Convergence of Markovian Stochastic Approximation with Discontinuous Dynamics - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Control and Optimization Année : 2016

Convergence of Markovian Stochastic Approximation with Discontinuous Dynamics

Résumé

This paper is devoted to the convergence analysis of stochastic approximation algorithms of the form $\theta_{n+1} = \theta_n + \gamma_n H(\theta_n,X_{n+1})$ where $\{{\theta_n,n \in \nset\}$ is a $\rset^d$-valued sequence, {γn, n ∈ N} is a deterministic step-size sequence and {Xn, n ∈ N} is a controlled Markov chain. We study the convergence under weak assumptions on smoothness-in-θ of the function $\theta \to H(\theta,x)$. It is usually assumed that this function is continuous for any x; in this work, we relax this condition. Our results are illustrated by considering stochastic approximation algorithms for (adaptive) quantile estimation and a penalized version of the vector quantization.
Fichier principal
Vignette du fichier
schreck_etal_2014_HAL.pdf (987.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01418857 , version 1 (17-12-2016)

Identifiants

Citer

Gersende Fort, Éric Moulines, Amandine Schreck, Matti Vihola. Convergence of Markovian Stochastic Approximation with Discontinuous Dynamics. SIAM Journal on Control and Optimization, 2016, 54 (2), pp.866-893. ⟨10.1137/140962723⟩. ⟨hal-01418857⟩
249 Consultations
83 Téléchargements

Altmetric

Partager

More