Total variation convergence for numerical schemes for diffusions with irregular coefficients: An application to the CIR process - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Total variation convergence for numerical schemes for diffusions with irregular coefficients: An application to the CIR process

Résumé

In this paper, we propose a method to prove the total variation convergence for numerical schemes for Stochastic Dierential Equation (SDE) with irregular coecient. In particular, we will consider SDE with locally smooth coecients. In a rst part, we present this method and in a second time, we apply it to the CIR process. We will consider the weak second order scheme introduced in [2] and we will prove that this scheme also converges towards the diusion for the total variation distance. This convergence will take place with almost order two.
Fichier principal
Vignette du fichier
Note_CIR_bound_06_12_2016.pdf (472.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01412024 , version 1 (07-12-2016)
hal-01412024 , version 2 (11-12-2016)
hal-01412024 , version 3 (22-11-2017)

Identifiants

  • HAL Id : hal-01412024 , version 1

Citer

Clément Rey. Total variation convergence for numerical schemes for diffusions with irregular coefficients: An application to the CIR process. 2016. ⟨hal-01412024v1⟩
668 Consultations
230 Téléchargements

Partager

More