Optimal quadrature-sparsification for integral operator approximation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Optimal quadrature-sparsification for integral operator approximation

Résumé

We address the problem of designing sparse quadratures for the approximation of integral operators related to symmetric positive-semidefinite kernels. We more specifically focus on computing sparse quadratures with support included in fixed finite sets of points (quadrature-sparsification), this framework being of particular interest since it encompasses the Nyström approximation of kernel-matrices. For a given kernel, the accuracy of a quadrature approximation is assessed through the squared Hilbert-Schmidt norm (for operators on the underlying reproducing kernel Hilbert space) of the difference between the integral operators related to the initial and approximate measures; by analogy with the notion of kernel discrepancy, we refer to the underlying criterion as the squared-kernel discrepancy between two measures. Sparsity of the approximate quadrature is achieved through the introduction of an L1-type penalisation, and the computation of a penalised squared-kernel-discrepancy-optimal approximation thus consists in a convex quadratic minimisation problem. The penalisation can be introduced under the form of a regularisation term or of a constraint, both formulations being equivalent. The quadratic programs related to the regularised and constrained problems can in particular be interpreted as the Lagrange dual formulations of distorted one-class support-vector machines related to the squared kernel and the initial measure. Numerical strategies for solving large-scale squared-kernel discrepancy minimisation problems are investigated and the efficiency of the approach is illustrated on a series of examples. We in particular demonstrate the ability of the proposed methodology to lead to accurate sparse representations of the main eigenpairs of kernel-matrices related to large-scale datasets.
Fichier principal
Vignette du fichier
CvxNystrom.pdf (1.59 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01416786 , version 1 (14-12-2016)
hal-01416786 , version 2 (30-03-2017)
hal-01416786 , version 3 (02-03-2018)
hal-01416786 , version 4 (14-07-2018)
hal-01416786 , version 5 (20-12-2019)

Identifiants

  • HAL Id : hal-01416786 , version 2

Citer

Bertrand Gauthier, Johan a K Suykens. Optimal quadrature-sparsification for integral operator approximation. 2017. ⟨hal-01416786v2⟩
306 Consultations
318 Téléchargements

Partager

More