Benchmarking losses for deep learning laxness detection - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Benchmarking losses for deep learning laxness detection

Résumé

In object detection, classical rule for accepting a match between a ground truth area and a detection is a 0.5 jacard ratio. But does user care about this ? Especially, does deep network training care about this ? And if yes, may user accept some relaxation of the problem if it can help the training ? In this paper, we add laxness on object detection in remote sensing image by deep learning pipeline. We present several models and relaxation of the classical detection problem. Our preliminary results on different public dataset show that some relaxations are very facilitative to train the pipeline outperforming the same pipeline learned for strict detection.
Fichier principal
Vignette du fichier
raw.pdf (1.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01412086 , version 1 (07-12-2016)
hal-01412086 , version 2 (17-07-2017)
hal-01412086 , version 3 (31-07-2017)
hal-01412086 , version 4 (18-10-2017)
hal-01412086 , version 5 (14-12-2017)
hal-01412086 , version 6 (15-12-2017)

Identifiants

  • HAL Id : hal-01412086 , version 2

Citer

Adrien Chan-Hon-Tong. Benchmarking losses for deep learning laxness detection. 2017. ⟨hal-01412086v2⟩
352 Consultations
452 Téléchargements

Partager

More