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OPTIMAL QUADRATURE-SPARSIFICATION FOR INTEGRAL OPERATOR
APPROXIMATION

BERTRAND GAUTHIER∗§† AND JOHAN A.K. SUYKENS‡†

Abstract. We address the problem of designing sparse quadratures for the approximation of integral operators related to
symmetric positive-semidefinite kernels. We more specifically focus on computing sparse quadratures with support included
in fixed finite sets of points (quadrature-sparsification), this framework being of particular interest since it encompasses the
Nyström approximation of kernel-matrices. For a given kernel, the accuracy of a quadrature approximation is assessed through
the squared Hilbert-Schmidt norm (for operators on the underlying reproducing kernel Hilbert space) of the difference between
the integral operators related to the initial and approximate measures; by analogy with the notion of kernel discrepancy, we refer
to the underlying criterion as the squared-kernel discrepancy between two measures. Sparsity of the approximate quadrature is
achieved through the introduction of an l1-type penalisation, and the computation of a penalised squared-kernel-discrepancy-
optimal approximation thus consists in a convex quadratic minimisation problem. The penalisation can be introduced under the
form of a regularisation term or of a constraint, both formulations being equivalent. The quadratic programs related to the
regularised and constrained problems can in particular be interpreted as the Lagrange dual formulations of distorted one-class
support-vector machines related to the squared kernel and the initial measure. Numerical strategies for solving large-scale
squared-kernel discrepancy minimisation problems are investigated and the efficiency of the approach is illustrated on a series
of examples. We in particular demonstrate the ability of the proposed methodology to lead to accurate sparse representations
of the main eigenpairs of kernel-matrices related to large-scale datasets.

Key words. sparse Nyström approximation, integral operator, RKHS, optimal quadrature-sparsification, squared-kernel
discrepancy, L1-type penalisation, convex quadratic programming, one-class SVM.

AMS subject classifications. 47G10, 41A55, 46E22

1. Introduction. Computing the eigendecomposition of an integral operator defined from a sym-
metric and positive-semidefinite kernel and a discrete measure supported byN points is numerically
equivalent to the diagonalisation of aN ×N symmetric and positive-semidefinite matrix. Such a sit-
uation is for instance encountered each time a pointwise quadrature is used to approximate an integral
operator,or more directly when one aims at computing the eigendecomposition of a kernel-matrix (or
of any Gram matrix). In the non-sparse case and for the direct approach, the amount of computations
required to perform the diagonalisation of such a matrix scales as (N3), and thus becomes quickly
intractable whenN is large (not to mention issues related to the storage of large-scale matrices).

In the framework of matrix approximation, a common alternative consists in carrying out the
eigendecomposition of a (weighted) principal submatrix of the initial matrix, with size n ≪ N , and
then expanding the result back up to dimensionN ; by analogy with the integral operators framework
(see, e.g., [9]), this approach is usually referred to as the Nyström method. Naturally, the choice of
the considered submatrix has a strong impact on the quality of the induced approximation, raising
questions relative to the selection of an appropriate submatrix, see for instance [4, 21, 12, 23, 2, 7] and
references therein. Translated in the integral-operator framework, this operation consists in defining a
sparse approximation of an initial discrete measure, the support of the approximate measure being
included in the support of the initial one. More generally, we refer to the problem consisting in
computing a sparse quadrature while enforcing the support of this quadrature to be included in a fixed
finite set of points as quadrature-sparsification.

Following for instance [21], for a given kernel K(⋅, ⋅) and an initial measure � (defining an
integral operator T�, see Section 2 for a detailed discussion), we assess the accuracy of an approximate
measure � (defining an operator T�) by considering the squared Hilbert-Schmidt norm of the difference
between the integral operators T� and T� viewed as operators on the underlying reproducing kernelHilbert space (RKHS, see for instance [1]). By analogy with the notion of kernel discrepancy, see [3]
and Appendix A, we refer to the underlying criterion as the squared-kernel discrepancy between the
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OPTIMAL QUADRATURE-SPARSIFICATION

measures � and �, denoted by DK2 (�, �).
For a given n, the search of a measure �∗n supported by n points and such that DK2 (�, �∗n ) isminimal, is in general a difficult non-convex minimisation problem. As an alternative, we assume that

the support of the quadrature � is included in a fixed finite set ofN points (quadrature-sparsification;
this framework in particular encompasses the Nyström approximation of kernel-matrices). The
function � ↦ DK2 (�, �) then consists in a convex quadratic function on ℝN , and sparsity of the
approximate quadrature can be induced by the introduction of an l1-type penalisation of the squared-
kernel discrepancy (the sample size n is thus not fixed a priori). The penalisation can be introduced
under the form of a regularisation term or of a constraint (both formulations being equivalent), and the
computation of a penalised squared-kernel-discrepancy-optimal quadrature with support included in then consists in a convex quadratic minimisation problem (see Section 3). The quadratic programs
(QPs) related to the regularised and constrained squared-kernel-discrepancy minimisation problems
can in particular be interpreted as the Lagrange dual formulations of distorted one-class support-vector
machines related to the squared kernel and the initial measure, as discussed in Section 4.

We present a careful analysis of the approach and present two different numerical strategies for
solving penalised squared-kernel-discrepancy minimisation problems. The first strategy, described in
Section 5, is a sequential direct method based on the notion of regularisation path (see for instance
[16]); this method appears as an efficient way to explore the range of very sparse solutions to the
regularised or constrained problems. The second strategy, see Section 6, applies more specifically
to the constrained formulation and consists in using a vertex-exchange algorithm (see, e.g., [17,
Chap. 9]) to build an approximate solution to the underlying QP. Importantly, the proposed strategies
do not require the storage of any large objects, so that large-scale problems can be considered (more
particularly since we are interested in the range of sparse solutions). In addition, to enhance the sparsity
of a given discrete measure � while trying to keep the squared-kernel discrepancy as low as possible,
we describe two greedy heuristics based on iterative pairwise-component merging (Section 6.2).

We also further investigate the problem related to the computation of an approximate eigen-
decomposition of the initial operator T� from the eigendecomposition of an approximate operator
T� . Based on geometrical considerations, we introduce four different approximations (referred to
as approximate eigenvalues) of the eigenvalue related to a given approximate eigendirection of T�(i.e, the eigendirections of the approximate operator T�), and the accuracy of a given approximate
eigendirection can then in particular be assessed through the comparison of these different approximate
eigenvalues, as detailed in Section 7. A discussion relative to the choice of relevant penalisation
weights (since a weighted-l1-type penalisation is considered) is proposed Section 8. Finally, Sections 9
(two-dimension toy example) and 10 (large-scale problems) are devoted to numerical experiments,
and Section 11 concludes.

We have tried to make the paper as self-contained as possible; for the sake of readability, all the
proofs are placed in Appendix C.

2. Notations, recalls and theoretical motivations. This section is devoted to recalls related
to integral operators defined from a symmetric positive-semidefinite kernel. We consider a general
space X and a symmetric and positive-semidefinite kernel K ∶ X × X → ℝ; we denote by  the
underlying reproducing RKHS of real-valued functions on X (see for instance [1]). We assume that is a separable Hilbert space.

2.1. Integral operators. We assume X is a measurable space and we denote by  the un-
derlying �-algebra. We suppose that the (real-valued) kernel K(⋅, ⋅) is measurable on X × X for
the product �-algebra ⊗ (see for instance [22, Chap. 4]), so that, in particular, the RKHS 
consists of measurable functions on X . We also assume that the diagonal of K(⋅, ⋅), i.e., the function
x↦ K(x, x) is measurable on (X ,). We denote by the set of all measures on (X ,) and we
introduce

T (K) =
{
� ∈ ||�� = ∫

X K(x, x)d�(x) < +∞
}
.

For � ∈ T (K), we have K(⋅, ⋅) ∈ L2(� ⊗ �) since in particular (from the reproducing property
2
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of K(⋅, ⋅) and the Cauchy-Schwarz inequality for the inner product of )

‖K‖2
L2(�⊗�)

= ∫
X ×X

(
K(x, t)

)2d�(x)d�(t) ⩽ �2�.

In addition, for all ℎ ∈ , we have ℎ ∈ L2(�) and ‖ℎ‖2
L2(�)

⩽ ��‖ℎ‖2 , i.e.,  is continuously
included in L2(�). We can thus define the symmetric and positive-semidefinite integral operator T�
on L2(�), given by, for f ∈ L2(�) and x ∈ X ,

T�[f ](x) = ∫
X K(x, t)f (t)d�(t).

We have T�[f ] ∈  for all f ∈ L2(�) and, for ℎ ∈ , (ℎ|T�[f ]) = (ℎ|f )L2(�), see for instance[5, 6] for more details.
We introduce the closed linear subspaces 0� =

{
ℎ ∈ ||‖ℎ‖L2(�) = 0

} and � = ⊥
0� (i.e.,

� is the orthogonal of 0� in ), leading to the orthogonal decomposition  = � ⦹0�.We denote by {�k|k ∈ I+�} the at most countable set of all strictly positive eigenvalues of T�
(repeated according to their algebraic multiplicity), and let '̃k ∈ L2(�) be the associated eigenfunc-
tions, orthonormalised for L2(�). For k ∈ I+� , let 'k = 1

�k
T�['̃k] ∈  be the canonical extension

of '̃k, so that {√�k'k|k ∈ I+�} is an orthonormal basis (o.n.b.) of the subspace � of . The
reproducing kernel of � (for the Hilbert structure of ) is K�(x, t) = ∑

k∈I+� �k'k(x)'k(t), and
K0�(⋅, ⋅) = K(⋅, ⋅) −K�(⋅, ⋅) is the reproducing kernel of 0�; We also recall that �� =

∑
k∈I+� �k is

the trace of the integral operator T� on L2(�).
2.2. Discrete measures and kernel-matrices . Let � =

∑N
k=1 !k�xk be a discrete measure

supported by  = {xk}Nk=1, with ! = (!1,⋯ , !N )T ∈ ℝN , !k > 0 (in what follows, we use the
notation ! > 0), where �xk is the Dirac measure (evaluation functional) at xk. We have � ∈ T (K),
and for f ∈ L2(�) and x ∈ X , using matrix notation,

T�[f ](x) =
∑N
k=1 !kK(x, xk)f (xk) = kT (x)Wf ,

withW = diag(!), k(x) = (
K(x1, x),⋯ , K(xN , x)

)T and f = (
f (x1),⋯ , f (xN )

)T ∈ ℝN . We can
identify the Hilbert space L2(�) with the space ℝN endowed with the inner product (⋅|⋅)W, where
for x and y ∈ ℝN , (x|y)W = xTWy; in this way, f ∈ L2(�) is assimilated to f ∈ ℝN , and the
operator T� then corresponds to the matrix KW. We denote by �1 ⩾ ⋯ ⩾ �N ⩾ 0 the eigenvalues
of KW and by v1,⋯ , vN the associated orthonormalised eigenvectors, i.e., KW = P�P−1 with
� = diag(�1,⋯ , �N ) and P = (v1|⋯ |vN ). The vectors {v1,⋯ , vN} form an orthonormal basis of
the Hilbert space {ℝN , (⋅|⋅)W

}, i.e., PTWP = IdN , the N × N identity matrix. In particular, we
have K = P�PT , and PTP = W−1. For �k > 0, the canonical eigenfunctions of T� are given by
'k =

1
�k
kTWvk.

For a general ! > 0, the matrix KW is non-symmetric; however, since KWvk = �kvk, we have
W1∕2KW1∕2W1∕2vk = �kW1∕2vk.

The symmetric matrixW1∕2KW1∕2 thus defines a symmetric and positive-semidefinite operator on
{ℝN , (⋅|⋅)IdN } with eigenvalues �k and orthonormalised eigenvectors W1∕2vk. Numerically, one
can therefore easily deduce the eigendecomposition of the matrix KW viewed as an operator on
{ℝN , (⋅|⋅)W} from the eigendecomposition the symmetric matrixW1∕2KW1∕2.

2.3. Hilbert-Schmidt norm and squared-kernel discrepancy. In view of Section 2.1, for
� ∈ T (K), the operator T� can also be interpreted as an operator on  (see, e.g., [21]); with a slight
abuse of notation, we keep the same notation for “T� viewed as an operator onL2(�)”, and “T� viewedas an operator on ”. In both cases, T� is an Hilbert-Schmidt operator.
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Let � and � ∈ T (K); for an o.n.b. {ℎj|j ∈ I} of  (with I a general, at most countable, index
set), the Hilbert-Schmidt inner product between the operators T� and T� on  is given by

(
T�||T�

)
HS() =

∑
j∈I

(
T�[ℎj]||T�[ℎj]

)
 ,

and we recall that the value of (T�||T�
)
HS() does not depend on the choice of the o.n.b. of , see,

e.g., [20]. The underlying Hilbert-Schmidt norm (for operators on ) is given by
‖‖T�‖‖2HS() =

(
T�||T�

)
HS() =

∑
j∈I

‖‖T�[ℎj]‖‖2 .
Definition 2.1. The squared-kernel discrepancy between � and � ∈ T (K) is defined as

DK2 (�, �) = ‖T� − T�‖2HS().

Lemma 2.1. For � and � ∈ T (K), we have (T�||T�)HS() = ‖K‖2
L2(�⊗�)

, so that

DK2 (�, �) = ‖K‖2
L2(�⊗�)

+ ‖K‖2
L2(�⊗�)

− 2‖K‖2
L2(�⊗�)

,

where ‖K‖2
L2(�⊗�)

= ∫
X ×X

(
K(x, t)

)2d�(x)d�(t).
In particular, note that ‖K‖2

L2(�⊗�)
⩽ ���� , and that ‖T�‖2HS() =

∑
k∈I+� �

2
k, where {�k|k ∈ I+�}

is the set of all strictly positive eigenvalues of T�. By definition, we always have DK2 (�, �) ⩾ 0, and
DK2 (�, �) = 0. We can also remark that if � and � ∈ T (K) are such that � and � are orthogonal
subspaces of , then ‖K‖2

L2(�⊗�)
= 0.

The terminology “squared-kernel discrepancy” is motivated by the analogy with the notion
of “kernel discrepancy” discussed for instance in [3] (see Appendix A). Interestingly, the kernel
discrepancy is related to approximate integration of functions in the RKHS , while the squared-
kernel discrepancy is related to the approximation of integral operators defined from the reproducing
kernel K(⋅, ⋅) of . The squared-kernel discrepancy is also related to approximate integration of
functions in the RKHS associated with the squared kernel; in what follows we denote by  the
RKHS associated with K2(⋅, ⋅) =

(
K(⋅, ⋅)

)2. Following Appendix A, for all � ∈ T (K) (notice that
T (K) = I (K2)), we can introduce g�(x) = ∫

X K2(x, t)d�(t), with x ∈ X . We have g� ∈  and
finally

DK2 (�, �) = ‖g� − g�‖2. (2.1)
The following Lemma 2.2 further highlights the connection between the squared-kernel discre-

pancy and the error induced by the approximation of T� (the initial integral operator) by T� (theapproximate operator).
Lemma 2.2. Let � and � ∈ T (K) be such that � ⊂ � (i.e., for ℎ ∈ , if ‖ℎ‖L2(�) = 0 then
‖ℎ‖L2(�) = 0). Let

{√
�k'k||k ∈ I+�

}
be the o.n.b. basis of � defined by T�, we have

DK2 (�, �) =
∑
k∈I+� �k

‖‖T�['k] − T�['k]‖‖2 , (2.2)

and, in addition,
∑
k∈I+� �k

‖‖T�['k] − T�['k]‖‖2L2(�) ⩽ ��DK2 (�, �).
In view of (2.2), for a fixed measure �, by minimising the function � ↦ DK2 (�, �) under the

condition � ⊂ �, we minimise, for the RKHS norm, �k'k − T�['k] for all k ∈ I+� , while puttingmore emphasis on the approximation of the eigenpairs with largest eigenvalues (the eigenvalues �kplaying the rule of penalisation weights). When DK2 (�, �) is small, we can therefore expect the main
eigendirections of T� to be accurate approximations of the main eigendirections of T� (i.e., the ones
related to the largest eigenvalues).

Since DK2 (�, �) = 0 (i.e., “the best approximation of T� is T� itself”), the unconstrained
minimisation of � ↦ DK2 (�, �) on T (K) is of no interest. In the framework of sparse pointwise
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quadrature approximation, we aim at obtaining a discrete measure � supported by a relatively small
number of points (in order to be able to compute the eigendecomposition of T�) and related to an aslow as possible value of DK2 (�, �). However, for a given n ∈ ℕ∗, the search of an optimal discrete
measure �∗n such thatDK2 (�, �∗n ) is minimal among all measures �n supported by n points is in generala difficult (i.e, usually non-convex) optimisation problem on (X ×ℝ+)n. To avoid this difficulty, in
the following Section 3, we restrict the problem to measures � with support included in a fixed finite
set of points  = {xk}Nk=1 (with, in practice,N large), and instead of fixing a priori the number n of
support points, we induce sparsity through the introduction of an l1-type penalisation. We refer to
the underlying problem as quadrature-sparsification.

3. Optimal quadrature-sparsification as quadratic programming. We consider a fixed set
of points  , and we restrict our study to discrete measures � with support included in  . We more
particularly focus on the case where  is the support of an initial discrete measure �.

3.1. Preliminary discussion. Let � =
∑N
k=1 �k�xk , with � = (�1,⋯ , �N )T ⩾ 0 (that is �k ⩾ 0

for all k), and consider a general fixed measure � ∈ T (K); we have
‖K‖2

L2(�⊗�)
= �T S� and ‖K‖2

L2(�⊗�)
= gT��,

where S is the kernel-matrix defined by the squared kernelK2(⋅, ⋅) and the set of points  , i.e., with i, j
entry Si,j = K2(xi, xj) ⩾ 0 (S is therefore a non-negative, positive-semidefinite, symmetric matrix),
and where g� = (g�(x1),⋯ , g�(xN ))T ∈ ℝN , with g�(xk) = ∫

X K2(xk, t)d�(t) (so that g� ⩾ 0).
For such a discrete measure �, we thus obtain

DK2 (�, �) = ‖K‖2
L2(�⊗�)

+ �T S� − 2gT��, (3.1)
and � ↦ DK2 (�, �) can this way be interpreted as a quadratic function of � (i.e., the vector of weights
characterising �). By minimising � ↦ �T S� − 2gT�� under the constraint � ⩾ 0, we can obtain
the best approximation of � (in terms of squared-kernel discrepancy) among all discrete measures
supported by  (note that this in practice requires the knowledge of the vector g� ∈ ℝN , which may
be problematic for a general measure �). We however not consider such a minimisation problem;
instead, we introduce an l1-type penalisation of the squared-kernel discrepancy (to obtain approximate
measures � supported by a number of points significantly smaller thanN).

In order to discard problems relative to the computation of the vector g� and for the sake of
simplicity, we assume that the measure � is also discrete and supported by  . More precisely, we
consider that � =

∑N
k=1 !k�xk , with ! > 0 (i.e., !k > 0 for all k). We then in particular have� ⊂ � for all � ⩾ 0 (see Lemma 2.2), and g� = S!; in addition, note that this framework is of

particular interest since it corresponds to problems related to kernel-matrix low-rank approximation,
see Section 2.2, Remark 3.1, and for instance [4].

Thus, for � =
∑N
k=1 !k�xk and � =

∑N
k=1 �k�xk be , with ! > 0 and � ⩾ 0, we have

DK2 (�, �) = (! − �)T S(! − �). (3.2)
For a fixed discrete measure � supported by  (i.e., ! > 0 is fixed), we define

D(�) = 1
2 (! − �)T S(! − �),

the factor 1/2 being added for simplification purpose.
Remark 3.1 (relationwith the classical Frobenius-norm-based criterion). In the framework of equation
(3.2), the squared-kernel discrepancy appears as a natural extension of the classical Frobenius-norm-
based criterion for matrix low-rank approximation (see for instance [4]). Indeed, assume that ! = 1,
with 1 = (1,⋯ , 1)T ∈ ℝN , so thatW = diag(!) = IdN is the N × N identity matrix, and thus
KW =W1∕2KW1∕2 = K (notice the analogy with the notations used in Section 2.2).

Selecting columns of the matrix K can be interpreted as performing the product KV, where
V = diag(�) is aN ×N diagonal matrix with diagonal entries 0 or 1 (we are therefore assuming that

5
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all the components of � are 0 or 1); in the same way, considering VK amounts to selecting rows of K.
Since such a sampling matrix V satisfies V2 = V = VT , selecting a principal submatrix of the matrix
K can be viewed as considering the matrix V1∕2KV1∕2 = VKV.

In this case, i.e., if ! = 1 and if the components of � are all 0 or 1, we can easily verify that
(! − �)T S(! − �) = ‖K − VKV‖2F , where ‖ ⋅ ‖F stands for the Frobenius norm. ⊲

3.2. Regularised squared-kernel-discrepancy minimisation. We consider the framework of
equation (3.2) (i.e., the measures � and � are discrete, with support included in ). For a given
penalisation vector f = (f1,⋯ , fN )T ∈ ℝN , with f > 0 (see Section 8), and � ⩾ 0, we introduce the
regularised squared-kernel-discrepancy minimisation problem

minimise
�

D�(�) =
1
2 (! − �)T S(! − �) + �fT � subject to � ⩾ 0. (3.3)

Notice that D�(�) = D(�) + �fT �. In particular, when S is invertible, D�(⋅) is strongly convex (and,
in this case, a solution to (3.3) is thus necessarily unique). We also recall that, for a given �, the set
of solutions to (3.3) is convex. The gradient of D� at � ∈ ℝN is given by ∇D�(�) = S(� − !) + �f .The following Lemma 3.1 recalls some simple properties verified by the solutions to problem (3.3).
Lemma 3.1. Denote by �∗� a solution to (3.3) with � ⩾ 0, we have:

(i) for � = 0, �∗� = ! is a solution to (3.3),
(ii) if � ⩾ maxk

{
[S!]k∕fk

}
, then �∗� = 0 (with [S!]k the k-th component of S!),

(iii) for all � ⩾ 0, we have 0 ⩽ �fT �∗� ⩽ �fT! − (! − �∗�)
T S(! − �∗�),

(iv) ∇D�(�∗�) ⩾ 0 and (�∗�)
T∇D�(�∗�) = 0,

(v) if �̃∗� is another solution to (3.3), then S(�∗� − �̃∗�) = 0 and fT �̃∗� = fT �∗� ,
(vi) if [�f − S!]k ⩾ 0 and Sk,k > 0 (see Remark 3.2), then [�∗�]k = 0,
(vii) the map � ↦ D(�∗�) is increasing, and � ↦ fT �∗� is decreasing.
Since � ⩾ 0, the term fT � can be interpreted as a weighted l1-type regularisation (and � is the

regularisation parameter). For appropriate f and �, we can thus expect a solution �∗� to (3.3) to be
sparse (see, e.g., [11]). This intuition is confirmed by Lemma 3.1-(vi); indeed, when all the diagonal
entries of S are strictly positive, card({k|[�f − S!]k < 0}) gives an upper bound on the number of
strictly positive components of �∗� (notice that this bound is generally not tight); remark that assertion
(vi) is a direct corollary of assertion (iv) (since S�∗� ⩾ 0).
Remark 3.2. Assuming Sk,k = K2(xk, xk) > 0 for all k ∈ {1,⋯ , N} (what we shall denote by
diag(S) > 0) is equivalent to assumingK(xk, xk) > 0 for all k (i.e., diag(K) > 0); we recall that for all
x ∈ X , we have K(x, x) = ‖Kx‖2 ⩾ 0. This assumption is in practice not restrictive at all: indeed,
if K(xk, xk) = 0, then Kxk = 0 and thus ℎ(xk) = 0 for all ℎ ∈ . In the framework of equation (3.2)
(i.e., � and � are discrete measures supported by ), such a point xk may thus be removed from the
sample  without inducing any modification of the operators T� and T� . ⊲

3.3. Constrained squared-kernel-discrepancy minimisation. Instead of considering problem
(3.3), we can equivalently introduce, for z ⩾ 0 (and, in practice, z ⩽ fT!, see Lemma 3.2)

minimise
�

D(�) = 1
2 (! − �)T S(! − �) subject to � ⩾ 0 and fT � = z. (3.4)

Notice that problem (3.4) consists in minimising a convex function on a convex compact domain, so
that a solution �∗z to problem (3.4) always exists; in particular, if S is non-singular, then �∗z is always
unique (since D(⋅) is in this case strongly convex).
Lemma 3.2. Let �∗� be a solution to problem (3.3) with � ⩾ 0; then �∗� is a solution to problem (3.4)
with z = fT �∗� . Reciprocally, assume that �

∗z is a solution to problem (3.4) with 0 < z ⩽ fT!; then
�∗z is a solution to problem (3.3) with � = (�∗z )T S(! − �∗z )∕z. For z = 0, we have �∗z = 0, which
is solution to problem (3.3) with � ⩾ maxk

{
[S!]k∕fk

}
. For 0 ⩽ z ⩽ fT!, the map z ↦ D(�∗z ) is

decreasing.
As an interesting feature, problem (3.4) can be efficiently solved thanks to a sparse descent

direction QP solver (and without storing the matrix S), like for instance the vertex-exchange strategy,
6
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see [17, Chap. 9] and Section 6.1. A sequential strategy (based on the notion of regularisation path)
for solving problems (3.3) and (3.4) is also discussed in Section 5

Notice that, in view of Lemma 3.1-(iii) and Lemma 3.2, considering z = �fT! with � ∈ [0, 1]
appears as a natural parameterisation for problem (3.4).

4. Analogy with one-class SVM. Following for instance [18], problems (3.3) and (3.4) can be
interpreted as the dual formulations of one-class distorted SVMs (or discrepancy-SVMs) related to
the squared kernel and the initial discrete measure �. Soft-margin-type extensions of the one-class
SVMs introduced in Sections 4.1 and 4.2 are also discussed in Appendix B.

We denote by  the RKHS associated with the squared kernel K2(⋅, ⋅). We introduce the function
g� ∈ , defined by g�(x) = ∫

X K2(t, x)d�(t), with � =
∑N
k=1 !k�xk ; we shall refer to g� as the

primal distortion term, see also (2.1).
4.1. One-class SVM related to the regularised problem. We first describe the SVM related

to problem (3.3). For g ∈ , we consider the convex minimisation problem
minimise

g
1
2‖g‖2 + (g|g�)

subject to g(xk) ⩾ −�fk for all k ∈ {1,⋯ , N}.
(4.1)

The application g ↦ ‖g‖2 being strictly convex, a solution to problem (4.1) is necessarily unique.
Lemma 4.1. If �∗� is a solution to (3.3) with � ⩾ 0, then g∗�(x) =

∑N
k=1[�

∗
� − !]kK

2(x, xk) is the
solution to (4.1). For all k ∈ {1,⋯ , N} such that [�∗�]k > 0, we have g∗�(xk) = −�fk.Notice that for all k, we have g∗�(xk) = [S(�∗� − !)]k. By introducing the change of variable
ǧ = g + g� ∈ , problem (4.1) leads to (up to an additive constant)

minimise
ǧ

1
2‖ǧ‖2

subject to ǧ(xk) ⩾ g�(xk) − �fk for all k ∈ {1,⋯ , N},
(4.2)

which is an equivalent formulation for (4.1), with solution ǧ∗�(x) =
∑N
k=1[�

∗
�]kK

2(x, xk). In view of
(2.1), if we denote by �∗� the discrete measure supported by  related to a solution �∗� to problem (3.3),
then ǧ∗� = g�∗� . Problem (4.2) thus gives an interesting insight on the role of the penalisation vector f ,
see Section 8 for a further discussion.
Remark 4.1. Problem (4.1) may also be considered in the framework of (3.1), i.e., for a general
measure � ∈ T (K); however, the optimisation needs in this case to be restricted to the closed linear
subspace  = span{K2

xk
}Nk=1 of , and an additive constant relative to the term ‖K‖2

L2(�⊗�)
is

required. ⊲

4.2. One-class SVM related to the constrained problem. We now describe the SVM related
to problem (3.4). For g ∈  and  ∈ ℝ, we introduce the problem

minimise
g,

1
2‖g‖2 + (g|g�) − 

subject to g(xk) ⩾ fk∕z for all k ∈ {1,⋯ , N}.
(4.3)

Again, a solution to problem (4.3) is necessarily unique.
Lemma 4.2. If �∗z is a solution to (3.4), then g∗z (x) =

∑N
k=1[�

∗z−!]kK2(x, xk) and ∗z = (�∗z )T S(�∗z−
!) is the solution to (4.3). For all k ∈ {1,⋯ , N} such that [�∗z ]k > 0, we have g∗z (xk) = ∗zfk∕z.

From Lemma 4.2, we have ∗z = ‖g∗z‖2 + (g∗z |g�). In view of Lemma 3.2, for 0 < z ⩽ fT!, we
know that �∗z is a solution to (3.3) for � = −∗z∕z, and since � ⩾ 0, we therefore have ∗z ⩽ 0.

5. Regularisation path. Considering the framework of Section 3 and following the classical
results relative to the regularisation paths for Lasso or SVMmodels (see e.g., [15, 10]), we now discuss
the regularisation paths related to problems (3.3) and (3.4). In what follows, we mainly consider
problem (3.3) (i.e., the regularised model); results related to problem (3.4) can then be obtained from
Lemma 3.2.

7
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5.1. Generalities. Let �∗� be a solution to (3.3) for � ⩾ 0; we introduce the index sets
J� = {k|[∇D�(�∗�)]k = 0} and J c� = {1,⋯ , N}∖J� ,

so that, by definition, [∇D�(�∗�)]k > 0 for all k ∈ J c� . From Lemma 3.1, the index set J� is unique,even when the solution to (3.3) is not (i.e., in case of non-uniqueness of the solution, J� does notdepends on the solution �∗� considered). We shall refer to J� as the sparsity pattern of the solutions toproblem (3.3) for � ⩾ 0. We also recall that for all k such that [�∗�]k > 0, we necessarily have k ∈ J� ,see for instance Lemma 3.1-(iv).
Knowing J� , a solution �∗� ⩾ 0 to (3.3) is characterised by the conditions

[�∗�]J c� = 0, and SJ� ,J� [�∗�]J� = [S!]J� − �fJ� , (5.1)
where SJ� ,J� stands for the n� × n� principal submatrix of S corresponding to the index set J� , with
n� = card(J�), and where, for instance, fJ� ∈ ℝn� stands for the vector defined by the components of
f with index in J� .
Lemma 5.1. Let �∗�1 and �

∗
�2

be solutions to problem (3.3) with �1 and �2 ⩾ 0, respectively. Assume
that J�1 = J�2 = J , then for all � ∈ [0, 1], �∗� = ��∗�1 + (1 − �)�∗�2 is a solution to problem (3.3) with
� = ��1 + (1 − �)�2 and J� = J .

If, for all � ⩾ 0, the solution �∗� is unique (which is for instance the case when S is invertible),then in view of Lemma 5.1, the regularisation map R ∶ � ↦ �∗� is a piecewise linear application from
ℝ+ into ℝN . In case of uniqueness of the solutions, the regularisation map is therefore piecewise
continuous and has right and left limits for all �, these limits satisfying the optimality conditions for
problem (3.3); by uniqueness of the solution, this entails that the map R ∶ � ↦ �∗� is continuous. Incase of non-uniqueness of the solution, Lemma 5.1 shows that the set of solutions related to a same
sparsity pattern J is convex.

When � decreases or increases, we refer to a change in the sparsity pattern J� as an event, and wecall kinks the values of � where an event occurs. In particular, notice that since there cannot exists
more than 2N different subsets of {1,⋯ , N}, Lemma 5.1 implies that the number Mev of eventsrelated to problem (3.3) necessarily satisfiesMev ⩽ 2N − 1 (i.e.,Mev is the number of kinks).

In the general case (i.e., even in case of non-uniqueness of the solutions), when � decreases, we
can easily define the value �0 and the underlying index set J�0 at which the first event occurs. Indeed,
from Lemma 3.1, we know that for � ⩾ maxk [S!]k∕fk, we have �∗� = 0. Therefore, the first event
occurs at �0 = maxk [S!]k∕fk, and we have J�0 = {k|[S!]k∕fk = �0} (for larger values of �, theunderlying sparsity pattern is the empty set). As detailed in the following Section 5.2, if the submatrix
SJ�0 ,J�0 is invertible, we can easily compute the value �1 at which the next event occurs and obtain
the underlying sparsity pattern J�1 .
Remark 5.1. Lemma 5.1 can be generalised to regularised problems involving a general penalisation
term r ∈ ℝN , with r ⩾ 0, i.e.,

minimise
�

Dr(�) =
1
2 (! − �)T S(! − �) + rT � subject to � ⩾ 0. (5.2)

We denote by �∗r a solution to (5.2). Note that problem (3.3) thus consists in the particular case r = �f .
We can then define Jr = {k|[∇Dr(�∗r )]k = 0} and J cr = {1,⋯ , N}∖Jr , and knowing Jr , a solution
�∗r ⩾ 0 to (5.2) is characterised by the conditions

[�∗r ]J cr = 0, and SJr ,Jr [�∗r ]Jr = [S!]Jr − rJr

From exactly the same argument as in Lemma 5.1, we obtain that if two penalisation terms r1and r2 ⩾ 0 are such that Jr1 = Jr2 = J , then for all � ∈ [0, 1], �∗r = ��∗r1 + (1 − �)�∗r2 is a solution toproblem (5.2) with r = �r1 + (1 − �)r2 and Jr = J . ⊲

5.2. Regularisation direction for non-singular submatrix. We now discuss, in case of unique-
ness of the solutions, the computation of the regularisation path for decreasing values of �, i.e., we
assume that the events occurs successively at �0 = maxk [S!]k∕fk > �1 > ⋯ > �Mev−1 ⩾ 0, the last

8
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event corresponding to the largest value of � such that J� = {1,⋯ , N}, since for � = 0, we have
�∗� = ! > 0.

More precisely, considering a kink �p with related sparsity pattern J�p (for p ∈ {0,⋯ ,Mev − 2},
i.e., J�p ≠ {1,⋯ , N}, i.e., n�p = card(J�p ) < N) and assuming that the submatrix SJ�p ,J�p is
invertible, we describe how to compute the value �p+1 < �p corresponding to the next event, and how
to characterise the related sparsity pattern J�p+1 . For simplicity, we use the notation J = J�p . We
recall that, by definition, �p is the largest value of � such that J� = J .

From (5.1), we introduce the vector �� such that [��]J c = 0 and [��]J = S−1J ,J ([S!]J − �fJ ); thevector �� is sometime referred to as the regularisation direction. By definition, �p+1 corresponds tothe smallest � such that 0 ⩽ � < �p and
[��]J ⩾ 0 and [S(�� − !) + �f ]J c ⩾ 0. (5.3)

The set J�p+1 is then obtained by removing from J = J�p all the indices k ∈ J such that [��p+1 ]k = 0,
and by adding all the indices k ∈ J c such that [∇D�p+1 (��p+1 )]k = 0; see Lemma 5.2 for more details
concerning the computation of �p+1.If SJ�p+1 ,J�p+1 is invertible, we can next compute �p+2 and J�p+2 in exactly the same way, and we
may potentially iterate like this until we reach the last event, or, at least, as far as the encountered
principal submatrices are invertible.
Lemma 5.2. Consider a kink �p with related sparsity pattern J�p = J ≠ {1,⋯ , N}, and assume
that the submatrix SJ ,J is invertible. We introduce the (N − n�p ) × n�p matrixM = SJ c ,JS−1J ,J , and
we define

�+ = max
l

{[
M[S!]J − [S!]J c

]
l∕
[
MfJ − fJ c

]
l
||
[
MfJ − fJ c

]
l < 0

}
, and

�− = max
m

{[
S−1J ,J [S!]J

]
m∕

[
S−1J ,J fJ

]
m
||
[
S−1J ,J fJ

]
m < 0

}
.

The next event then occurs at �p+1 = max{�+, �−}. If �p+1 = �+, the event consists in the entry of
new indices in the sparsity pattern, and if �p+1 = �−, some indices go out of the sparsity pattern.

In view of Lemma 5.2, once �p and J = J�p are known, the computation of the next event
(i.e., of �p+1 and J�p+1) requires the calculation of S−1J ,J fJ and S−1J ,J [S!]J (i.e., the resolution of a
linear system). Starting “from scratch” (i.e., without taking into account the computations already
performed to obtain the information relative to the kink �p) and using a direct method (by for instance
considering the Cholesky decomposition of the symmetric and positive-definite matrix SJ ,J ), the
amount of computations required for this operation scale as (n3�p ). It is however possible to reduce
the computational complexity by considering update formulae (by for instance iteratively updating
the Cholesky decomposition of SJ ,J ); in the favourable cases, the computational complexity may
thus be reduced to (n2�p ) (while still consisting in a direct approach). In order to further reduce
the computational cost, an alternative may also consists in using an indirect iterative approach, like
for example conjugate gradient methods; however, numerical errors may quickly lead to precision
issues. Finally, the complexity of the two matrix vector products involving the matrix SJ c ,J scale as(n�p (N − n�p )). As a result, the computation of the regularisation direction thus becomes intractable
once large values of n�p are reached. WhenN is large, the regularisation-path strategy may therefore
only be used to explore the range of very sparse approximate measures �.

The determination of the path is also extremely sensitive to numerical errors. For instance, very
small value of the gap �p − �p+1 between two consecutive kinks or the simultaneous entry or exit
of indices of the sparsity pattern may lead to numerical precision issues. See Sections 9 and 10 for
illustrations.

6. Numerical solver for the constrained problem. In this section, we discuss a numerically
tractable strategy to compute approximate solutions to problem (3.4) (i.e., the constrained problem)
for any given value of the parameter z > 0. We also propose two greedy exchange-type strategies
aiming at enhancing the sparsity of a given approximate measure while keeping the squared-kernel
discrepancy as low as possible.
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6.1. Vertex-exchange QP solver. Consider problem (3.4); for z > 0, we can define the change
of variable �̃ = D�, with D = diag(d), and d = (d1,⋯ , dN )T = f∕z, i.e., D is a diagonal matrix with
i-th diagonal entry di (so that d = D1). In this way, problem (3.4) is turned into (up to an additive
constant), for �̃ ∈ ℝN ,

minimise
�̃

C(�̃) = 1
2 �̃

TA�̃ − bT �̃ subject to �̃ ⩾ 0 and 1T �̃ = 1, (6.1)

with A = D−1SD−1 and b = D−1S!. We refer to (6.1) as the canonical QP related to the constrained
squared-kernel-discrepancy minimisation (3.4). Since Ai,j = K2(xi, xj)∕(didj), any entry of A can
be easily obtained from only the knowledge of the squared kernel K2(⋅, ⋅), the set  and the vector d.
Importantly, we shall therefore not store the matrix A, but rather compute on the fly any required entry
of A; this way, problems involving a largeN may be considered. Notice that since ! is non-sparse,
for largeN , the computation of the dual distortion term S! is computationally demanding ((N2)
complexity), but it may be parallelised; approximation of the underlying kernel-matrix vector product
may also be obtained by a generalized fast multipole method (see [19] and references therein). Once
b is known, the gradient ∇C(�̃) = A�̃ − b can be easily obtained for any sparse feasible �̃.

The extreme points of the polytopes defined by the constraints in (6.1) are the vectors {ei}Ni=1,where ei ∈ ℝN is the i-th element of the canonical basis of ℝN (that is [ei]i = 1, all the other
components being equal to zero). For a feasible �̃, let I�̃ = {k|�̃k > 0} be the index set of all strictly
positive components of �̃. An iteration of the vertex-exchange algorithm consists in searching ((N)
complexity)

i∗ = argmin
i

[∇C(�̃)]i and j∗ = argmax
j∈I�̃

[∇C(�̃)]j ,

defining the sparse descent direction � = ei∗ − ej∗ (i.e., weight is transferred from the j∗-th to the i∗-th
component of �̃); in case of non-uniqueness of the extrema, an index is simply selected at random
among the ones satisfying the condition. The step size is then classically obtained by line search,
the optimal step size % being given by % = min

{
�̃j∗ ,−

(
�T∇C(�̃)

)
∕(�TA�)

}. In particular, since the
descent direction � is sparse, the computation of the optimal step size is numerically inexpensive,
and the same holds for the gradient update. Indeed, we have ∇C(�̃ + %�) = ∇C(�̃) + %A�, so that
the gradient update involves only two columns of A. The vertex-exchange strategy thus appears as
a interesting candidate to scale up to relatively large N and may be used as a complement of the
regularisation-path strategy described in Section 5.

Denoting by �̃∗ a solution to (6.1), the convergence of the vertex-exchange algorithm can be
easily verified (see, e.g., [8]) by simply remarking that since �̃ ⩾ 0 and 1T �̃ = 1, by definition of j∗,
we have �̃T∇C(�̃) ⩽ eTj∗∇C(�̃), so that

C(�̃) − C(�̃∗) ⩽ −(ei∗ − �̃)T∇C(�̃) ⩽ −(ei∗ − ej∗ )T∇C(�̃),

and these inequalities can also be used to check distance from optimality. In Sections 9 and 10, the
accuracy of an approximate solution �̃ is indicated by � = (�̃− ei∗ )T∇C(�̃) (Frank-Wolfe error bound).

6.2. Enhancing sparsity through components merging. The canonical QP formulation intro-
duced in Section 6.1 offers a convenient framework to enhance the sparsity of an approximate measure
� while trying to keep its squared-kernel discrepancy as low as possible. Let �̃ ⩾ 0 (with �̃ ∈ ℝN )
be such that 1T �̃ = 1. In practice, �̃ will be an exact or approximate solution to problem (6.1), or
any vector related to an interesting low-discrepancy configuration � through the change of variable
�̃ = D�, with D = diag(d) and d = f∕(fT �), see Section 6.1. We assume that �̃ has n = n0 strictlypositive components and we introduce I = {i|�̃i > 0}. As illustrated in Sections 9 and 10), it is
generally possible, to a certain extent, to merge together some components of �̃ while inducing a
negligible increase of the cost C(⋅). In what follows, we discuss two simple greedy heuristics based
on the sequential merging of pairs of components of �̃.

We assume that n > 1. For an ordered pair {i, j}, with i and j ∈ I and i ≠ j, we define
�̃{i,j} = �̃ + �̃j(ei − ej), i.e., �̃{i,j} has n − 1 strictly positive components, the j-th component of �̃
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being absorbed by the i-th; we refer to this operation as the {i, j}-merging of �̃. We have
C(�̃{i,j}) = C(�̃) + 1

2 �̃
2
j (ei − ej)

TA(ei − ej) + �̃j(ei − ej)T∇C(�̃).

Thus, knowing ∇C(�̃), the computation C(�̃{i,j}) is numerically inexpensive (since only four entries
of the matrix A and two entries of ∇C(�̃) are involved).

We can then search for the merging associated with the smallest value of C(�̃{i,j}), with i and
j ∈ I , and i ≠ j. Depending on n0 and on the computational power at disposal, we may either
consider

- strong-pairwise-merging: search for the best ordered pair {i∗, j∗} = argmini≠j = C(�̃{i,j}),
the amount of computations involved scaling as (n2); or

- weak-pairwise-merging: fix j∗ = argminj∈I �̃j , and search for i∗ = argmini≠j∗ = C(�̃{i,j∗}),the amount of computations involved scaling as (n).
We thus obtain a “best” pairwise merging {i∗, j∗} for �̃. We next update all the involved objects, i.e.,
�̃ ← �̃{i∗,j∗}, I ← I∖{j∗}, n ← n − 1 and ∇C(�̃) ← ∇C(�̃{i∗,j∗}), and we may potentially iterate
like this until n = 1 (i.e., after n0 − 1 iterations), or at least, until we have reached a satisfactory
sparsity-discrepancy tradeoff.

We thus obtain a sequence of merged vectors {�̃[0], �̃[1],⋯ , �̃[n0−1]}, where �̃0 is our initial
vector, �̃[1] results from the merging of two components of �̃[0], etc.; by construction, �̃[m] ⩾ 0 and
1T �̃[m] = 1 for all m, and �̃[m] has n0 −m strictly positive components. Finally, instead of considering
the approximation induced by � = D−1�̃0, we may consider a sparser vector �[m] = D−1�̃[m] (noticethat �[m] and �̃[m] have the same number of strictly positive components); see Sections 9 and 10 for
illustrations.

7. Approximate eigendecomposition. This section is devoted to a discussion relative to the
accuracy of the approximation of the main eigenpairs of the integral operator T� induced by the
eigendecomposition of the approximate operator T� .

7.1. Eigendecomposition of the approximate operator. Let �∑N
k=1 �k�xk be a discrete mea-

sure with support included in  , with related vector � ⩾ 0; we assume that � ≠ 0.
We introduce the index set I = {i|�i > 0} and let n = card(I) be the number of strictly

positive components of �; we have in particular � =
∑
i∈I �i�xi (i.e., we have discarded all the

points xk such that �k = 0, since � is supported by only n points). Following Section 2.2, the strictly
positive eigenvalues {#l|l ∈ I+� } of T� and the associated canonically extended eigenfunctions l ∈ ,
orthonormalised forL2(�), can be easily obtained from the eigendecomposition of the n×n (symmetric
and positive-semidefinite) principal submatrix [V1∕2KV1∕2]I,I . We thus in particular obtain the o.n.b.
{
√
#l l|l ∈ I+� } of the subspace � of  related to T� .As already mentioned, by definition and in view of Lemma 2.2, when DK2 (�, �) is small, we can

expect the main eigendirections of the operator T� (the approximate eigendirection) to be relevant
approximation of the main eigendirections of the operator T�.

7.2. Accuracy of the approximate eigendirections. For simplicity, we assume that � ⊂ �.
We recall that we denote by {

√
�k'k|k ∈ I+�} the o.n.b. of � related to T�; the eigenfunctions 'k

being orthonormal in L2(�). For l ∈ I+� , we introduce the normalised approximate eigenfunctions of
T� induced by T� , given by

'̂l =  l∕‖ l‖L2(�). (7.1)
The normalised approximate eigenfunctions are such that ‖'̂l‖L2(�) = 1, but contrary to the true
eigenfunctions 'k, they are not necessarily orthogonal in L2(�). Notice that since � ⊂ �, wenecessarily have ‖ l‖L2(�) > 0; in addition, by definition of T�,

‖ l‖2L2(�) =
(
 l||T�[ l]

)
 . (7.2)

Controlling the orthogonality, in L2(�), between the approximate eigenfunctions '̂l appears asa relatively inexpensive way to evaluate the accuracy of the approximate eigendirections. Indeed,
11
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accurate approximate eigenfunctions '̂l should be almost mutually orthogonal inL2(�); this condition
is however only a necessary condition. It is also very instructive to try to estimate the eigenvalues, for
the operator T�, related to the approximate eigendirections  l induced by T� , as discussed hereafter.

For all k ∈ I+� , we have ‖
√
�k'k‖2 = 1. By analogy, for all l ∈ I+� , we may define �̂[1]l such that

‖
√
�̂[1]l '̂l‖2 = 1 (so that

√
�̂[1]l '̂l =

√
#l l). Thus, using (7.1) and (7.2), we obtain

�̂[1]l = 1∕‖'̂l‖2 = #l‖ l‖2L2(�)
=
(√

#l l||T�[
√
#l l]

)
 =

(
T�[ l]||T�[ l]

)
 . (7.3)

If  l is a true eigendirection of T�, then �̂[1]l corresponds to the associated eigenvalue. From the
Cauchy-Schwarz inequality, we have

(√
#l l||T�[

√
#l l]

)
 ⩽ ‖√#l l‖‖‖‖T�[

√
#l l]‖‖ = ‖‖T�[

√
#l l]‖‖ ,

with equality when  l and T�[ l] are collinear, i.e., when  l is a true eigendirection of T�. Thissuggests the introduction of
�̂[2]l = ‖‖T�[

√
#l l]‖‖ . (7.4)

The ratio �̂[1]l ∕�̂[2]l corresponds to the inner product, in , between the normalised vectors √#l l
and T�[

√
#l l]∕‖‖T�[

√
#l l]‖‖ , and we have 0 < �̂[1]l ∕�̂[2]l ⩽ 1. See Remark 7.1 for a discussion

relative to the computation of the approximate eigenvalues �̂[⋅]l .
Following (7.3) while considering the Hilbert structure of L2(�) instead of the one of , we can

also define
�̂[3]l =

(
'̂l||T�['̂l]

)
L2(�) = ‖‖T�['̂l]‖‖2 =

(
�̂[2]l

)2∕�̂[1]l , (7.5)

so that �̂[2]l ⩽ �̂[3]l , with equality when  l is an eigendirection of T�. Finally, from the Cauchy-Schwarz
inequality and by analogy with (7.4), we have

(
'̂l||T�['̂l]

)
L2(�) ⩽ ‖'̂l‖‖L2(�)

‖‖T�['̂l]‖‖L2(�) = ‖‖T�['̂l]‖‖L2(�),

suggesting the introduction of
�̂[4]l = ‖‖T�['̂l]‖‖L2(�). (7.6)

We therefore have �̂[3]l ⩽ �̂[4]l , with, again, equality when  l is an eigendirection of T�. We have
0 < �̂[3]l ∕�̂[4]l ⩽ 1, and this ratio stands for the inner product, in L2(�), between the two normalised
vectors '̂l and T�['̂l]∕‖T�['̂l]‖L2(�).
Remark 7.1. For � =

∑N
k=1 !k�xk and once #l and  l are known, the amount of computations

required to compute �̂[1]l = #l‖ l‖2L2(�)
scales as(N), so that computing the approximate eigenvalues

�̂[1]l is relatively inexpensive on a numerical point of view.
Computing �̂[2]l , �̂[3]l or �̂[4]l requires in particular the knowledge of T�[ l], which consists in

performing a kernel-matrix vector product, with complexity scaling as (N2); this operation is
therefore costly, but may however be easily parallelised (and an approximation may for instance also
be obtained by a generalised fast multipole method). Once T�[ l] is known, we can obtain �̂[3]l and
�̂[4]l by computing an inner product in L2(�), with complexity scaling as (N); and we finally obtain
�̂[2]l thanks to the relation �̂[2]l =

√
�̂[1]l �̂

[3]
l .

Note that computing �̂[2]l directly from the Hilbert structure of  requires to perform an inner
product with numerical complexity scaling as (N2); on a numerical point of view, this operation is
therefore not interesting. ⊲

12
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Lemma 7.1 summarises the properties of the approximate eigenvalues �̂[1]l ,⋯ , �̂[4]l .
Lemma 7.1. Considering equations (7.3)–(7.6), for all l ∈ I+� , we have �̂

[1]
l ⩽ �̂[2]l ⩽ �̂[3]l ⩽ �̂[4]l , with

equality when  l is an eigendirection of T�; in case of equality, the approximation �̂
[⋅]
l corresponds

exactly to the eigenvalue of T� related to the eigendirection  l.
For � ∈ ℝ, the function

�↦ ‖‖�
√
#l l − T�[

√
#l l]‖‖2 = �2 − 2��̂[1]l +

(
�̂[2]l

)2 (7.7)
reaches its minimum at � = �̂[1]l ; in the same way, the function

�↦ ‖‖�'̂l − T�['̂l]‖‖2L2(�) = �2 − 2��̂[3]l +
(
�̂[4]l

)2 (7.8)
reaches its minimum at � = �̂[3]l =

(
�̂[2]l

)2∕�̂[1]l .
Remark 7.2. Consider any measure � ∈ T (K); the approximations '̂l, �̂[1]l , �̂[2]l , �̂[3]l and �̂[4]l remain
unchanged if one replaces � by �� for any � > 0. ⊲

In view of Lemma 7.1, one may assess the accuracy of the approximate eigendirections  l (as
eigendirections for T�) by checking how close to each other are the approximations �̂[1]l , �̂[2]l , �̂[3]l and
�̂[4]l (the ratios �̂[1]l ∕�̂[2]l and �̂[3]l ∕�̂[4]l being of particular interest due to their geometric interpretation,
as already discussed). From (7.7) and (7.8), one may for instance consider the quantities

[(
�̂[2]l

)2 − (
�̂[1]l

)2]∕(�̂[1]l
)2 and [(�̂[4]l

)2 − (
�̂[3]l

)2]∕(�̂[3]l
)2, (7.9)

so that the closer the (positive) terms in (7.9) are from zero, the more accurate is the approximate
eigendirection  l; see Sections 9 and 10 for illustrations.

8. Penalisation direction. In the framework of Section 3 (i.e., � is a discrete measure with
support included in a fixed set of points ), sparsity of the approximate measure � (related to the
vector �) is induced by the introduction of an l1-type penalisation based on the term fT � for a given
f ∈ ℝN with f > 0. The term fT � can be interpreted as the integral with respect to � of a (measurable)
real-valued function f on X satisfying f (xk) = fk, so that fT � = ∫

X f (x)d�(x). In practice, we
aim at obtaining a vector � which is both as sparse as possible and such that D(�) is as small as
possible, naturally raising questions relative to the choice of the penalisation direction f .
Lemma 8.1 (Penalisation direction inducing no sparsity). If f = �S! with � > 0, then for � ⩽ 1∕�,
�∗� = (1 − ��)! ⩾ 0 is a solution to (3.3) (and �∗� = 0 for � > 1∕�).

Thus, for f = �S!, the solutions to (3.3) are non-sparse, and such a choice for the penalisation
term f is of no practical interest. More generally, we can remark that if f = S� ⩾ 0, with � ∈ ℝN ,
then for all � such that ! − �� ⩾ 0, we have ∇D�(! − ��) = 0, and �∗� = ! − �� is therefore a
solution to (3.3).

We recall that, from (4.2), if �∗� is a solution to the regularised problem (3.3) (with related measure
�∗�), then g�∗� =

∑N
k=1[�

∗
�]kK

2
xk

is the solution to, for g ∈  (with  the RKHS related to the squared
kernel),

minimise
g

1
2
‖g‖2 subject to g�(xk) − g(xk) ⩽ �fk for all k ∈ {1,⋯ , N}, (8.1)

with g�(xk) = ∫
X K2(t, xk)d�(t) = [S!]k; in addition, g�(xk) − g�∗� (xk) = �fk for all k such that

[�∗�]k > 0. Also, for any � and � ∈ T (K), we have DK2 (�, �) = ‖g� − g�‖2, and (g�|g�) =
∫
X g�(t)d�(t) = ∫

X g�(t)d�(t), see (2.1) and Appendix A.
As illustrated in Sections 9 and 10, considering f = 1 generally leads to satisfactory results; it

is however also possible to consider model-dependent penalisation directions leading to interesting
interpretations. Following Remark 3.2, in the framework of the regularised problem (3.3), we can
reasonably assume thatK(xk, xk) > 0 for all k (i.e., diag(K) > 0), so that, in particular, S! > 0 (since
! > 0). In what follows, we discuss penalisation schemes related to the vectors S! and diag(K). In
practice, notice that we must always ensure that the considered penalisation direction do not coincide
with the pathological case described in Lemma 8.1 (for instance, if K is a circulant matrix and if
! ∝ 1, then S! ∝ diag(K) ∝ 1).

13
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Distortion-term-based penalisation. In view of (8.1), considering f = 1∕(S!)p with p > 0 results
in a SVM model where the upper bound on g�(xk) − g�(xk) is inversely proportional to a positive
power of g�(xk) (i.e., the larger g�(xk), the smaller the bound on g�(xk) − g�(xk)). In view of (3.3),
the positive components of �∗� are then more likely to correspond to large values of g�(xk). Since,
for any measure � supported by  (with related weights �k), we have (g�|g�) =

∑N
k=1 �kg�(xk),considering a penalisation of the form f = 1∕(S!)p with p > 0 tends to promote the collinearity, in ,

between g� and g�∗� (by promoting a large value of their inner product).
Kernel-diagonal-based penalisation. We can first remark that for f = diag(K), we have fT � =

trace(T�), so that from Lemma 3.1-(iii) and by analogy with spectral truncation, a solution to the
regularised problem (3.3) then satisfies fT �∗� ⩽ fT! = trace(T�).From the reproducing property in  and the Cauchy-Schwarz inequality, we have, for all x ∈ X ,

∀� and � ∈ T (K), ||g�(x) − g�(x)|| ⩽
√
DK2 (�, �)K(x, x), (8.2)

so that for DK2 (�, �) fixed, K(xk, xk) appears as a tight bound on g�(xk) − g�(xk). In view of (8.1)
and (8.2), by considering f = 1∕(diag(K))p with p > 0, we enforce the bound on the difference
g�(xk) − g�∗� (xk) to be small at the points xk where this difference can potentially be large, so that we
can thus expect g�(xk) − g�∗� (xk) to relatively small for every k ∈ {1,⋯ , N}.

The impact of the penalisation direction on the tradeoff between sparsity and squared-kernel
discrepancy is investigated and further discussed in the experiments of Sections 9.5 and 9.6.

9. Two-dimensional example. We assume that  = {xk}Nk=1 consists of the N = 2016 first
points of a uniform Halton sequence on [−1, 1]2 (see [14]), as illustrated in Figure 9.2. We set
!k = 1∕N for all k, so that the measure � =

∑
k !k�xk in particular appears as a quadrature

approximation of the uniform probability measure on [−1, 1]2. We consider the Gaussian kernel
K(x, y) = exp(−l‖x − y‖2), where ‖x − y‖ is the Euclidean norm on ℝ2, and we set l = 1∕0.16 (a
different kernel is considered in Section 9.6). An overview of the spectrum of the operator T� is given
in Figure 9.1. We first consider the penalisation direction f = 1.
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0.1
0 eigenvalues �k

k

-1.0
-0.5

0.0
0.5

1.0-1.0

-0.5
0.0

0.5
1.0-1

0

1

eigenfunction 'k for k = 11

FIG. 9.1. For the two-dimensional example (Gaussian kernel and ! = 1∕N), eigenvalues �k of the integral operator T�
(sorted in decreasing order, only the 62 largest eigenvalues are presented), and graph, on [−1, 1]2 of the canonically extended
eigenfunction 'k for k = 11.

9.1. First experiment. Figure 9.2 shows the (approximate) solution �∗ to problem (3.4) withz = 0.81, or equivalently, to problem (3.3) with � ≈ 8.354214 × 10−3 (with ! = 1∕N and f = 1).
The vector �∗ has 160 strictly positive components, and the support of the related measure �∗ inherits
an interesting “four-concentric-square” structure. We haveD(�∗) = 7.631887×10−4 (for comparison,
notice that D(0) = 1

2!
T S! = 2.661452 × 10−2 and D(e1) = 4.760566 × 10−1, with e1 the first

element of the canonical basis of ℝN ).
The presented solution has been obtained from the regularisation-path strategy described in

Section 5 (see Section 9.2 for more details). Considering the regularisation path for problem (3.3)
with decreasing values of �, the underlying value of � ≈ 8.354215 × 10−3 satisfies

�p+1 = 8.352970 × 10−3 ⩽ � ⩽ �p = 8.355244 × 10−3, with p = 4 047.
14
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Correspondingly, considering the regularisation path for problem (3.4) with increasing values of z,
the underlying value z = 0.81 satisfies

zp = 0.8099788 ⩽ z ⩽ zp+1 = 0.8100256, with p = 4 047.

In the framework of Section 6.1, the presented solution is related to a Frank-Wolfe error bound
� = 3.989864 × 10−17.

-1.0 -0.5 0.0 0.5 1.0

-1.
0

-0.
5

0.0
0.5

1.0
solution �∗ for z = 0.81 or � ≈ 8.354215 × 10−3

FIG. 9.2. Graphical representation (two-dimensional example, Gaussian kernel, ! = 1∕N and f = 1) of the solution �∗
to problem (3.4) with z = 0.81, or equivalently, to problem (3.3) with � ≈ 8.354215 × 10−3. The grey crosses represent the
points in  and the filled dots are the strictly positive components of �∗ (surface being proportional to �∗k).

The accuracy of the approximate eigendecomposition of T� induced by the solution �∗ presented
in Figure 9.2 (i.e., z = 0.81) is illustrated in Figure 9.3. In view of the similarity between the
approximate eigenvalues �̂[⋅]l , and more particularly of the ratios (�̂[1]l ∕�̂[2]l

)2 and (�̂[1]l ∕�̂[2]l
)2 (see

Section 7), we observe that the 21 main eigendirections of the operator T�∗ (i.e., for l ∈ {1,⋯ , 21})
leads to remarkably accurate approximations of the eigenpairs of T� related to the 21 largest eigenvalues
�k. The accuracy of the approximate eigenpairs decreases for l ∈ {22,⋯ , 44}, and becomes very
poor for k ⩾ 44.
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approx. eigenval. �̂[2]l
approx. eigenval. �̂[1]l

l
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0.0
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0.4
0.6

0.8
1.0 (

�̂[3]l ∕�̂[4]l
)2

(
�̂[1]l ∕�̂[2]l

)2

l

FIG. 9.3. Approximate eigenvalues �̂[1]l , �̂[2]l , �̂[3]l and �̂[4]l induced by the solution �∗ presented in Figure 9.2; ratios(
�̂[1]l ∕�̂[2]l

)2 and (�̂[1]l ∕�̂[2]l
)2 highlighting the accuracy of the approximate eigendirections  l of T� induced by �∗ (right).

A comparison between the true eigenvalues of T� and their approximations induced by the
solution �∗ presented in Figure 9.2 (i.e., z = 0.81) is illustrated in Figure 9.3. We for instance observe
that for 1 ⩽ l ⩽ 8, the approximate eigenvalues �̂[4]l are the more accurate.
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1
2

3
4 most accurate approximate eigenvalue
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�̂[4]l − �l �̂[3]l − �l �̂[2]l − �l �̂[1]l − �l

l

FIG. 9.4. Errors �̂[⋅]l − �l for the approximate eigenvalues induced by the solution �∗ presented in Figure 9.2 (bottom),
and indication of the most accurate (i.e., with the smallest error in absolute value) approximate eigenvalues among �̂[1]l , �̂[2]l ,
�̂[3]l and �̂[4]l (top).

9.2. Regularisation path. We now investigate the impact of the parameters � and z related to
problems (3.3) and (3.4) respectively. We compute the 12 786 first events of the regularisation-path
related to problem (3.3) with decreasing values of � (see Section 5), i.e., until we reach a precision issue;
in particular, we have �0 = 6.310163× 10−2 and �12785 = 1.514626× 10−5. Correspondingly, for the
regularisation path related to problem (3.4) with increasing z, we have z0 = 0 and z12785 = 0.9995426
(we recall that fT! = 1).

Figure 9.5 shows that the number of strictly positive components of the solution �∗z to problem (3.4)
tends to increase when z increases. As expected from Lemma 3.1-(vii), the functions z ↦ D(�∗z )is decreasing; in the same way, when z increases, the corresponding value of the regularisation
parameter � decreases (see Lemmas 3.1 and 3.2).
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z
FIG. 9.5. For the two-dimensional example (Gaussian kernel, ! = 1∕N and f = 1), graphical representation of the

12 786 first events of the regularisation path related to problem (3.4) for increasing z; number of strictly positive components
of �∗z as function of z (left); graph of z ↦ D(�∗z ) (middle), and relation between z and the parameter � of problem (3.3).

For 51 values of z evenly spread between 0 and z12785, Figure 9.6 shows the evolution of the
ratio (�̂[1]l ∕�̂[2]l

)2 for the approximate eigendecompositions induced by the 51 different solutions �∗z .As expected, the number of accurately approximate eigendirections increases with z. Remarkably,
for each of the considered values of z, the number of eigendirections approximated with a high
accuracy appears to be in close relation with the decay of the spectrum of T�; we recall that we have
trace(T�∗z ) = z, since diag(K) = 1 for the Gaussian kernel.

9.3. Components merging. We now perform the strong-pairwise-merging (see Section 6.2)
of the solution �∗ presented in Figure 9.2 (i.e., problem (3.4) with z = 0.81). As illustrated in
Figure 9.7, for the first merging iterations, D(�[k]) stays very close to D(�∗) = 7.631890 × 10−4.
After 90 iterations, we have D(�[90]) − D(�∗) = 3.494809 × 10−5 (i.e., increasing of 4.58%), and
�[90] is supported by 70 points (instead of 160 for �∗); a graphical representation of �[90] is given in
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FIG. 9.6. Evolution of the accuracy of the approximate eigendecomposition of T� induced by �∗z for 51 values of z

between z0 = 0 and z12785 = 0.9995426; the accuracy of the approximate eigendirections is measured trough the ratios(
�̂[1]l ∕�̂[2]l

)2, and for illustration purpose, the map z ↦ max
{
l||
∑l
k=1 �k ⩽ z} is also presented (two-dimensional example,

Gaussian kernel, ! = 1∕N and f = 1).

the left-hand part of the figure. The accuracy of the approximate eigendecomposition induced by
�[90] is presented in the right-hand part of Figure 9.7. We observe that although being slightly less
accurate than the approximate eigendecomposition induced by �∗, the approximation induced by �[90]remains very satisfactory while being related to a vector more than two times sparser.
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FIG. 9.7. Graphical representation of the merged solution �[90] (two-dimensional example with ! = 1∕N and f = 1)
obtained after 90 iterations of the strong-pairwise-merging strategy applied to the solution �∗ presented in Figure 9.2; the
grey diamonds indicate the support of �∗ (left). Increase of the cost D(⋅) induced by each merging iteration, for the whole
159 iterations (top-middle), and zoom around the 90-th iteration (bottom-middle). Representation of the ratios

(
�̂[1]l ∕�̂[2]l

)2
obtained from the merged vector �[90] and comparison with the same ratios for the solution �∗ (right).

9.4. Comparison with random sampling. For comparison purpose, we compute the approxi-
mate eigendecompositions induced by random uniform samples (without replacement) of size nrand =
300, 600, 900 and 1200 (i.e., we randomly select nrand distinct points among theN = 2016 points in , and we consider the uniform probability measure supported by the points selected); for each sample
size, we perform 100 repetitions. Figure 9.8 illustrates the accuracy of the obtained approximate
eigendirections, measured through the ratios (�̂[1]l ∕�̂[2]l

)2. As we could expect, the accuracy of the
approximations increases with the size of the sample; however, in terms of trade-off between sparsity
and accuracy, the results are far behind the one obtained using the penalised squared-kernel-discrepancy
minimisation.

9.5. Impact of the penalisation direction. We now study the impact of the penalisation di-
rection f . For the two-dimensional example (Gaussian kernel and ! = 1∕N), we compute the
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FIG. 9.8. For the two-dimensional example, accuracy of the approximate eigendecompositions induced by random
samples of size nrand (without replacement); for each values of nrand , Tukey’s boxplot, over 100 repetitions, of the number of
approximate eigendirections such that

(
�̂[1]l ∕�̂[2]l

)2 ⩾ 0.8 (left), 0.95 (middle) and 0.99 (right).

regularisation path (until precision issues) of the regularised problem (3.3) for seven different vectors
f > 0. We consider f = vmax(S) (i.e., the eigenvector related to the largest eigenvalue of the matrix S,
see the Perron–Frobenius theorem), (S!)2 (i.e., fk = [S!]2k),

√
S! (i.e., fk =

√
[S!]k), 1, 1∕

√
S!,

1∕(S!) and 1∕(S!)2. In Figure 9.9, we represent, for each case, the number of strictly positive
components of the solution to (3.3) as function of the squared-kernel discrepancy of the solution. We
recall that for the Gaussian kernel, we have 1 = diag(K) = 1∕ diag(K).

In accordance with Section 8, the results obtained for f = 1 and f = 1∕(S!)p (with in this case
p = 1∕2, 1 and 2) appears as the more interesting in terms of the overall tradeoff between sparsity and
squared-kernel discrepancy (i.e, for a same value of the squared-kernel discrepancy, the underlying
solutions are generally sparser); the best results are obtained for f = 1∕(S!)2. We can however
remark that f = vmax(S) and f = (S!)2 lead to sparser solutions in the range of large values of the
squared-kernel discrepancy (i.e., on the right-hand side of Figure 9.9).
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FIG. 9.9. For the two-dimensional example (Gaussian kernel and ! = 1∕N), number of strictly positive components of
the solution �∗� to problem (3.3) as function of the squared-kernel discrepancy D(�∗�), for various penalisation vectors f; all
the curves have been obtained thanks to the regularisation path strategy (until precision issues).

9.6. Modified kernel. We further illustrate the impact of the penalisation direction by now
considering an alternative kernel (with same set  and same initial measure �, i.e., ! = 1∕N , as
in the previous experiments). We introduce the function, for x ∈ [−1, 1]2, s(x) = √

0.1 + ‖x − c‖2,
with c = (1, 1), and we define the kernel (modified Gaussian kernel)

K(x, y) = s(x)s(y) exp(−l‖x − y‖2); (9.1)
we still consider l = 1∕0.16. We then in particular have K(x, x) = s2(x). We make the same
analysis as in Section (9.5), while considering f = 1, diag(K), 1∕ diag(K), 1∕(S!), 1∕(S!)2 and
(S!)2. The results are presented in Figure 9.10. The overall tradeoff between sparsity and squared-
kernel discrepancy obtained for f = (S!)2 is very poor in comparison with the tradeoffs obtained
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for the five other penalisation directions, in accordance with the discusion made Section 8. The best
overall tradeoffs are obtained for f = 1∕(S!) and 1∕(S!)2. Among the five “efficient penalisation
directions”, the trace f = diag(K) appears to be the less interesting in the range of large values of the
squared-kernel discrepancy (right-hand side of the graph), but becomes the more efficient in the range
of small values of the squared-kernel discrepancy (left-hand side of the graph).
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FIG. 9.10. For the two-dimensional example (modified Gaussian kernel (9.1) and ! = 1∕N), number of strictly positive
components of the solution �∗� to problem (3.3) as function of the squared-kernel discrepancy D(�∗�), for various penalisation
vectors f ; all the curves have been obtained thanks to the regularisation path strategy (until precision issues).

10. Application to medium/large-scale problems. This section aims at illustrating the ability
of the proposed framework to tackle relatively large-scale problems. The datasets have been obtained
from the UCI Machine Learning Repository, see [13]. All the computations have been performed
on a 2015 desktop endowed with an Intel Core i7-4790 processor with 16 Gb of RAM; the various
methods have been entirely implemented in C.

10.1. MiniBooNE dataset. We consider the standardised entries of the MiniBooNE dataset,
without labels;  thus consists of N = 129 596 points in ℝ50. We use a Gaussian kernel (same
expression as in Section 9) with l = 0.02, and we set ! = 1∕N and f = 1. Notice that l = 0.02
belongs to the range of “good parameters” for the SVM binary classification of this dataset.

We compute the 3 000 first events of the regularisation path related to problems (3.3) and (3.4).
We have �0 = 0.2188961 and �2999 = 3.546703 × 10−3, and correspondingly z0 = 0 and z2999 =
0.655808 (note that fT! = 1). A graphical representation of the obtained results is proposed in
Figure 10.1. We can observe that for z ⩾ 0.5, the number of strictly positive components of
�∗z increases with a signifiant rate; as a consequence, the computation of the regularisation path
quickly becomes numerically intractable (notice that the calculation of the 3 000 first events of the
regularisation path took around 3 hours on our aforementioned 2015 desktop).
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FIG. 10.1. For the MiniBooNE dataset (Gaussian kernel, ! = 1∕N and f = 1), graphical representation of the 3 000

first events of the regularisation path related to problem (3.4) for increasing z: number of strictly positive components of �∗z as
function of z (left); graph of z ↦ D(�∗z ) (middle), and relation between z and the parameter � of problem (3.3).

We use the regulation path to compute the solutions to problem (3.4) for z = 0.3 and z = 0.655
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(i.e., for problem (3.3), � ≈ 4.400276×10−2 and � ≈ 3.571413×10−3). The considered solutions have
76 and 1 902 strictly positive components, respectively. The efficiency of the induced approximate
eigendecompositions is illustrated in Figure 10.2. For z = 0.3, we obtain a relatively accurate
approximation of the three main eigenpairs of T� while considering only 76 points (we recall that
N = 129 596); the approximation of the other eigendirections is relatively poor. For z = 0.655,
the eight main eigendirections of T� are approximate with high accuracy (i.e., 1 ⩽ l ⩽ 8), and the
approximations remains relatively accurate until l = 29. Interestingly, we observe that contrary to the
ratios (�̂[3]l ∕�̂[4]l

)2, the ratios (�̂[1]l ∕�̂[2]l
)2 remain relatively high for all the values of l presented in

the graph.
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FIG. 10.2. For the MiniBooNE dataset (Gaussian kernel, ! = 1∕N and f = 1), approximate eigenvalues �̂[1]l , �̂[2]l , �̂[3]l
and �̂[4]l induced by the solution to problem (3.3) with z = 0.3 (top-left), and ratios

(
�̂[1]l ∕�̂[2]l

)2 and (�̂[1]l ∕�̂[2]l
)2 (top-right);

same things for z = 0.655 (bottom-left) and (bottom-right).

To explore the type of solutions obtained for larger values of z, we consider the vertex-exchange
strategy described in Section 6.1. We compute an approximate solution for z = 0.8; the vertex-
exchange algorithm is initialised at �̃ = e1 and after 300 000 iterations, we obtain a Frank-Wolfe
error bound of � = 1.692408 × 10−8. The obtained approximate solution �̂∗ to problem (3.3) verifies
D(�̂∗) = 4.934072 × 10−5 and has 9544 strictly positive components.

To enhance sparsity, we perform a weak-pairwise merging of the solution �̂∗ for z = 0.8 (see
Section 6.2; notice that performing a strong-pairwise merging is in this case numerically prohibitive).
After 5044 iterations, the merged solution �[5044] is supported by 4500 points and D(�[5044]) =
D(�̂∗) + 1.061787 × 10−6 (i.e., increasing of 2.15%).

We next compute the approximate eigendecompositions induced by �̂∗ and �[5044]; the resultare presented in Figure 10.3. In particular, in both case, the 31 main eigendirections of T� are
approximated with high accuracy. We observe also that for all the values of l presented on the graph,
the approximation induced by �[5044] is equivalent, in terms of accuracy, to the approximation induced
by �̂∗, while being related to a solution more than two times sparser.

10.2. Test subsample of the SUSY dataset. We consider the standardised entries of the test
subsample of the SUSY dataset (without labels), so that  consists of N = 500 000 points in ℝ18.
We still use a Gaussian kernel (same expression as in Section 9) with l = 0.4, and we set ! = 1∕N
and f = 1. The computation of the distortion term S! took 5 665.6 seconds.

We compute an approximate solution (vertex-exchange strategy) for the constrained problem (3.4)
with z = 0.3; we perform four consecutive batches of 50 000 iterations each, the solver being initialised
at �̃ = e1. After 200 000 iterations (i.e., at the end of the 4-th batch), the obtained approximate solution
�̂∗ verifies D(�̂∗) = 3.931629 × 10−5 and has n = 20 664 strictly positive components. Execution
time, evolutions of the Frank-Wolfe error bound � and of the sparsity of the approximate solution are
reported in Table 10.1. We observe that a batch of 50 000 iterations of the vertex-exchange algorithm
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FIG. 10.3. For the MiniBooNE dataset, accuracy of the approximate eigendecompositions induced by the solution �̂∗ to
problem (3.3) with z = 0.8 obtained from the vertex-exchange algorithm (left), and from the merged solution �[5044] (left).

took around 19 minutes; the approximate solution obtained at the end of the first batch is already
relatively accurate.

TABLE 10.1
For the test subsample of the SUSY dataset, information relative to the approximate solutions to problem (3.4) withz = 0.3 returned by the vertex-exchange algorithm for four consecutive batches of 50 000 iterations, the solver being initialised

at �̃ = e1; for each batch, execution time, total number of iterations, Frank-Wolfe error bound � and number n of strictly
positive component of the approximate solution.

batch 1 batch 2 batch 3 batch 4
time (in sec.) 1 148.7 1 158.3 1 158.5 1 159.1
total nb. of it. 50 000 100 000 150 000 200 000

� 3.1413 × 10−7 6.5477 × 10−8 2.7049 × 10−8 7.0928 × 10−9
n 19 721 20 619 20 693 20 674

To enhance the sparsity of the sampling, we perform a weak-pairwise merging of the approximate
solution �̂∗; the computation of 20 673 merging iterations took 78.86 seconds. The merged solution
�[13674] is supported by 7 000 points and D(�[13674]) = D(�̂∗) + 5.271960 × 10−7 (i.e., increasing of
only 1.34%). We next study the approximate eigendecomposition induced by �[13674]. Computing the
300 first normalised approximate eigenvectors v̂l ofKW induced by �[13674] (i.e., v̂l ∈ ℝN is the vector
corresponding to the approximate eigendirection '̂l, see Sections 2.2 and 7) took 3 313.6 seconds
(time for canonical extension and rescaling), and we thus also obtain the approximate eigenvalues �̂[1]l .
To access the accuracy of the approximate directions '̂l, we compute T�['̂l] (i.e., KWv̂l), for the
300 first approximate eigendirections, i.e., l ∈ {1,⋯ , 300}; this operation took 191 622.3 seconds
(i.e., around 53 hours). The results are presented in Figure 10.4. As already observed, the accuracy
of the approximate eigendirections decreases when l increases (we recall that the eigenvalues of
the approximate operator are stored in descending order). The obtained approximate eigenpairs are
remarkably accurate.

11. Conclusion. We studied a QP-based strategy to design sparse (pointwise) quadratures for the
approximation of integral operators related to symmetric positive-semidefinite kernels in a quadrature-
sparsification framework (i.e., quadratures with support included in a fixed finite set ofN points). For
a given kernel, the considered criterion consists in the squared Hilbert-Schmidt norm for operators
defined on the underlying RKHS, and sparsity of the approximate quadratures is obtained through
the introduction of an l1-type penalisation, under the form of a regularisation term or of a constraint.
We investigated the relations between the approximation of integral operators and the notions of
squared-kernel discrepancy and one-class distorted SVMs related to the squared kernel. From a
methodological point of view, the considered approximation scheme is deterministic, numerically
scalable (i.e., large-scale problem can be tackled) and enjoys an optimality property; it in particular
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FIG. 10.4. For the test subsample of the SUSY dataset, graphical representation of the 300 first approximate eigenvalues
�̂[1]l , �̂[2]l , �̂[3]l and �̂[4]l induced by the merged solution �[13674] obtained from the approximate solution �̂∗ to problem (3.4)
(top); ratios

(
�̂[1]l ∕�̂[2]l

)2 and (�̂[3]l ∕�̂[4]l
)2 highlighting the accuracy of the underlying approximate eigendirections (bottom).

offers an interesting alternative for the sampling problem related to the Nyström approximation of
large-scale kernel-matrices.

We described two numerical strategies for solving regularised or constrained squared-kernel-
discrepancy minimisation problems. The regularisation-path approach can be used to explore the range
of very sparse solutions, with the interest of leading to exact solutions (up to precision errors); the
vertex-exchange strategy permits the exploration of a wider range of solutions and offers a numerically
efficient approach to build approximate solutions. Two greedy heuristics based on iterative pairwise-
component merging are also proposed, aiming at enhancing sparsity while trying to keep squared-
kernel discrepancy as low as possible. To assess the accuracy of a given approximate eigendirection,
we in particular considered four different approximations (based on geometrical considerations) of
the eigenvalue related to a given approximate eigendirection. We also discussed questions relative
to selection of relevant penalisation directions, and we more specifically highlighted the benefits of
considering penalisation terms promoting collinearity in the RKHS related to the squared kernel.

As illustrated in Section 10 (where the support of the measures � and � is included in a fixed set
ofN points), the proposed approach can be used to tackle relatively large-scale problems (i.e., large
N). As far as the kernel K(⋅, ⋅) can be easily evaluated, the considered methodology leads to accurate
sparse representations of the main eigenpairs of the initial operator T�, in a reasonable amount of
time and without necessarily resorting to powerful computing hardwares. Indeed, in the range of
sparse solutions, the most computationally demanding task required to obtain an approximate measure
� is the calculation of the distortion term S!, with numerical complexity scaling as (N2). Then,
following Section 7, we can easily compute the eigendecomposition of the approximate operator T� ,
and obtain the approximate eigenpairs {(�̂[1]l , '̂l)}l∈I+� . Assessing the accuracy of an approximate
eigendecomposition through the evaluation of the approximate eigenvalues �̂[2]l , �̂[3]l and �̂[4]l is more
challenging (and optional) since it requires the computation of T�['̂l], with complexity scaling as
(N2). However, as already mentioned, any of the operations with (N2) complexity considered in
this work consists of kernel-matrix vector products that can be easily parallelised.
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Appendix A. Kernel discrepancy and integration in RKHS.
Consider the framework of Section 2 and introduce the subspace I (K) of , defined as

I (K) =
{
� ∈ || ∫X

√
K(x, x)d�(x) < +∞

}
;

notice that what follows may be extended to signed measures on X .
From the reproducing property of the kernel K(⋅, ⋅) and the Cauchy-Schwarz inequality, we have,

for all ℎ ∈  and � ∈ I (K),
|| ∫X ℎ(x)d�(x)|| ⩽ ∫

X |ℎ(x)|d�(x) ⩽ ‖ℎ‖ ∫
X

√
K(x, x)d�(x).

The linear functional I� on, defined as I�[ℎ] = ∫
X ℎ(x)d�(x), is therefore continuous. Thus, from

the Riesz representation theorem, there exists ℎ� ∈  such that I�[ℎ] = (ℎ|ℎ�) , and for x ∈ X ,
ℎ�(x) = ∫

X K(x, t)d�(t).
For � and � ∈ I (K), we have (ℎ�|ℎ�) = ∫

X ×X K(x, t)d�(x)d�(t). The kernel discrepancy
between two measures � and � ∈ I (K) is given by

DK (�, �) = ‖ℎ� − ℎ�‖2 = ‖ℎ�‖2 + ‖ℎ�‖2 − 2(ℎ�|ℎ�) ,
and EK (�) = ‖ℎ�‖2 is sometime referred to as the energy of the measure � relative to K(⋅, ⋅).

Let us consider that we are searching for a measure � in order to approximate integrals relative to
a fixed measure � (such a situation occurs for instance in case of quadrature approximation).If both
measures � and � belong to I (K), from the Cauchy-Schwarz inequality, we have, for all ℎ ∈ ,

|| ∫X ℎ(x)d�(x) − ∫
X ℎ(x)d�(x)|| = ||(ℎ|ℎ� − ℎ�)|| ⩽ ‖ℎ‖

√
DK (�, �).

So, when the integrands belong to the RKHS , the error induced by approximating integrals with
respect to � by integrals with respect to � has a tight bound in terms of kernel discrepancy, and it
is therefore of interest to deal with a measure � such that DK (�, �) is small; see [3] for a further
discussion.

Appendix B. Soft-margin-type extensions for the one-class SVM related to the regularised
problem. Pursuing the analogy with one-class SVMs, we can define soft-margin-type extensions
of problems (4.1) and (4.3), i.e, we can consider models where the inequalities appearing in the
constraints can, potentially, be violated, the level of violation being penalised. In this section, we only
discuss extensions related to problem (4.1), but a similar discussion holds for problem (4.3).

We introduce � = (�1,⋯ , �N )T ∈ ℝN ; the components of � are referred to as slack variables.
Instead of considering the contraints g(xk) ⩾ −�fk, we can consider the relaxed constraints g(xk) ⩾
−�dk − �k, while penalising the values taken by �k. The penalisation considered is related to a loss
function, see for instance [22]. In what follows, we discuss the model obtained for two popular types
of loss functions: the (weighted) hinge loss and the (generalised) square loss.

In view of our initial problem (3.3) (regularised squared-kernel-discrepancy minimisation), soft-
margin extensions of problem (4.1) appear as tool to further constrain or penalise the measure � (i.e.,
the vector �) used to approximate the initial measure � (i.e., the vector !).

B.1. Weighted hinge loss. Let c ∈ ℝN , with c ⩾ 0; the soft-margin extension of problem (4.1)
corresponding to a weighted hinge loss consists in the problem, for g ∈  and � ∈ ℝN ,

minimise
g,�

1
2‖g‖2 + (g|g�) + cT �

subject to g(xk) ⩾ −�fk − �k, with �k ⩾ 0, for all k ∈ {1,⋯ , N}.
(B.1)
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The Lagrange dual of problem (B.1) is given by
minimise

�
D�(�) =

1
2 (! − �)T S(! − �) + �fT � subject to 0 ⩽ � ⩽ c. (B.2)

Problem (B.2) only differs from problem (3.3) by the presence of the additional constraints � ⩽ c,
which acts as an upper bound on the values taken by the components of � (i.e., an upper bound on the
weights of the points in the quadrature related to �).

B.2. Generalised square loss. Let � ∈ ℝN×N be a symmetric positive-definite matrix; the
soft-margin extension of (4.1) corresponding to a generalised square loss is

minimise
g

1
2‖g‖2 + (g|g�) + 1

2�
T�−1�

subject to g(xk) ⩾ −�fk − �k, for all k ∈ {1,⋯ , N}.
(B.3)

The Lagrange dual of problem (B.3) is given by
minimise

�
D�,�(�) =

1
2 (! − �)T S(! − �) + 1

2�
T�� + �fT � subject to � ⩾ 0. (B.4)

In comparison to problem (3.3), the term 1
2�

T�� is added to the initial cost D�(�); it tends to“harmonise” the components of the underlying solution �∗. In particular,D�,� is then strongly convex.
Appendix C. Proofs.

Proof of Lemma 2.1. Consider an o.n.b. {ℎj|j ∈ I} of . By definition of T� and T� , for all j ∈ I,
we have

(
T�[ℎj]||T�[ℎj]

)
 =

(
ℎj||T�[ℎj]

)
L2(�) =

(
T�[ℎj]||ℎj

)
L2(�)

= ∫
X ×X K(x, t)ℎj(x)ℎj(t)d�(x)d�(t), (C.1)

so that (T�||T�
)
HS() =

∑
j∈I ∫X ×X K(x, t)ℎj(x)ℎj(t)d�(x)d�(t). For x and t ∈ X , we have

K(x, t) =
∑
j∈I ℎj(x)ℎj(t), and thus

‖K‖2
L2(�⊗�)

= ∫
X ×X

∑
j∈IK(x, t)ℎj(x)ℎj(t)d�(x)d�(t). (C.2)

Equalities (C.1) and (C.2) hold for any o.n.b. of , so that we can in particular consider an o.n.b.
which contains the o.n.b. {√�k'k}k∈I+� of � defined by T�. From the linear continuity of T�, we
then obtain

(
T�||T�

)
HS() =

∑
k∈I+� ∫X �2k'

2
k(t)d�(t) and ‖K‖2

L2(�⊗�)
= ∫

X

∑
k∈I+� �

2
k'

2
k(t)d�(t),

and we conclude by using the Tonelli theorem.
Proof of Lemma 2.2. The proof directly follows from the properties discussed in Sections 2.1 and 2.3.
In particular, (2.2) is obtained by considering the o.n.b. {√�k'k|k ∈ I+�} of � defined by T� while
remarking that � ⊂ � implies T�[ℎ] = T�[ℎ] = 0 for all ℎ ∈ 0,�. The inequality involving �� is
consequence of the relation ‖ℎ‖2

L2(�)
⩽ ��‖ℎ‖2 for all ℎ ∈ .

Proof of Lemma 3.1. Assertion (i) follows directly from DK2 (�, �) = 0 (since DK2 (�, �) ⩾ 0). From
the first order optimality condition, for � ⩾ 0, a feasible �∗� is solution to (3.3) if and only if, for any
feasible �, we have (� − �∗�)T∇D�(�∗�) ⩾ 0. Then, considering �∗� = 0 leads to assertion (ii), and
since ! is by assumption feasible for (3.3), assertion (iii) is obtained by taking � = !. For assertion
(iv), we first remark that the first order optimality condition for � = 0 gives (�∗�)T∇D�(�∗�) ⩽ 0. If
we assume that there exists k such that [∇D�(�∗�)]k < 0, we obtain (ek − �∗�)

T∇D�(�∗�) < 0, and
the first order optimality condition is then violated (ek stands for the k-th element of the canonical
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basis of ℝN , so that eTk∇D�(�∗�) = [∇D�(�∗�)]k). Therefore, we necessarily have ∇D�(�∗�) ⩾ 0 and
(�∗�)

T∇D�(�∗�) = 0 (since �∗� ⩾ 0). To prove (v), we first remark that for all � ∈ [0, 1], we have
D�(��∗� + (1 − �)�̃∗�) = D�(�̃

∗
�) + �(�

∗
� − �̃

∗
�)
T∇D�(�̃

∗
�) + �

2 1
2 (�

∗
� − �̃

∗
�)
T S(�∗� − �̃

∗
�).

Since D�(�̃
∗
�) = D�(��∗� + (1 − �)�̃∗�) and (�∗� − �̃∗�)

T∇D�(�̃
∗
�) = 0, we necessarily have (�∗� −

�̃∗�)
T S(�∗� − �̃

∗
�) = 0 and therefore S(�∗� − �̃∗�) = 0 (since the matrix S is symmetric and positive-

semidefinite); this completes the proof. Assertion (vi) follows from the expansion, for all � ⩾ 0,
D�(�) = D�(� − �kek) + �k[�f − S!]k +

∑
i≠k

�i�kSi,k +
1
2�

2
kSk,k.

Since all the entries of S are non-negative and Sk,k > 0, if [�f − S!]k ⩾ 0 and �k > 0, we necessarily
haveD(�−�kek) < D�(�). To obtain assertion (vii), consider �1 < �2 and let �∗�1 and �∗�2 be solutionsto problem (3.3) with � = �1 and � = �2 respectively. We have D(�∗�1 ) −D(�∗�2 ) ⩽ �1fT (�∗�2 − �

∗
�1
)

and D(�∗�1 ) − D(�∗�2 ) ⩾ �2fT (�∗�2 − �
∗
�1
), so that, necessarily, fT (�∗�2 − �∗�1 ) ⩽ 0, and therefore

D(�∗�1 ) −D(�∗�2 ) ⩽ 0.
Proof of Lemma 3.2. If �∗� is a solution to problem (3.3) with � ⩾ 0, then by definition, �∗� in particularminimises D(⋅) over the set of all � ⩾ 0 such that fT � = fT �∗� , and �∗� is therefore a solution to
problem (3.4) with z = fT �∗� .The condition z ⩽ fT! follows directly from Lemma 3.1-(iii): a solution �∗� to problem (3.3)
indeed necessarily satisfies fT �∗� ⩽ fT!. For z = 0, we have �∗z = 0 and the result follows from
Lemma 3.1-(ii). For 0 < z ⩽ fT!, in order to be a solution to problem (3.3), a solution �∗z to problem
(3.4) must satisfy (first order optimality condition), (�−�∗z )T∇D�(�∗z ) ⩾ 0 for all � ⩾ 0. In particular,
for all k ∈ {1,⋯ , N} such that [�∗z ]k > 0, the constraint �k ⩾ 0 is not active; therefore, for all � ⩾ 0,
the parameter � must satisfy (�ek − �∗z )T∇D�(�∗z ) = 0 where ek stands for the k-th element of the
canonical basis of ℝN (so that [�∗z ]k = eTk �

∗z ). Considering � = 0 directly leads to the expected
result (and one can also easily verify that the obtained value of � does not depend on � ⩾ 0). The
last assertion follows directly from Lemma 3.1-(vii) and the correspondence between solutions to
problems (3.3) and (3.4).
Proof of Lemma 4.1. Define the closed linear subspace  = span{K2

xk
}Nk=1 of  and let 0 = ⊥ be

its orthogonal; by definition, g� ∈  . For any g ∈  and g0 ∈ 0, we have
1
2‖g‖2 + (g |g�) ⩽ 1

2‖g + g0‖2 + (g + g0|g�) = 1
2‖g‖2 + (g |g�) + 1

2‖g0‖2.
In addition, for any k ∈ {1,⋯ , N}, we have g0(xk) = 0, so that necessarily g∗� ∈  (representer
Theorem), i.e, there exists �∗ = (�∗1 ,⋯ , �∗N )T ∈ ℝN such that g∗� =

∑N
k=1 �

∗
kK

2
xk
. Restricting

problem (4.1) to  then yields, for � ∈ ℝN ,
minimise

�
1
2�

T S� + �T S! subject to S� ⩾ −�f . (C.3)

We then introduce the Lagrangian function, for � ∈ ℝN with � ⩾ 0 (dual feasibility conditions),
(�, �) = 1

2�
T S� + �T S! − �T

[
S� + �f

]
.

The primal optimality conditions give S� = S(� − !), leading to the Lagrange dual problem (3.3)
(written as a minimisation problem). If �∗� is a solution to (3.4), then a solution �∗ to (C.3) needs
to satisfy S�∗ = S(�∗� − !), so that we can in particular consider �∗ = �∗z − !. Notice that when
S is non-invertible, other choices for �∗ exist since for any " ∈ ℝN such that S" = 0, we have
S(�∗ + ") = S�∗; but the obtained solution g∗� ∈  does not depend on such a ". The equality
g∗�(xk) = −�fk for all k ∈ {1,⋯ , N} such that [�∗�]k > 0 is consequence of the complementary
slackness condition (�∗�)T

[
S(�∗� − !) + �f

]
= 0.
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Proof of Lemma 4.2. We follow the same reasoning than in the proof of Lemma 4.1. By restricting
problem (4.3) to  , we obtain, for � ∈ ℝN ,

minimise
�,

1
2�

T S� + �T S! −  subject to S� ⩾ f∕z. (C.4)

The underlying Lagrangian function is then given by, for � ∈ ℝN with � ⩾ 0 (dual feasibility
conditions),

(�, , �) = 1
2�

T S� + �T S! −  − �T
[
S� − f∕z].

The primal optimality conditions give S� = S(� − !) and fT � = z, leading to the Lagrange
dual problem (3.4). If �∗z is a solution to (3.4), then a solution �∗ to (C.4) needs to satisfy S�∗ =
S(�∗z − !), so that we can in particular consider �∗ = �∗z − !. The expression of ∗z follows form the
complementary slackness condition (�∗z )T

[
S(�∗z − !) − ∗z f∕z] = 0. The equality g∗z (xk) = ∗zfk∕zfor all k ∈ {1,⋯ , N} such that [�∗z ]k > 0 is also consequence of the complementary slackness

condition.
Proof of Lemma 5.2. Let �� be such that [��]J c = 0 and [��]J = S−1J ,J ([S!]J −�fJ ). Following (5.3),from the condition [S(�� − !) + �f ]J c ⩾ 0, we define �+ as the smallest � satisfying the constraint
�
[
MfJ − fJ c

]
l ⩽

[
M[S!]J − [S!]J c

]
l, for all l ∈ {1,⋯ , card(J c)}. By definition, this constraint is

satisfied by �p, the components l such that [MdJ − fJ c
]
l ⩾ 0 therefore carry no information, and the

problem consists in searching for the smallest � such that
� ⩾

[
M[S!]J − [S!]J c

]
l∕
[
MfJ − fJ c

]
l, for all l such that [MfJ − fJ c

]
l < 0.

In the same way, we define �− as the smallest � such that �S−1J ,J fJ ⩽ S−1J ,J [S!]J .
Proof of Lemma 5.1. Let �� = ��∗�1 + (1 − �)�∗�2 and define J = J�1 = J�2 ; we have

SJ ,J [��]J = SJ ,J [��∗�1 + (1 − �)�∗�2 ]J = [S!]J − �fJ ,

so that [S(�� − !) + �f ]J = 0, and in the same way,
[S(�� − !) + �f ]J c = �[S(�∗�1 − !) + �1f ]J c + (1 − �)[S(�∗�2 − !) + �2f ]J c > 0.

By construction, �� ⩾ 0 and in addition, if k is such that [��]k > 0, then k ∈ J (since these conditions
are verified by both �∗�1 and �∗�2). We therefore have �T�

(
S(�� − !) + �f

)
= 0, so that for all � ⩾ 0,

the optimality condition (� − ��)T∇D�(��) ⩾ 0 holds, i.e., �� is a solution to (3.3), and J� = J .
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