(b) Second synthetic image, at SNR = −10 dB.
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(c) Instances of noisy synthetic spectra (dashed) and µ (plain).

Fig. 2. Synthetic images, spectra and the correponding seg-
mentation results.

3.3. Results

Results on parameter estimation and segmentation error rate
are reported in Table 1. Segmentation results are also shown in
Fig. 2. The segmentation results are compared with a classical
HMF modeling, using also SEM for parameter estimation and
MPM for segmentation.

The estimated values for noise are very close to real param-
eters, with less than 1% difference in most cases. On the other
hand, field parameters αx|v and αv are poorly estimated, with
a strong variance (not shown). One can notice that this mis-
estimation does not affect significantly segmentation result: in
this model, their low influence on the posterior distribution
from Eq. (1) makes it difficult to provide precise estimations
(see e.g [24] for an instance of similar conclusions).



Table 1. Real parameters, SEM estimations and segmentation error rates.
αx|v αv σ2 ρ1 ρ2 µ (MSE) EHMF

x̂ EOTMF
x̂ EOTMF

v̂

Im1
−5 dB

Real 5.0 20.0 0.2119 0.1059 0.0530
2.10−4 0.29% 0.27% 10.50%

Est. 0.8194 0.8097 0.2131 0.1065 0.0532

−10 dB
Real 5.0 20.0 0.6700 0.3350 0.1675

9.10−4 3.20% 0.78% 14.09%
Est. 0.6543 0.9304 0.6683 0.3335 0.1657

Im2
−5 dB

Real 8.0 – 0.2119 0.1059 0.0530
5.10−4 0.40% 0.27% 17.41%

Est. 0.9357 0.8641 0.2114 0.1058 0.0525

−10 dB
Real 8.0 – 0.6700 0.3350 0.1675

10.10−4 3.67% 0.95% 22.31%
Est. 0.7493 0.8843 0.6699 0.3351 0.1672

Im3 – Est. 1.2527 0.5878 0.5856 0.1227 0.0154 – – – –

y spectral average y at λ = 10

y at λ = 25 y at λ = 45

Fig. 3. Astronomical HSI from MUSE (Im3).

The segmentation results on X (error rate: EOTMF
x̂ ) show

the improvements of the considered model with respect to
HMF modeling (EHMF

x̂ ), when processing oriented, thin struc-
tures. Indeed, the isotropic potential used in HMF may make
the corresponding segmentation fail in such cases. On the other
hand, the MPM estimation on V (error rate: EOTMF

v̂ ) is not
as efficient as on X. This is mainly because some cases (e.g.
wide, homogeneous region) make the direction estimation hard
to perform. Therefore, there is an intrinsic imprecision on the
segmentation result. Let us also remark that the segmentation
results are better on the first synthetic image than on the sec-
ond, because the fixed V in the second case is not a Markov
field realization.

Estimated parameters for the real MUSE HSI are also
reported in Table 1, and the estimated signal spectrum is dis-
played in Fig. 4a. The SNR, estimated at−5.04 dB, is close to
the SNR used in synthetic cases, which induces to believe that
parameter estimation are of similar quality. One can especially
notice that the correlation coefficients are significantly far from
zero. This is due to MUSE data pre-processing, and hence
such correlation must be considered when handling MUSE
observations.

The segmentation results are reported in Fig. 4b. Ground
truths are naturally not available. One can notice, however,
that the detected region x̂MPM is significantly larger than what

0 10 20 30 40
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

(a) Estimated average spectrum µ (plain) and detected spectrum
instance (dashed).

x̂MPM v̂MPM

(b) MPM estimations for the X and V processes.

Fig. 4. Estimation results on the MUSE HSI.

is expected from a single galaxy, and that the wide detected
emission cannot be due to the instrument point spread function
alone, because of its asymmetry. Concerning the estimated
orientations v̂MPM, the result is difficult to interpret: we no-
tice, however, that the border of the detected region and the
corresponding orientations are coherent. Let us finally remark
that spatial noise correlation could induce mis-estimations,
because the proposed model assigns such correlation on the
hidden processes X and V.

4. CONCLUSION

This paper presented a model for joint Bayesian segmenta-
tion of classes and orientations in an HSI. The method was
validated in the case of signal detection on synthetic images,
outperforming HMF, and applied to real astronomical HSI.
Further work will include models and algorithms refinement,
to handle more complex cases.
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[9] Jun Li, José M Bioucas-Dias, and Antonio Plaza, “Spectral–
spatial hyperspectral image segmentation using subspace multi-
nomial logistic regression and Markov random fields,” Geo-
science and Remote Sensing, IEEE Transactions on, vol. 50, no.
3, pp. 809–823, 2012.

[10] Olivier Eches, Jon Atli Benediktsson, Nicolas Dobigeon, and
Jean-Yves Tourneret, “Adaptive Markov random fields for joint
unmixing and segmentation of hyperspectral images,” Image
Processing, IEEE Transactions on, vol. 22, no. 1, pp. 5–16,
2013.

[11] Wei Li, Santasriya Prasad, and James E Fowler, “Hyperspectral
image classification using Gaussian mixture models and Markov
random fields,” Geoscience and Remote Sensing Letters, IEEE,
vol. 11, no. 1, pp. 153–157, 2014.

[12] Junshi Xia, Jocelyn Chanussot, Peijun Du, and Xiyan He,
“Spectral–spatial classification for hyperspectral data using rota-
tion forests with local feature extraction and Markov random

fields,” Geoscience and Remote Sensing, IEEE Transactions on,
vol. 53, no. 5, pp. 2532–2546, 2015.

[13] Wojciech Pieczynski and Abdel-Nasser Tebbache, “Pairwise
Markov random fields and segmentation of textured images,”
Machine graphics and vision, vol. 9, no. 3, pp. 705–718, 2000.

[14] Mehdi Kamandar and Hassan Ghassemian, “Linear feature ex-
traction for hyperspectral images based on information theoretic
learning,” Geoscience and Remote Sensing Letters, IEEE, vol.
10, no. 4, pp. 702–706, 2013.

[15] Jose Marroquin, Sanjoy Mitter, and Tomaso Poggio, “Proba-
bilistic solution of ill-posed problems in computational vision,”
Journal of the American Statistical association, vol. 82, no. 397,
pp. 76–89, 1987.

[16] Haluk Derin and Howard Elliott, “Modeling and segmentation
of noisy and textured images using Gibbs random fields,” Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on,
, no. 1, pp. 39–55, 1987.

[17] Stuart Geman and Donald Geman, “Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, , no.
6, pp. 721–741, 1984.

[18] Gilles Celeux and Jean Diebolt, “A stochastic approximation
type EM algorithm for the mixture problem,” Stochastics: An
International Journal of Probability and Stochastic Processes,
vol. 41, no. 1-2, pp. 119–134, 1992.

[19] José G Dias and Michel Wedel, “An empirical comparison of
EM, SEM and MCMC performance for problematic Gaussian
mixture likelihoods,” Statistics and Computing, vol. 14, no. 4,
pp. 323–332, 2004.

[20] Emmanuel Monfrini and Wojciech Pieczynski, “Estimation
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