
HAL Id: hal-01415955
https://hal.science/hal-01415955v1

Submitted on 20 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Holistic Approach for Optimizing DSP Block
Utilization of a CNN implementation on FPGA

Kamel Eddine Abdelouahab, Cédric Bourrasset, Maxime Pelcat, François
Berry, Jean-Charles Quinton, Jocelyn Sérot

To cite this version:
Kamel Eddine Abdelouahab, Cédric Bourrasset, Maxime Pelcat, François Berry, Jean-Charles Quin-
ton, et al.. A Holistic Approach for Optimizing DSP Block Utilization of a CNN implementation on
FPGA. Proceedings of the 10th International Conference on Distributed Smart Cameras - ICDSC’16,
Sep 2016, Paris, France. �hal-01415955�

https://hal.science/hal-01415955v1
https://hal.archives-ouvertes.fr

1

A Holistic Approach for Optimizing DSP Block
Utilization of a CNN implementation on FPGA

K.Abdelouahab1, C.Bourrasset3, M.Pelcat1,2, F.Berry1, J.C.Quinton4, and J.Sérot1

1Institut Pascal, Université Clermont Auvergne, France
2IETR, INSA Rennes, France

3Atos/Bull, Montpellier, France
4Université Grenoble-Alpes,Grenoble, France

Abstract—Deep Neural Networks are becoming the de-facto
standard models for image understanding, and more generally
for computer vision tasks. As they involve highly paralleliz-
able computations, Convolutional Neural Networks (CNNs) are
well suited to current fine grain programmable logic devices.
Thus, multiple CNN accelerators have been successfully im-
plemented on FPGAs. Unfortunately, Field-Programmable Gate
Array (FPGA) resources such as logic elements or Digital Signal
Processing (DSP) units remain limited. This work presents a
holistic method relying on approximate computing and design
space exploration to optimize the DSP block utilization of a
CNN implementation on FPGA. This method was tested when
implementing a reconfigurable Optical Character Recognition
(OCR) convolutional neural network on an Altera Stratix V
device and varying both data representation and CNN topology
in order to find the best combination in terms of DSP block
utilization and classification accuracy. This exploration generated
dataflow architectures of 76 CNN topologies with 5 different fixed
point representation. Most efficient implementation performs 883
classifications/sec at 256 × 256 resolution using 8 % of the
available DSP blocks.

I. INTRODUCTION

Convolutional Neural Network (CNN) techniques are taking
part in an increasing number of computer vision applications.
They have been successfully applied to image classification
tasks [1], [2] and are wildly being used in image search
engines or in data centers [3].

CNN algorithms involve hundreds of regular structures
processing convolutions alongside non linear operations which
allow CNNs to potentially benefit from a significant accel-
eration when running on fine grain parallel hardware. This
acceleration makes FPGAs a well suited platform for CNN im-
plementation. In addition, FPGAs provide a lower power con-
sumption than most of the Graphics Processing Units (GPUs)
traditionally used to implement CNNs. It also offers a better
hardware flexibility and a reasonable computation power, as
recent FPGAs embed numerous hard-wired DSP units. This
match motivated multiple state-of-the-art approaches [4], as
well as industry libraries [5] focusing on CNN implementation
on FPGAs.

Nevertheless, efficient CNN implementations for FPGA are
still difficult to obtain. CNNs remain computationally intensive
while the resources of FPGAs (logic elements and DSP units)
are limited, especially in low-end devices. In addition, CNNs

have a large diversity of parameters to tweak which makes
exploration and optimization a difficult task.

This work focuses on DSP optimization and introduces
a holistic design space exploration method that plays with
both the CNN topology and its fixed point arithmetic while
respecting some Quality of service (QoS) requirements. In
summary, the contribution of this paper is threefold:

• A tool named Hardware Automated Description of CNNs
(HADOC) is proposed. This utility generates rapidly
dataflow hardware descriptions of trained networks.

• An iterative method to explore the design space is de-
tailed. An optimized hardware architecture can be de-
duced after monitoring performance indicators such clas-
sification accuracy, hardware resources used or detection
frame-rate.

• TPR/DSP metric is introduced. This ratio measures the
quotient between classification performance of a CNN
(its True Positive Rate (TPR)) and the number of DSPs
required for its FPGA implementation. This gives a
quantitative measure of an implementation efficiency.

Thus, this paper is organized as follows: Section II sum-
marises state-of-the art approaches for ConvNets implementa-
tions and optimization on FPGAs. Section III provides CNN
background and links it to dataflow Model of Computation
(MoC). Section VI introduces design space exploration for
CNNs on FPGAs and our method for holistic optimizing.
Section V details exploration and implementation results.
Finally, section VI concludes the papers.

II. RELATED WORK

Neural networks are nowadays wildly used for computer
vision tasks. Hence, multiple CNN accelerators have been
successfully implemented on FPGA. A non-exhaustive review
of these can be found in [6].

First attempt was in 1996 with Virtual Image Processor
(VIP) [7] : An FPGA based Single Instruction on Multiple
Data (SIMD) processor for image processing and neural
networks. However, since FPGAs in that times were very
constrained in terms of resources and logic elements, VIP
performance was quite limited.

Nowadays, FPGAs embed much more logic elements and
hundreds of hardwired MAC operators (DSP Blocks). State-of-

2

Fig. 1: An example a CNN topology, 3 convolutional layers interspersed with 2 sub-sampling layers and one fully
connected stage

the-art takes advantage of this improvement in order to imple-
ment an efficient feed-forward propagation of a CNN. Based
on [6], and to our knowledge, best state-of-the-art performance
for feed forward CNN acceleration on an FPGA was achieved
by Ovtcharov in [3], with a reported classification throughput
of 134 images /second on ImageNet 1K [1]. Such a system was
implemented on an a Stratix V D5 device and outperformed
most of state-of-the-art implementations such [8], [9], [10].
Most of theses designs are FPGA based accelerators with a
relatively similar architecture of parallel processing elements
associated with soft-cores or embedded hardware processors
running a software layer.

Regarding dataflow approaches for CNN implementations,
the most notable contribution was neuFlow [4]: A runtime
reconfigurable processor for real-time image classification. In
this work, Farabet and al. introduced a grid of processing tiles
that were configured on runtime to build a dataflow graph for
CNN applications. It was associated to ”luaFlow”: a dataflow
compiler that transforms a high-level flow-graph representation
of an algorithm (in a Torch environment[11]) into machine
code for neuFlow. Such architecture was implemented on a
Virtex 6 VLX240T and provided a 12 fps categorization for
512x375 images.

In [12], an analytical design scheme using the roofline
model and loop tiling is used to propose an implementation
where the attainable computation roof of the FPGA is reached.
This loop tilling optimization is performed on a C code
then implemented in floating point on a Virtex 7 485T using
Vivaldo HLS Tool. Our approach is different as it generates a
purely dataflow architecture where topologies and fixed-point
representations are explored.

III. CNNS: BACKGROUND AND IMPLEMENTATION

A. Convolutional networks topology

Convolutional Neural Networks, introduced in [2], have a
feed-forward hierarchical structure consisting of a succession
of convolution layers interspersed with sub-sampling opera-
tors. Each convolution layer includes a large number of neu-
rons, each performing a sum of elementary image convolutions
followed by a squashing non-linear function (Figure 1). A
network topology can be described by its depth, the number
of its neurons and their arrangement into layers. State-of-the-
art CNNs for computer vision, such as [1], are usually deep
networks with more than 5 hidden layers and with thousands
of neurons.

Numerous machine learning libraries [11], [13], [14] can
be used to design, train and test CNNs. Caffe [14] is a C++

package for deep learning developed by the Berkeley Vision
and Learning Center (BVLC). This framework is leveraged
on in this work as it benefits from a large community,
contains Python and Matlab bindings, an OpenCL support and
a ”Model zoo repository”, i.e. a set of popular pre-trained
models to experiment on. Moreover, CNN topologies can
easily be explored using Caffe.

Convolutional Neural Networks and more generally image
stream processing algorithms can usually be expressed as
sequences in an oriented graph of transformations. The CNN
layout matches intuitively a dataflow model of computation.

Fig. 2: Dataflow graph of an elementary CNN with 4
layers of 2 neurons

3

B. Dataflow MoC and CNNs

The foundations of dataflow MoC were formalized by [15]
in order to create an architecture where multiple fragments
of instructions can process simultaneously a stream of data.
Programs respecting dataflow semantics are described as a
network (graph) of fundamental processing units commonly
called Actors and communicating abstract data messages
called tokens on unidirectional First-In First-Out (FIFO) chan-
nels. As each neuron applies convolutions with known kernels
on streams of feature maps, a dataflow processing model
can be appropriate for CNNs [16]. Thus, a high parallelism
degree can be introduced at each layer on the network and the
successive layers can be fully pipelined.

As an example, Figure 2 shows the dataflow graph of a
simple feature extractor composed of two convolutional layers
of two neurons each interspersed with pooling layers. Each
actor in this graph performs elementary operations of a CNN
such as convolutions (conv actor), pooling (poolV,poolH
actors), non linear activation (ReLu actor) and summation
(sum actor). Such processing is done on a continuous stream
i to extract two features F1 and F2 in the example.

C. Implementation challenges on FPGAs

The implementation of feed-forward propagation of a deep
neural network in FPGAs is constrained by the available com-
putational resources.mendme Using floating-point to represent
network parameters makes the convolution arithmetic very
costly and requires many logic elements and DSP blocks
to be performed. Thus, CNN implementations on FPGAs
usually build on fixed point representations of their data. Many
studies have dealt with the aspects of deep learning with
limited numerical precision [17], [18], [19]. The most common
approach, such as in [10], [20], [4], consists of using a 16-
bit fixed-point number representation which incurs little to no
degradation in classification accuracy when used properly.

In this work, We explore different CNN topologies and data
representations. Theses parameters are adjusted to give the best
trade-off between performance and resource consumption.

IV. DESIGN SPACE EXPLORATION

A. The TPR to DSP Ratio (TDR)

Design Space exploration can be seen in our case as
a method to deduce an efficient CNN implementation that
optimizes either classification accuracy (TPR), hardware cost
(with a focus in this paper on DSP utilization), or a trade-off
between these two elements. To measure this ”trade-off”, the
TPR to DSP metric (TDR in short) is introduced in equation
1. It computes the ratio between classification accuracy of the
implementation (TPR) and the number of instantiated DSP
blocks. TDR can be seen as the amount of classification
accuracy that a DSP block contribute with. As an example,
a TDR of 0.4 % means that every DSP block brings 0.4 %
of classification accuracy. The higher the TDR is, the more
efficient the implementation will be.

TDR(%) =
TPR(%)

DSP
(1)

This work aims to maximize the TDR with a holistic
approach that explores the CNN topology and the data rep-
resentation of the learned weights and biases. These two sets
of parameters can be expressed as follows:
- The number of bits required to quantify network parameters
(weights and biases)
- N1, N2, ..., Nd : The number of neurons at each layer of the
network.
Other parameters, such as d the depth of the network, or k
the size of the convolution kernels can also be adjusted, but
this can only be done at a price of an increased exploration
complexity. Thus, these parameters are left to future work.

One way to explore the design space is by using an iterative
method that generates the corresponding CNN hardware archi-
tecture for each network topology and data representation size.
The proposed design space exploration method is described
with algorithm 1. The CNN performances as well as the re-
quired hardware resources are monitored at each iteration. The
implementation that maximizes the TDR can be considered the
one balancing the most application requirements and hardware
constraints.

forall possible network topologies do
Train network
forall possible fixed point representations do

Generate hardware description
Estimate classification accuracy
Compute hardware utilization

end
end

Algorithm 1: Design Space Exploration Procedure

B. The HADDOC tool

The Hardware Automated Dataflow Deployment Of CNNs
(HADDOC) utility is the tool proposed in this study for
network exploration. Starting from a CNN description de-
signed and learned using Caffe, HADDOC generates the
corresponding dataflow graph (Actors and FIFOs) described
as a Caph network. HADDOC also extracts the learned CNN
parameters from a caffe trained model (represented in a 32-bit
floating point format) and quantizes the data into the desired
fixed point-representation.

Caph [21] is a dataflow language used here as an inter-
mediate representation between the Caffe CNN network and
its hardware description in VHDL. It is an image processing
specific High-Level Synthesis (HLS) that interprets a desired
algorithm to create a digital hardware description that im-
plements its behaviour. Compared to other HLS tools, Caph
main feature is to generate a purely dataflow and platform
independent architecture from a graph network. This archi-
tecture, described in VHSIC Hardware Description Language
(VHDL) can be implemented using a synthesis tool. These
tools indicates the used hardware resources (logic elements,
memory blocks and hard-wired DSPs) of the FPGA target.
Moreover, Caph provides a systemC back-end to perform a
functional simulation of the designed hardware. This was used
to estimate classification accuracy for each network topology

4

and data representation scheme. Figure 3 summarizes the
conception flow and tools involved in this work.

Fig. 3: Conception flow of design space exploration

V. RESULTS

This section describes an example of design space ex-
ploration method. Dreamnet, a small convolutional neural
network is explored, optimized and implemented on an Altera
Stratix V 5SGSED8N3F45I4 device.

Dreamnet is a light CNN designed for OCR applications.
It is inspired from the LeNet5 [2] as it includes 3 convolu-
tional layers of 3x3 kernels interspersed with 2 sub-sampling
stages that perform max-pooling operations. The depth of the
network is the only constant parameter, the network topology
(number of neurons per layer N1 ,N2, and N3), and parameter
representation B being varied and explored. Table I describes
its topology. Dreamnet is trained on 10000 images from
the Mixed National Institute of Standards and Technology
database (MNIST) handwritten digit database of which a
few samples are displayed in Figure 4a. The classification
accuracy of its implementation is then estimated on 1000
images of handwritten digits from the United States Postal
Service (USPS) database. The USPS database contains digits
difficult to identify, as shown by samples in Figure 4b.

In order to establish the optimal CNN topology, the space
of possible configurations is explored. At each iteration, the
tool chain of Figure 3 is leveraged on. It consists of the caffe
tool for specifying the network and learning parameters, the
HADDOC tool to generate Caph code, the Caph compiler to
generate VHDL, and finally the Altera Quartus II synthesizer
to evaluate the required hardware resources.

(a) MNIST

(b) USPS

Fig. 4: Differences between MNIST and USPS
handwritten digits databases

Layer Size Operation Kernel
C1 N1 Convolution 3x3
S1 N1 Max sub-sampling 2x2
C2 N2 Convolution 3x3
S2 N2 Max sub-sampling 2x2
C2 N3 Convolution 3x3
FC 10 Inner product -

Classif 10 Softmax -

TABLE I: Dreamnet topology

For each topology, Dreamnet is trained using caffe before
generating the corresponding hardware. In this work, the
choice is made to set, in the most resource-hungry case, a
limited number of 5 neurons for the first layer, 10 for the
second layer, and 14 for the third layer. This topology is
sufficient enough to offer reasonable classification accuracy
for OCR purpose on the MNIST database (99.7 % TPR on
the MNIST test-set). As a CNN extracts features from an
image hierarchically, the number of neurons in a layer Ni

should be higher than the number of neurons in a previous
layer Ni−1. Finally, a constant step step = 2 is chosen to
iteratively increment the topology parameters. This step can
be reduced to 1 to have to have a more accurate optimization.
The other explored parameter is the data representation size
B. On Dreamnet, a data can have a maximum size of 7 bits.
On one hand, this representation engenders a relatively low
error rate compared to a floating-point reference. On the other
hand, it prevents arithmetic over-flows to happen especially in
the last stages of the network. In contrast, a minimum of 3 bits
were used to represent the parameters which was the weakest
precision usable to have acceptable classification rates.

The design space boundaries being defined (summarized in
table II), Algorithm 1 can be reformulated as Algorithm 2.
These boundaries will lead to explore a total of 76 networks
with 5 different data type representations (A total of 380
combinations). In order to estimate classification accuracy,
SystemC processed the 10000 images of the test set at a rate
of 66.6 classifications/second while the synthesis tool takes an
average of 6 minutes to compute the number of required DSP
blocks. Thus, an architecture is explored every 8.5 minutes
with an Intel i7-4770 CPU.

Parameter Description Min Max
N1 Number of neurons in C1 3 5
N2 Number of neurons in C2 5 10
N3 Number of neurons in C3 7 14
B Representation size (in bits) 3 7

TABLE II: Design space boundaries: Dynamics of the
explored parameters

5

for N1 in min(N1) to max(N1) do
for N2 in N1 + step to max(N2) do

for N3 in N2 + step to max(N3) do
Caffe: Train network
for B in min(B) to max(B)
Hadoc + Caph : Generate hardware
SystemC: Simulate TPR
Quartus: Compute DSP utilization

end
end

end
Algorithm 2: Design space exploration on Dreamnet

A few remarkable implementations are detailed in tab III.
The most efficient implementation considering TDR is I1:
it presents the best trade-off between hardware cost and
classification accuracy. Table IV gives post-fitting reports of
I1. This architecture consumes low resources of the FPGA
as it uses 161 from the 1963 available DSP blocks of the
Stratix V device and 20 % of the available logic elements
while maintaining a 64.8% classification rate on USPS at
a rate of 57.93 MHz per pixel (which corresponds to 883
classifications per second with 256 × 256 image resolution).
Therefore, I1 could be implemented on a low-end device with
less logic resources and DSP blocks. I2 is the implementation
with the lowest number of neurons and data representation
size, thus, this implementation has the weakest DSP usage.
Finally, we found that the configuration with the greatest
classification accuracy on USPS is I3. This implementation is
among the ones with the highest number of neurons and fixed-
point representation, considering the design space boundaries
established above.

N1 N2 N3 B TPR USPS TPR MNIST DSP TDR
I1 4 6 8 5 64.8 % 98.3 % 161 0,40 %
I2 3 5 7 3 48.7 % 82.4 % 140 0,34 %
I3 4 8 12 7 73.2 % 99.7 % 428 0.17 %

TABLE III: Remarkable implementations

LOGIC UTILIZATION (IN ALMS) 53,779 / 262,400 (20 %)
TOTAL RAM BLOCKS 109 / 2,567 (4 %)
TOTAL DSP BLOCKS 161/1963 (8 %)

FREQUENCY 57.93 MHz
CLASSIFICATION RATE (AT 256 × 256) 883 frame/s

TABLE IV: I1 implementation features on Stratix
5SGSED8N3F45I4 device

A. Topology exploration

When only network topology is explored (fixed-point rep-
resentation maintained constant at 3,4,..,7 bits), we find that
both of classification accuracy and DSP utilization increase
linearly with the number of neurons as shown in figures 5a
and 5b. This causes implementations efficiency to decrease as
the number of neurons grows, as represented in figure 5c. The
more ”sized” a CNN is, the less efficient its implementation
will be.

B. Data-representation exploration

To see the approximate computing and numerical rounding
effects on CNNs implementations, figures 6a,6b and 6c are
plotted. They show the evolution of the average and standard
deviation of network performances (in terms of TPR and DSP
usage) for various data representations.

It can be seen that the mean classification accuracy (for all
explored topologies) grows with numerical precision. More-
over, figure 6a shows how a 5 bit representation can be suffi-
cient enough to maintain tolerable classification accuracy. In
addition, figure 6b shows that DSP utilization grows quadrati-
cally when using different sizes of fixed point representations.
Thus, the mean implementation efficiency (plotted in Figure
6c) have a maximum value (in our case 5 bits) that gives the
best classification accuracy to DSP utilization trade-off.

C. Holistic Approach

Table V presents the architectures with more than 70 %
classification accuracy on USPS. 5 of these implementations
have a different network topology while 3 different data-
representations are present.

If only a topology exploration with a 7 bits representation
was performed, best reachable TDR would have been 0.171
i.e a relative loss of 41.9 % of efficiency compared to the
optimum TDR of 0.298. On the other hand, if network
topology was ignored and design space exploration focused
only on fixed point data-representation, we show that there
can be a loss of 6.8 % of classification accuracy between two
implementations with same data-representation and different
topologies (considering our design space size). This underlines
how important a holistic approach is, where both topology and
data-representation of a CNN implementation are explored.

Figure 7 gives the result of such exploration as it shows
that the most efficient implementations can be obtained after
exploring various topologies and data representations. It also
appears that a gradient descent optimization can be considered
which could lead to a faster exploration process.

N1 N2 N3 B TPRusps DSP TDR
4 8 12 5 73 245 0.298
5 9 12 5 70.1 243 0.288
4 8 12 6 72.5 279 0.260
5 9 12 6 70.74 275 0.257
3 8 13 6 71.8 296 0.242
4 7 13 6 71 296 0.240
3 9 14 6 70.4 320 0.220
4 8 12 7 73.2 428 0.171
5 9 12 7 71.3 417 0.171
3 8 13 7 72.3 441 0.164
4 7 13 7 70.8 438 0.162
3 9 14 7 71.3 475 0.150

TABLE V: Top 10 efficient implementations

VI. CONCLUSION

This work presented a method to optimize DSP utilization in
FPGAs for CNN implementations. It relies on a holistic design
space exploration on CNN topology and data-representation
size to determine the most efficient architecture. As an exam-
ple, this optimization was applied for OCR applications but

6

Number of neurons

15 20 25 30

M
e
a
n
 T

P
R

 (
%

)

35

40

45

50

55

60

65

70

3 bits

4 bits

5 bits

6 bits

7 bits

(a) Classification accuracy

Number of neurons

15 20 25 30

D
S

P
 b

lo
c
k
s
 u

s
e

d
 (

%
)

6

8

10

12

14

16

18

20

22

24

4 bits

5 bits

6 bits

7 bits

(b) DSP utilization

Number of neurons

15 20 25 30

M
e
a
n
 T

D
R

 (
%

)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

3 bits

4 bits

5 bits

6 bits

7 bits

(c) Implementation efficiency

Fig. 5: Design space exploration for different CNN
topologies

3 bits 4 bits 5 bits 6 bits 7 bits

M
e
a
n
 a

n
d
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n
 o

f
T

P
R

 (
%

)

30

35

40

45

50

55

60

65

70

(a) Classification accuracy

3 bits 4 bits 5 bits 6 bits 7 bits

D
S

P
 b

lo
c
k
s
 u

s
e
d
 (

%
)

10

12

14

16

18

20

22

24

(b) DSP utilization

3 bits 4 bits 5 bits 6 bits 7 bits

M
e
a
n
 a

n
d
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n
 o

f
T

D
R

 (
%

)

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

(c) Implementation efficiency

Fig. 6: Design space exploration for different
representation size

7

Fig. 7: Implementation efficiency of the CNN for
multiple CNN sizes and fixed point representations

can be transposed to other CNN classification tasks. It has
been shown in this paper that a holistic approach is needed
to optimize DSPs, as both fixed point arithmetic and topology
network aspects should be explored.

The soft degradation in terms of quality when the number
of bits is reduced or the topology simplified shows that CNNs
are particularly well suited to approximate computing with a
controlled rate of errors. Future work aim to improve opti-
mization by augmenting the size of the explored design space
and explore the CNN depth. Moreover, we expect that more
efficient architectures can be implemented when bypassing
the Caph HLS layer and generate directly the corresponding
Hardware Description Language (HDL) of a neural network.
Finally, it is planed to transpose design space exploration
method to take more hardware constrains into account, such
memory or logic elements utilization.

VII. ACKNOWLEDGMENT

This work was funded by the french ministry of higher
education MESR at Institut Pascal (UMR 6602). We thank
them and all the collaborators for their support to this research.

REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. 2012.

[2] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 1998.

[3] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers,
Karin Strauss, and Eric S. Chung. Accelerating deep convolutional
neural networks using specialized hardware. Microsoft Research, Feb
2015.

[4] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and
Y. LeCun. Neuflow: A runtime reconfigurable dataflow processor for
vision. In CVPRW’11,IEEE Computer Society Conference.

[5] Altera. FPGAs Achieve Compelling Performance-per-Watt in Cloud
Data Center Acceleration Using CNN Algorithms, 2015.

[6] G. Lacey, G. W. Taylor, and Areibi. Deep Learning on FPGAs: Past,
Present, and Future. ArXiv e-prints, 2016.

[7] J. Cloutier, E. Cosatto, and S. Pigeon. Vip: an fpga-based processor for
image processing and neural networks. In Microelectronics for Neural
Network, 1996.

[8] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari
Cadambi. A dynamically configurable coprocessor for convolutional
neural networks. ACM- SIGARCH Comput. Archit. News.

[9] M. Peemen, A. Setio, B. Mesman, and H. Corporaal. Memory-centric
accelerator design for convolutional neural networks. In ICCD, 2013
IEEE.

[10] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun. Cnp: An fpga-based
processor for convolutional networks. In FPL International Conference
on, 2009.

[11] R. Collobert. Torch. NIPS Workshop on Machine Learning Open Source
Software, 2008.

[12] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and
Jason Cong. Optimizing fpga-based accelerator design for deep convo-
lutional neural networks. FPGA, 2015.

[13] Frédéric Bastien, Pascal Lamblin, and Goodfellow. Theano: new features
and speed improvements. NIPS 2012 Workshop.

[14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, and
Long. Caffe: Convolutional architecture for fast feature embedding.
arXiv, 2014.

[15] Jack B. Dennis and David P. Misunas. A preliminary architecture for a
basic data-flow processor. ISCA ’75. ACM.

[16] Martin Abadi and al. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[17] Hong-Phuc Trinh & Marc Duranton & Michel Paindavoine. Efficient
data encoding for convolutional neural network application. ACM
(TACO), 2015.

[18] Anwar. S & Kyuyeon Hwang &Wonyong Sung. Fixed point optimization
of deep convolutional neural networks for object recognition. ICASSP,
2015 IEEE International Conference, 2015.

[19] Suyog Gupta, Ankur Agrawal, and Pritish Narayanan. Deep learning
with limited numerical precision. JMLR Workshop and Conference
Proceedings, 2015.

[20] Vinayak Gokhale, Jonghoon Jin, Aysegul Dundar, Berin Martini, and
Eugenio Culurciello. A 240 g-ops/s mobile coprocessor for deep neural
networks. In The IEEE (CVPR) Workshops, June 2014.

[21] J. Sérot and F. Berry. High-level dataflow programming for reconfig-
urable computing. In Computer Architecture and High Performance
Computing Workshop, 2014.

