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Abstract

In object detection, classical rule for accepting a match between a
ground truth area and a detection is a 0.5 jacard ratio. But does user
care about this ? Especially, does deep network training care about this ?
And if yes, may user accept some relaxation of the problem if it can help
the training ?

In this paper, we add laxness on object detection in remote sensing
image by deep learning pipeline. We present several models and relaxation
of the classical detection problem. Our preliminary results on different
public dataset show that some relaxations are very facilitative to train
the pipeline outperforming the same pipeline learned for strict detection.

1 Introduction

Interactions between users and deep learning designers usually go through
one classical academic problem. However, users are not aware on the
difficulties introduced by this model of their needs, and inversely, deep
learning designers are not aware of the exact needs of the users and are not
well able to explain what could be relaxed and how it could be facilitative.

Off course, we acknoledge that academics need common problem in
order to compare each other. But, when it came to adapt deep network
to some real life problems, it may be relevant to relax classical model of
the problem.

In this article, we apply this statement to object detection in image
(see figure 1), which is one of oldest computer vision problem.

For academic comparison, there is a classical model of this problem.
Each testing image is annotated by hand, for each image, ground truth
is a set of bounding box (eventually labelled). Detector should take one
image as input and product a set of bounding box (eventually labelled
and eventually with confidence level). A detection is allowed to match
an annotation if intersection over union of the two boxes is greater than
0.5 (and if label are the same when present). A maximization of the
number of matchs is computed. Then each non matched annotation is a
miss detection and each non matched prediction is a false alarm. Classical
measure of the fairness of the detector is given by combining the precision
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Figure 1: Illustration of object detection: putting bounding boxes on object in
the image

(number of correct detections over number of detections) and the recall
(number a correct detections over number of annotations), for example
with the so called F score or G score. Alternatively, detection are sorted
according to the confidence level, and, a elementary score is computed
for each rank. All this elemantary score are merged into a global score
(for example by considering that elemantary scores form a curve and by
computing the area under the curve).

If, for example, the detector is applied to count cars on a parking this
matching model is completely relevant because 1 to 1 matching is needed
to produce an accurate estimation of the number of cars.

But, there are a lot of application where this strict model of the prob-
lem is not relevant. For example, if detections should be checked by an
human anyway (for example for search and rescue), the only matter is to
produce coarse area of interest because both 1 to 1 matching is useless
and false alarm close to correct detections are not an issues. Also, in this
contexte computing the extends of the object (i.e. a bouding box) is not
needed, a simple dot coarsely centrered on the object will do the job.

Now, these considerations are not new 1. And, at first side, one just
need to ajust the metric to his own problem without changing the detector.

This is probably true for large hand crafted detector pipeline where
only small blocks rely on training because changing the metric will have
low influence on the complete pipeline. But, on end to end deep learn-
ing network, metric is the only prior on the problem, thus changing the

1these considerations are not new and not restricted to our field, for example it is well
known in optimization that different models can exist for a common problem [4]
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metric - and so the network loss - may have a critical influence on the
performance.

The contribution of this paper is to show that losses have a critical
influence on the performance for deep learning detector.

More precisely, we add some user oriented relaxations on detection,
and given these relaxations, we show that similar pipelines using same
training data can behave highly differently on testing data depending on
the way we model the detection problem.

Our preliminary results show that modeling the problem as a simple
grid classification is very facilitative for network training probably because
it match the pooling structure of the classical networks.

In the next section, we will present related work, then we will present
the model we selected to the benchmarking. Section 4 will present different
datasets and results before the conclusion.

2 Related works

When the deep learning [8] appear in classification, object detections com-
munity does not directly follow the move: at this time, even an efficient
implementation of [8] could not processed more that 100 small images per
second. As the dominant framework for object detection was based on
sliding windows processing only 100 windows per second was definitely
not enough.

At this time, a typical detector was [5]. In [5], hand crafted features are
extracted from all the images (train and test). Then a learning problem
is created by putting in one side features extracted from ground truth
boxes and on the other side features extracted from random boxes which
do not match ground truth. This problem is solved by svm (with an
implementation close to [3]). At test time, the image is explored by sliding
windows, the svm model is applied on the features of each windows. The
set of windows selected by the svm are then pruned by non maximal
suppression (svm will behave likely on two very close windows but by
keeping the two boxes one will likely become a false alarme). Finaly, the
learning step can be done multiple times to look for hard negative instead
of random ones, this is the so called bootstrapping method.

The real apparition of deep learning in detection was with [6] which
both highly increases performance of the previous state of the art and on
the same time breaks the sliding windows framework by enlighting region
proposal framework. In [6], an ad hoc algorithm extract bounding box in
the image folding the detection problem into a classification one without
exploring all the boxes of the sliding way. Classification in [6] is then done
by [8].

Current state of the art of detections [12] are still based on [6] but the
adhoc region proposal is now a deep network based on the same first layers
than the classifier. Also, as convolution can take image from arbitrary
spatial dimension, first layers of the network are computed on the complete
image and not on windows, fastening the first layers computation by the
size of the windows compared to the classical way.
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(a) a remote sensing images (b) a semantic mask
Each color in the semantic mask is expected to correspond to a kind of object
in the image. For example, boats in the image are in pink in the semantic

mask while cars are yellow.

Figure 2: Example of semantic segmentation of a remote sensing image

This last idea of convolution taking arbitrary image gives rise to a lot
of semantic segmentation works like [2, 13] (or [9] for remote sensing).
Semantic segmentation (see 2) is the goal of producing semantic mask of
an images. Or, with others words, the goal of deciding a semantic label
for each pixel of an image.

Optimizing deep learning is straightforward in semantic segmentation:
output is a highly structured image with predefined size and a number of
channels corresponding to the number of type of objects, on which error
with the desired manual annotation can be easily measured. Also, on
dense semantic segmentation, there are often multiple labels with large
number of instance. Thus, small object pixel are unbalanced toward sur-
face pixels (e.g. car vs building in 2), but there are multiples surface labels
forbidding the deep network to produce a mono label map.

Recently [1] shows that this semantic segmentation way can be pos-
traited to produce accurate detection.

At this point, there are two possible strategies to handle detections: a
way based on region proposal + classifier (R-CNN framework) and a way
based on semantic segmentation.

Now, for semantic segmentation, [7] shows the relevancy of decreas-
ing the weight given to pixels close to a boundary of the ground truth
segmentation. At first view, [7] seems to offer the opposite of bootstrap-
ping: bootstrapping consists in looking for hard negative while [7] offer
to discard pixel close to a boundary which are typically hard. However,
pixel close to a boundary are more ambigious than hard (typically, pixel
close to boundary are likely to be wrongly annotated (see figure 2 because
manual annotation is coarse due to the difficulty to realize it). In other
word, hard example are clear errors from the current detector while hard
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boundaries examples are discutable errors inherent to the problem.
Again, considering boundaries or not may depend of the finality of the

algorithm. If the goal is to produce a precise map from an image, having a
pixelwise segmentation is required, and in this case, border pixel have to be
considered, otherwise the segmentation will be like coarse and unsuitable
for making a map. But if the goal is to produce coarse segmentation
as a first step toward detection, it is much more important to focus on
non border hard negatives (which will create false detections) and not on
border hard negatives that may not forbid the match with the annotation
(and thus may not lead to a false detection).

So, after this fast review of related works, there are at least three
strategies to handle detection: classifier based, segmentation bases and
borderless segmentation based.

In the next section, we will offer models for laxness detections, we
will also formalize the different strategies for detection and finally we will
introduce a new one.

3 Different models for laxness detections

3.1 Laxness detections

The problem we try to handle is to produce an output that will be pos-
traited by a person to finally lead to detections. The use case is to fasten
detections in very large remote sensing images (e.g. 20km x 20km at 50cm
- or in pixel 40000x40000 with target not exceding 16x16)

This way, we do not really care about false alarmes in classical sense
that are sufficiantly close to ground truth - the person checking the de-
tection will be able to filter.

So we adopt a very laxness matching criterion: output is expected to
be a set of middle size areas (32x32 in the remote sensing example) grid
spaced with half overlapping (or pruned by non maximal suppression).
An area is considered like a false alarm only if it contains no center of any
annotations. An annotation is considered like a miss detection if it is not
contained by any areas.

We can see in figure 3 that this model is much more laxness that the
classical detection problem. Now, the idea is not just to see if perfor-
mances increase when relaxing the metric (which is a trivial expectation)
but to see if the relaxation allow new ways to handle the problem - new
ways which may be much more adapted to train deep network and thus
providing performance gap.

As a example, in strict detection, all pipelines performs non maximal
suppression to remove redondant detections. But, learning deep network
behind a non maximal suppression is not easy. So, by allowing to remove
the non maximal suppression, we do not just adapt a pipeline to a new
metric (which will produce only small increase of performance), we allow
a end to end training of the deep learning block which can skyrock the
performance of the pipeline. Other example, in [7], testing performances
measured with strict metric increase when relaxing metric on training.
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In laxness detection, we allow a much larger distance to match (2 times the
size of the object) and we do not require a 1 to 1 matching (i.e. one detection

can count for several annotation and two detections can be allowed for a
common annotation). However, we require detections to be grid spaced (with

a step corresponding to the size of an object) or pruned by non maximal
suppression to forbid too much detections on an easy target (which could bias

precision evaluation).

Figure 3: Illustration of relaxation added to the classical detection problem
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So, in this case, the increase is only due to a good relaxation to learn and
not to a lower metric.

Such protocol (hard metric on test - weak metric on train) could be
good to evaluate if learning behaves better and not just exploit better the
weakness of the metric. However, such evaluation is only possible if the
training relaxation does not change the algorithm output format which
will be the case in the following.

3.2 R-CNN

In R-CNN, a first algorithm is applied to produce candidate. The precision
of this first algorithm is expected to be very low and the main requirement
for such algorithm is to be training free. Candidates are pruned by non
maximal suppression.

A training time, candidates are matched with the ground truth and a
classifier (a deep network) is learnt on the positive/negative (positive are
candidate which match the ground truth - negative are candidate which
not match).

At testing time, the classifier is applied on all candidate and accepted
candidates form the detections.

3.3 Segment before detect

In segment before detect, we convert the bounding boxes annotations into
a binary mask (background for pixel outside all boxes and foreground for
pixel inside one or more boxes).

At training time, we learn a fully convolutionnal deep network in seg-
mentation fashion (we want each pixel be well classified).

At test time, we produce detection by putting a bounding box around
each connected component when using strict detection rules.

3.4 Coarse segment before detect

The third model to handle detection is like segment before detect but
instead of producing a binary mask by labelling background all pixels
outside all boxes and foreground all pixels inside one or more boxes, we
produce a trinary mask: all pixels outside all boxes are background, all
centers of all boxes are foreground and all other pixels are border.

When training border pixels are discarded from the optimization, thus
the network only has to predict correctly the center of object and not the
ground truth bounding boxes of the object.

3.5 Pooled detection

The last model to handle detection is the simpler and can only handle
laxness detection: we explore the image by spaced sliding windows (with
step corresponding for example to the average size of objects), each win-
dow containing an object should be classified as positive and each window
containing no object should be classified as negative.
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Figure 4: Illustration of the MOT 16 dataset.

This can be seen as a segmentation pooled by a factor corresponding
to the selected sliding step. This can also be seen as a R-CNN with R
outputing all windows as candidate.

At testing time, we just output the center of the windows accepted as
positive.

4 Experiments

4.1 Datasets

We use 3 datasets to evaluate the influence of these different strategies
for detection: MOT 2016 (MOT16) [10], VIRAT aerial dataset [11] (not
video surveillance data - we use only the aerial videos). As no annotation
has been released, we annotate it ourselves using our tool (annotations
are planned to be released). We also rely on SACLAY which is a private
dataset (but planned to be released).

MOT16 (https://motchallenge.net) is a multi objects tracking dataset:
detection are provided, the goal is to keep temporal id on the detection.
Here, we use this dataset only to learn to produce a semantic mask corre-
sponding to the detections (we only keep person detection). The training
part of MOT16 is composed of 6 HD videos taken from a pedestrian or
car or surveillance camera (see figure 4).

For MOT16, we will use accuracy, gscore and iou score to evaluate
all algorithms. Accuracy is the stablest measure, gscore is the product
of precision per recall and iou score is the same as for the CITYSCAPE
leaderboard (this is not related to the IoU of 2 boxes in detection to know
if a matching is possible, this is a score computable from the confusion
matrix that aim to give the same weight on positive and negative while
acknowledging both two types of error).

The VIRAT aerial dataset is a set of videos which are low resolution
and contain camera motions, highly textured background and very small
object. As no public annotation has been released for this dataset, we
annotated a subset of the frames in a person detection setting. In order
to provide a diversity of situations, we chose to annotate about thirty
sub videos of 400 frames containing at least one person distributed over
the dataset (but discarded infrared images). Figure 5 shows examples of
images from this sub dataset.
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Figure 5: Illustration of the subset of VIRAT (plus annotation).
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model iou gscore
R-CNN 30 19

segmentation 26 31
coarse 2 1

model iou gscore
R-CNN 45 44

segmentation 49 42
coarse 4 3
pooled 67 56

(a) strict detection (b) laxness detection
Score are given in percentage. A 0.3 Jacard is required in strict detection
while a 32 distances is allowed in laxness detection (grid spaced by 16).

Table 1: Preliminary results on VIRAT.

For VIRAT, we will use only gscore and IoU score to evaluate all
algorithms. Accuracy is not relevant as 99,2% of the pixel are background
pixel.

The SACLAY dataset is a set of aerial images at 20cm of resolution.
Annotation is a set of point localized on cars. As for VIRAT, we will use
only gscore and IoU score for SACLAY

4.2 Results

Currently, we have only preliminary results computed on a subset of VI-
RAT in table 1. The metrics are a 0.3 Jacard is required in strict detection
while a 32 distances is allowed in laxness detection (grid spaced by 16). A
HOG detector is used as region proposal for R-CNN. We use a VGG for
pooled segmentation and a UNET for segmentation. We adapt the VGG
in order that we can extract a layer after several pooling with the exact
grid dimension.

From this preliminary results, we can notice that coarse segmentation
perform poorly. As a matter of fact, coarse segmentation increase the
unbalance (only 1 pixel positive per object all other are either discarded
or background) which is not the case for pooled (1 cell positive per object
when their are distant but the number of negative cell is globally the
number of pixel divided by the size of the cell). But, pooled segmentation
seems outperforms other strategies.

5 Partial conclusion

Even if our benchmarking is currently done on a small part of public
datasets, the current trends seems clear: losses used to learning deep
learning detectors have a dramatic influence over the results.

This invite to strengthen our current benchmark as the persistence of
the current features will be an interesting knowledge for the community.
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