A Holistic Approach for Optimizing DSP Block Utilization of a CNN implementation on FPGA - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

A Holistic Approach for Optimizing DSP Block Utilization of a CNN implementation on FPGA

Kamel Eddine Abdelouahab
Cédric Bourrasset
François Berry
Jocelyn Sérot

Résumé

—Deep Neural Networks are becoming the de-facto standard models for image understanding, and more generally for computer vision tasks. As they involve highly paralleliz-able computations, Convolutional Neural Networks (CNNs) are well suited to current fine grain programmable logic devices. Thus, multiple CNN accelerators have been successfully implemented on FPGAs. Unfortunately, Field-Programmable Gate Array (FPGA) resources such as logic elements or Digital Signal Processing (DSP) units remain limited. This work presents a holistic method relying on approximate computing and design space exploration to optimize the DSP block utilization of a CNN implementation on FPGA. This method was tested when implementing a reconfigurable Optical Character Recognition (OCR) convolutional neural network on an Altera Stratix V device and varying both data representation and CNN topology in order to find the best combination in terms of DSP block utilization and classification accuracy. This exploration generated dataflow architectures of 76 CNN topologies with 5 different fixed point representation. Most efficient implementation performs 883 classifications/sec at 256 × 256 resolution using 8 % of the available DSP blocks.
Fichier principal
Vignette du fichier
ICDSC_Main_Open.pdf (389.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01415955 , version 1 (20-12-2017)

Identifiants

  • HAL Id : hal-01415955 , version 1

Citer

Kamel Eddine Abdelouahab, Cédric Bourrasset, Maxime Pelcat, François Berry, Jean-Charles Quinton, et al.. A Holistic Approach for Optimizing DSP Block Utilization of a CNN implementation on FPGA. Proceedings of the 10th International Conference on Distributed Smart Cameras - ICDSC'16, Sep 2016, Paris, France. ⟨hal-01415955⟩
426 Consultations
281 Téléchargements

Partager

More