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Total variation convergence for numerical

schemes for di�usions with irregular coe�cients:

An application to the CIR process

Clément Rey 1

Abstract

In this paper, we propose a method to prove the total variation convergence for numerical
schemes for Stochastic Di�erential Equation (SDE) with irregular coe�cient. In particular,
we will consider SDE with locally smooth coe�cients. In a �rst part, we present this method
and in a second time, we apply it to the CIR process. We will consider the weak second
order scheme introduced in [2] and we will prove that this scheme also converges towards the
di�usion for the total variation distance. This convergence will take place with almost order
two.

1 Introduction

In this paper we study the total variation distance between a di�usion process with irregular
coe�cients and some numerical schemes. In order to do it, we will use a result from [4]. Then,
we apply this result to a second weak order scheme for CIR process based on a cubature
method and introduced in [2]. This scheme has second weak order for smooth test function
and we will prove that the convergence for a class of bounded measurable functions takes place
with almost order 2. Let us be more speci�c. For N ∈ N∗, we consider the Rd-valued di�usion
process

dXt = V0(Xt)dt+
N∑
i=1

Vi(Xt) ◦ dW i
t (1)

with Vi ∈ C∞(Rd;Rd)∩C∞b (D;Rd), with D a subset of Rd, (Wt)t>0 a standard Brownian motion
and ◦dWt the Stratonovich integral with respect to Wt. We �x T > 0 and n ∈ N∗ and we
introduce the time grid πT,n = {tnk = kT/n, k ∈ N}. We consider the d dimensional Markov
chain

Xn
tnk+1

= ψk(X
n
tnk
,
Zk+1√
n
, δnk+1), k ∈ N, (2)

where ψk : Rd×RN ×R+ → Rd is a function such that ψk(x, 0, 0) = x, and Zk ∈ RN , k ∈ N∗,
is a sequence of independent and centered random variables and supk∈N∗ δ

n
k 6 C/n. For now,
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we do not discuss the regularity of ψk. Our aim is to study the convergence of the law of Xn

to the law of a Markov process X. More precisely, we will give estimates of the weak error

εn(f) = |E[f(Xn
t )]− E[f(Xt)]| .

In order to obtain total variation convergence for (εn)n∈N∗ , one has to show that εn(f) → 0
for every bounded and measurable function f . The method we adopt in this paper is inspired
from [4] and is based on the semigroup approach
First, we introduce some notations. The semigroup of the Markov chain (Xn

t )t∈πT,n is de-
noted by (Qn

t )t∈πT,n and its transition probabilities are given by νnk+1(x, dy) = P(Xn
tnk+1
∈

dy|Xn
tnk

= x), k ∈ N. We recall that for t ∈ πT,n, Qn
t f(x) = E[f(Xn

t )|Xn
0 = x]. We will also

consider a Markov process in continuous time (Xt)t>0 with semigroup (Pt)t>0 and we de�ne
µnk+1(x, dy) = P(Xtnk+1

∈ dy|Xtnk
= x).

Moreover, for f ∈ C∞(Rd) and for a multi-index α = (α1, · · · , αd) ∈ Nd we denote |α| = α1 +
... + αd and ∂αf = (∂1)α1 . . . (∂d)

αdf = ∂αx f(x) = ∂α1
x1
. . . ∂αdxd f(x). We include the multi-index

α = (0, ..., 0) and in this case ∂αf = f. We will use the norms

‖f‖q,∞ = sup
x∈Rd

∑
06|α|6q

|∂αf(x)|, ‖f‖q,1 =
∑

06|α|6q

∫
Rd
|∂αf(x)|dx.

In particular ‖f‖0,∞ = ‖f‖∞ is the usual supremum norm and we will denote Cqb (Rd) =
{f ∈ Cq(Rd), ‖f‖q,∞ < ∞} and Cq

c (Rd) ⊂ Cq(Rd) the set of functions with compact support.
Moreover , we say that a function f ∈ Cq(Rd) has polynomial growth of order q ∈ N with
degree eq ∈ N if there exists C > 1 such that

∀x ∈ Rd,
∑

06|α|6q

|∂αf(x)| 6 C(1 + |x|eq), (3)

and we denote by Cqpol(Rd) the set of function satisfying (3).
A �rst standard result is the following: let us assume that there exists h > 0, q ∈ N such that
for every f ∈ Cq(Rd), k ∈ N∗ and x ∈ Rd,∣∣µnkf(x)− νnk f(x)

∣∣ =
∣∣∫ f(y)µnk(x, dy)−

∫
f(y)νnk (x, dy)

∣∣ 6 C‖f‖q,∞/n1+h. (4)

Then, for all t ∈ πT,n, we have

‖Ptf −Qn
t f‖∞ = sup

x∈Rd
|E[f(Xn

t )|Xn
0 = x]− E[f(Xt)|X0 = x]| 6 C‖f‖q,∞/nh. (5)

It means that (Xn
t )t∈πT,n is an approximation scheme of weak order h for the Markov pro-

cess (Xt)t>0. In the case of the Euler scheme for di�usion processes, this result, with h = 1,
has initially been proved in the seminal papers of Milstein [25] and of Talay and Tubaro [31]
(see also [17]). Similar results were obtained in various situations: di�usion processes with
jumps (see [29], [15]) or di�usion processes with boundary conditions (see [12], [10], [13]). An
overview of this subject is given in [16]. More recently, approximation schemes of higher orders
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(e.g., h = 2), based on cubature methods, have been introduced and studied by Kusuoka [21],
Lyons [24], Ninomiya, Victoir [26] or Alfonsi [2]. The reader may also refer to the work of
Kohatsu-Higa and Tankov [18] for a higher weak order scheme for jump processes. Despite
the fact that most of these results concern di�usions with regular coe�cients, some authors
tackle some more exotic cases. For instance, in [2], Alfonsi has studied the weak error for
di�usions with coe�cients that belong to Cqpol(Rd) as well as for the test functions.

Another result concerns convergence in total variation distance: we want to obtain (5) with
‖f‖q,∞ replaced by ‖f‖∞ when f is a bounded and measurable function. In the case of the
Euler scheme for di�usion processes, a �rst result of this type has been obtained by Bally and
Talay [5], [6] using the Malliavin calculus (see also Guyon [14]). Afterwards Konakov, Menozzi
and Molchanov [19], [20] obtained similar results using a parametrix method. Later,Kusuoka
[22] obtained estimates of the error in total variation distance for the Victoir Ninomiya scheme
(which corresponds to the case h = 2). More recently, in [4], a generic result ensures the to-
tal variation distance convergence as soon as we consider smooth schemes and the random
variables Zk, k ∈ N∗ satisfy the Doeblin condition. In [30], this method is used to prove total
variation convergence with order 3 for a numerical scheme for one dimensional SDE.

However, none of the results mentioned above, have treated the case of di�usion processes
with irregular coe�cients. In particular, in [4], the regularity in space for the functions ψk,
which often rely on the regularity of the functions Vi, is essential to prove the total variation
convergence result. The main di�erence here, is that we will consider that these functions are
smooth only on a subset D of Rd. However, we will be able to exploit this local regularity in
order to prove the convergence for every bounded and measurable test function with support
strictly contained in D. In order to do it, we will mix some results of convergence for smooth
test functions for irregular di�usions on Rd with the total variation convergence proven in [4]
for a modi�cation of X with coe�cients localized on D.

Using this approach, we will focus on the CIR processes. In this case, the di�usion coe�cient
is V1(x) = σ

√
x, σ ∈ R+, and is singular in zero. That is why, standard estimation methods

do not apply straightly. However, some authors manage to develop numerical analysis of this
scheme using among other the close link that exists with Bessel processes. The reader may refer
to [11], [3], [1], [2] or [9] for a non exhaustive list of study concerning numerical approximation
for the CIR processes. In particular, in [2], the author proves the weak convergence with order
2 for smooth test function, of a scheme based on cubature method (and aso inspired by [3]). In
[9], the authors propose an expansion of the weak error for Lipschitz test functions. However,
until now, there is no study concerning the total variation convergence of a numerical scheme
toward the CIR di�usion. Since the di�usion process has a singularity in zero, the result from
[4] can not apply directly. Despite this singularity, we will use and extend the result from [2]
and [4] , and prove that (5) is also satis�ed for the scheme introduced in [2]. More speci�cally
we will obtain the following results:
First (see (104)), for every bounded and measurable test function f with supp(f) ⊂ [d1, d2],
0 < d1 6 d2 <∞ we obtain for n large enough

E[f(XT (x))− f(Xn
T (x))] 6 C(1 + |x|β)‖f‖∞ ln(n)ζ/n2−ε, (6)
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with (Xn
kT/n(x))k∈N the scheme introduced in [2].

Moreover (see (105)), for all bounded and measurable test function f with supp(f) ⊂ [d1,∞),
d1 > 0 we obtain for every ε > 0 and for n large enough

E[f(XT (x))− f(Xn
T (x))] 6 C(1 + |x|β)‖f‖∞/n2−ε (7)

We will begin presenting the framework of this paper. In Section 3., we will give some
convergence results for smooth test functions and for bounded measurable test function. In the
end of this section, we give the main result of this paper concerning total variation convergence
for schemes with singular coe�cients (see Theorem 3.1). The paper ends with a theoretical
application in order to obtain the total variation convergence for the scheme presented in [2]
for the CIR process.

2 The distance between two Markov semigroups

Throughout this section the following notations will prevail. We �x T > 0 and we denote
n ∈ N∗, the number of time step between 0 and T . Then, for k ∈ N we de�ne tnk = kT/n
and we introduce the homogeneous time grid πT,n = {tnk = kT/n, k ∈ N} and its bounded

version πT̃T,n = {t ∈ πT,n, t 6 T̃} for T̃ > 0. Finally, for S ∈ [0, T̃ ) we will denote πS,T̃T,n = {t ∈
πT̃T,n, t > S}. Notice that, all the results from this paper remain true with non homogeneous
time step but, for sake of simplicity, we will not consider this case. First, we state some results
for smooth test functions.

2.1 Convergence of semigroups

2.1.1 Smooth test functions

We consider a sequence of �nite transition measures µnk(x, dy), k ∈ N∗ from Rd to Rd. This
means that for each �xed x and k, µnk(x, dy) is a �nite measure on Rd with the borelian σ �eld
and for each bounded measurable function f : Rd → R, the application

x 7→ µnkf(x) :=

∫
Rd
f(y)µnk(x, dy)

is measurable. We also denote

∀x ∈ Rd, |µnk(x)| := sup
‖f‖∞61

∣∣ ∫
Rd
f(y)µnk(x, dy)

∣∣, (8)

and

|µnk | := sup
x∈Rd

sup
‖f‖∞61

∣∣ ∫
Rd
f(y)µnk(x, dy)

∣∣,
and, we assume that all the sequences of measures we consider in this paper satisfy the
following property:
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sup
k∈N∗
|µnk | <∞. (9)

Although the main application concerns the case where µnk(x, dy) is a probability measure, we
do not assume this here: we allow µnk(x, dy) to be a signed measure of �nite (but arbitrary)
total mass. This is because one may use the results from this section not only in order to
estimate the distance between two semigroups but also in order to obtain an expansion of the
error. Now we associate the sequence of measures to the time grid πT,n and we de�ne the
following discrete semigroup.

P n
0 f(x) = f(x), P n

tnk+1
f(x) = P n

tnk
µnk+1f(x) = P n

tnk

∫
Rd
f(y)µnk+1(x, dy).

More generally, we de�ne (Pt,s)t,s∈πT,n;t6s by

P n
tnk ,t

n
k
f(x) = f(x), ∀k, r ∈ N∗, k 6 r P n

tnk ,t
n
r+1
f(x) = P n

tnk ,t
n
r
µnr+1f(x).

We notice that for t, s, u ∈ πT,n, t 6 s 6 u, we have the semigroup property P n
t,uf = P n

t,sP
n
s,uf .

We will consider the following hypothesis: let q ∈ N and t 6 s ∈ πT,n. If f ∈ Cq(Rd) then
Pt,sf ∈ Cq(Rd) and

sup
t,s∈πT,n;t6s

‖P n
t,sf‖q,∞ 6 C‖f‖q,∞. (10)

Notice that (9) implies that (10) holds for q = 0. We will also consider the following hypothesis:
let q ∈ N and t 6 s ∈ πT,n. If f ∈ Cqpol(Rd) then Pt,sf ∈ Cqpol(Rd) and there exists C > 1, β ∈ N
such that

∀x ∈ Rd, sup
t,s∈πT,n;t6s

∑
06|α|6q

|∂αP n
t,sf(x)| 6 C(1 + |x|β). (11)

Moreover we assume that there exists C > 1, β ∈ N such that for every f ∈ Cqb (Rd), we have

∀x ∈ Rd, sup
t,s∈πT,n;t6s

∑
06|α|6q

|∂αP n
t,sf(x)| 6 C(1 + |x|β)‖f‖q,∞. (12)

We consider now a second sequence of �nite transition measures νnk (x, dy), k ∈ N∗ and the
corresponding semigroup (Qn

t )t∈πT,n de�ned as above. Our aim is to estimate the distance
between P nf and Qnf in terms of the distance between the transition measures µnk(x, dy) and
νnk (x, dy), so we denote

∆n
k = µnk − νnk .

(P n
t )t∈πT,n can be seen as a semigroup in continuous time, (Pt)t>0, considered on the time grid

πT,n, while (Qt)t∈πT,n would be its approximation discrete semigroup. Let q ∈ N, h > 0 be
�xed. We introduce a short time error approximation assumption: there exists a constant
C > 0 (depending on q only) such that for every k ∈ N∗, we have

En(h, q) ‖∆n
kf‖∞ 6 C‖f‖q,∞/nh+1. (13)
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We also introduce an assumption concerning a short time error approximation for test functions
with polynomial growth: if f ∈ Cppol(Rd), then there exists C > 1, β ∈ N such that for every
k ∈ N, we have

En,pol(h, q), ∀x ∈ Rd, |∆n
kf(x)| 6 C(1 + |x|β)/nh+1. (14)

Moreover we assume that there exists C > 1, β ∈ N such that for every f ∈ Cqb (Rd), we have

E ′n,pol(h, q), ∀x ∈ Rd, |∆n
kf(x)| 6 C(1 + |x|β)‖f‖q,∞/nh+1. (15)

Proposition 2.1. Let q, h ∈ N be �xed.

A. Suppose that νn satis�es (10) for this q, µn satisfy (9) and that we have En(h, q) (see
(13)). Then for every f ∈ Cq(Rd),

sup
t∈πTT,n

‖P n
t f −Qn

t f‖∞ 6 C‖f‖q,∞/nh. (16)

B. Suppose that µn and νn satisfy respectively (11) for q = 0 and for this q, and that
En,pol(h, q) (see (14)) holds. Then for every f ∈ Cqpol(Rd), there exists C > 1, β ∈ N
such that

sup
t∈πTT,n

‖P n
t f −Qn

t f‖∞ 6 C(1 + |x|β)/nh. (17)

C. Suppose that µnk and νnk satisfy respectively (11) for q = 0 and (12) for this q and if
E ′n,pol(h, q) (see (15)) holds, there exists C > 1, β ∈ N such that for all f ∈ Cqb (Rd), then

sup
t∈πTT,n

‖P n
t f −Qn

t f‖∞ 6 C(1 + |x|β)‖f‖q,∞/nh. (18)

Proof. Let m ∈ N∗, m 6 n. We have

|P n
tnm
f −Qn

tnm
f |∞ 6

m−1∑
k=0

|P n
tnk
P n
tnk ,t

n
k+1
Qn
tnk+1,t

n
m
f(x)− P n

tnk
Qn
tnk ,t

n
k+1
Qn
tnk+1,t

n
m
f(x)|∞ (19)

=
m−1∑
k=0

|P n
tnk

∆n
k+1Q

n
tnk+1,t

n
m
f(x)|.

Now, since f ∈ Cqpol(Rd) then, using (11) for Qn, we have Qn
tnk+1,t

n
m
f ∈ Cqpol(Rd) and then using

(14) and the linearity of the semigroup P n together with (11) for q = 0, we obtain

|P n
tnk

∆n
k+1Q

n
tnk+1,t

n
m
f(x)| 6 C(1 + |x|β)/nh+1.

Summing over k = 0, ...,m − 1, (17) follows. In order to prove (18), we use (14) to ob-
tain |∆k+1Q

n
tnk+1,t

n
m
f(x)| 6 C(1 + |x|β)‖Qn

tnk+1,t
n
m
f‖q,∞/nh+1 where C and β do not depend

on f . Using once again the linearity of the semigroup P n and (11) for q = 0, it follows
|P n
tnk

∆k+1Q
n
tnk+1,t

n
m
f(x)| 6 C(1 + |x|β)‖Qn

tnk+1,t
n
m
f‖q,∞/nh+1. Then, property (12) for Qn gives

(18). The proof of (16) is similar but simplier so we leave it out.
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2.1.2 Measurable test functions (convergence in total variation distance)

The estimates (16), (17) and (18) requires a lot of regularity for the test function f . We aim
to show that, if the semigroups at work have a regularization property, then we may obtain
estimates of the error for measurable and bounded test functions. In order to state this result
we have to give some hypothesis on the adjoint semigroup. Let q ∈ N. We assume that there
exists a constant C > 1 such that for every measurable and bounded function f and any
g ∈ Cq(Rd)

E∗n(h, q) | 〈g,∆n
kf〉 | 6 C‖g‖q,1‖f‖∞/n1+h. (20)

where 〈g, f〉 =
∫
g(x)f(x)dx is the scalar product in L2(Rd).

Our regularization hypothesis is the following. Let q ∈ N, S > 0 and η : R+ → R+ an
increasing function be given. We assume that there exists a constant C > 1 such that

Rq,η(S) ∀t, s ∈ πT,n, with S 6 s− t, ‖P n
t,sf‖q,∞ 6

C

Sη(q)
‖f‖∞. (21)

We also consider the "adjoint regularization hypothesis". We assume that there exists an
adjoint semigroup P n,∗

t,s , that is 〈
P n,∗
t,s g, f

〉
=
〈
g, P n

t,sf
〉

for every measurable and bounded function f and every function g ∈ C∞c (Rd). We assume
that P n,∗

t,s satis�es

R∗q,η(S) ∀t, s ∈ πT,n, with S 6 s− t, ‖P n,∗
t,s f‖q,1 6

C

Sη(q)
‖f‖1. (22)

Notice that a su�cient condition in order that R∗q,η(S) holds is the following: for every multi
index α with |α| 6 q

∀t, s ∈ πT,n, with S 6 s− t, ‖P n
t,s∂αf‖∞ 6

C

Sη(q)
‖f‖∞. (23)

Indeed:

‖∂αP n,∗
t,s f‖1 6 sup

‖g‖∞61

|
〈
∂αP

n,∗
t,s f, g

〉
| = sup

‖g‖∞61

|
〈
f, P n

t,s(∂αg)
〉
|

6 ‖f‖1 sup
‖g‖∞61

‖P n
t,s(∂αg)‖∞ 6

C

Sη(q)
‖f‖1.

Now we can state our �rst result for total variation convergence between P n and Qn. Those
results will be valid as soon as both P n and Qn satisfy (9).

Proposition 2.2. Let q ∈ N, h > 0, S ∈ [T/n, T/2) and η : R+ → R+ an increasing function
be �xed. We assume that En(h, q) (see (13)) and E∗n(h, q) (see (20)) hold for P n and Qn. We
also suppose that P n satis�es Rq,η(S) (see (21)) and Qn satis�es R∗q,η(S) (see (22)) and that
(10) hold with q = 0 for both of them. Then,

sup
t∈π2S,T

T,n

‖P n
t f −Qn

t f‖∞ 6
C

Sη(q)
‖f‖∞/nh.
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In concrete applications the following slightly more general variant of the above proposition
will be useful.

Proposition 2.3. Let q ∈ N, h > 0, S ∈ [T/n, T/2) and η : R+ → R+ an increasing
function be �xed. We assume that En(h, q) (see (13)) and E∗n(h, q) (see (20)) hold for P n

and Qn. Moreover, we assume that there exists some kernels (P
n

t,s)t,s∈πT,n;t6s which satis�es

Rq,η(S) (see(21)) and (Q
n

t,s)t,s∈πT,n;t6s which satis�es R
∗
q,η(S) (see (22)) and that (10) hold with

q = 0 for both of them. We also assume that for every t, s ∈ πT,n with s− t > S,

‖Qn
t,sf −Q

n

t,sf‖∞ + ‖P n
t,sf − P

n

t,sf‖∞ 6 CS−η(q)‖f‖∞/nh+1. (24)

Then,

sup
t∈π2S,T

T,n

‖P n
t f −Qn

t f‖∞ 6 C sup
k6n

(|µnk |+ |νnk |)S−η(q)‖f‖∞/nh.

Remark 2.1. Notice that P
n
and Q

n
are not supposed to satisfy the semigroup property and

are not directly related to µn and νn.

The proof of those results can be found in [4] and follows similar ideas from the one of
Proposition 2.1.

2.1.3 Mixing regularity properties

In this section, we will consider semigroups with mixing regularity properties. We will study
two semigroups P n and Qn which satisfy the hypothesis for total variation convergence only
closely to the date T and we will show that we the convergence for bounded test functions
holds.

Theorem 2.1. Let P n and Qn two semigroups with transition measures µn and νn. Let q ∈ N,
h, η > 0, 2T/n 6 δ 6 T and de�ne

δ̃n = inf{t; t > δ, T − t ∈ πT,n}. (25)

We suppose that, on the interval [0, T − δ̃n], µn and νn satisfy respectively (11) for q = 0 and
(12) for this q and that E ′n,pol(h, q) (see (15)) holds. Then we have the following properties;

A. On the interval [T − δ̃n, T ], we assume that both µn and νn satisfy (9), we assume that
En(h, q) (see (13)) and E∗n(h, q) (see (20)) hold for P n and Qn. We also suppose that
there exists some kernels Q

n
which satis�es Rq,η(δ/2) (see (21)) and P

n
which satis�es

R∗q,η(δ/2) (see (22)) and such that (24) holds on the interval [T − δ̃n, T ].
Then there exists C > 1, β ∈ N, such that for all measurable test function f on Rd, we
have

∀x ∈ Rd, |P n
T f(x)−Qn

Tf(x)| 6 C
1 + |x|β

δη(q)
‖f‖∞/nh. (26)
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B. On the interval [T − δ̃n, T ], we assume that for every m ∈ N, m > n, both µm

and νm satisfy (9), and that Em(h, q) (see (13)) and E∗m(h, q) (see (20)) hold between
(Pm

t )t∈πT,m = (Pt)t∈πT,m and (Qm
t )t∈πT,m. We also suppose that there exists a family of

kernels (Q
m

)m∈N;m>n which satis�es Rq,η(δ/2) (see (21)) and R∗q,η(δ/2) (see (22)) and

such that (24) holds on the interval [T − δ̃n, T ] between Qm and Q
m
for every m > n.

Then there exists C > 1, β ∈ N, such that for all measurable test function f on Rd, we
have

∀x ∈ Rd, |P n
T f(x)−Qn

Tf(x)| 6 C
1 + |x|β

δη(q)
‖f‖∞/nh. (27)

Proof. We prove A.. For sake of clarity, we suppose that P = P and that Q = Q. The proof
is very similar otherwise. We denote tδ = T − δ̃n ∈ πTT,n.

|P n
0,Tf(x)−Qn

0,Tf(x)| =|P n
0,tδ
P n
tδ,T

f(x)−Qn
0,tδ
Qn
tδ,T

f(x)|
=|P n

0,tδ
P n
tδ,T

f(x)− P n
0,tδ
Qn
tδ,T

f(x) + P n
0,tδ
Qn
tδ,T

f(x)−Qn
0,tδ
Qn
tδ,n
f(x)|

=|P n
0,tδ

(P n
tδ,n
−Qn

tδ,T
)f(x) + (P n

0,tδ
−Qn

0,tδ
)Qn

tδ,T
f(x)|

Since P n and Qn satisfy (9), (13), (20), with also Rq,η(δ/2) (see (21)) for Qn and R∗q,η(δ/2)

(see (22)) for P n when T − δ̃ 6 tnk 6 tnm 6 T , using Property 2.2, we have: |P n
0,tδ

(P n
tδ,T
−

P n
tδ,T

)f(x)| 6 ‖(P n
tδ,T
−Qn

tδ,T
)f‖∞ 6 Cδ−η(q)‖f‖∞/nh. In order to bound the second term we

use Proposition 2.1 together with ‖Qn
tδ,T

f‖q,∞ 6 Cδ−η(q)‖f‖∞ which follows from Rq,η(δ/2).

Now, we prove B.. Using the same decomposition as for the proof of A., we observe that the
only change in the proof concerns the study of the term ‖(Qn

tδ,T
− P n

tδ,T
)f‖∞. we introduce

the sequence of discrete semigroups ((Qn,m
t )t∈πT,n;t>tδ)m∈N∗ de�ned in the following way: For

all t ∈ πT,n, t > tδ we have Q
n,m
t f(x) = Qnm

t f(x). Let m′ > m, then

‖Qn,m
tnk ,t

n
k+1
f −Qn,m′

tnk ,t
n
k+1
f‖∞ = ‖Qn,m

tnmmk ,t
nm
m(k+1)

f −Qn,m′

tnm
′

m′k ,t
nm′
m′(k+1)

f‖∞

6 ‖Qnm
tnmmk ,t

nm
m(k+1)

f − P nm
tnmmk ,t

nm
m(k+1)

f‖∞ + ‖P nm′

tnm
′

m′k ,t
nm′
m′(k+1)

f −Qnm′

tnm
′

m′k ,t
nm′
m′(k+1)

f‖∞

Since Qnm and Qnm′ verify respectively Enm(h, q) and Enm′(h, q) and both Qnm and Qnm′ sat-
isfy (10), we use the Lindeberg decomposition (19) in order to obtain: ‖Qn,m

tnk ,t
n
k+1
f−Qn,m′

tnk ,t
n
k+1
f‖∞ 6

C‖f‖q,∞/(nh+1mh). In the same way we obtain |〈g,Qn,m
tnk ,t

n
k+1
f−Qn,m′

tnk ,t
n
k+1
f〉| 6 C‖g‖1,q‖f‖∞/(nh+1mh).

Now, since both Qnm and Qnm′ have modi�cations which satisfy both Rq,η(δ/2) (see (21)) and
R∗q,η(δ/2) (see (22), we can show that: ∀t ∈ πtδ,TT,n , ‖Q

n,m
t f−Qn,m′

t f‖∞ 6 Cδ−η(q)‖f‖∞/(nhmh).
The sequence ((Qn,m

t )t∈πT,n;t>tδ)m∈N∗ is thus Cauchy and it converges toward (P n
t )t∈πT,n for

smooth test functions using Proposition 2.1. In particular, taking m = 1 and letting m′ tend
to in�nity in the previous inequality we have

‖(Qn,1
tδ,T
− P n

tδ,T
)f‖∞ 6 Cδ−η(q)‖f‖∞/nh,

where the left hand side of the above inequality is exactly the term that we study and then
the proof is completed.
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This result will be very useful in order to prove the convergence for bounded measurable
test functions for di�usions with simpy locally smooth coe�cients. The method consists in
introducing a modi�cation of the underlying process in the neighborhood of T with smooth
coe�cient in Cqb (Rd). Then, we can use Theorem 2.1 and it remains to control the error com-
mitted between the real process and its modi�cation. Moreover, using B., we see that we
can focus exclusively on proving regularization properties for the modi�cation of the approx-
imation semigroup Q. In particular there is no regularization property to prove on P (or its
modi�cation) which is quite useful. Using this observation, we now focus on the regularization
property for a modi�cation of Q for a class of Markov chain.

2.2 A class of random tools

In this section we consider a sequence of independent random variables Zk = (Z1
k , · · · , ZN

k ) ∈
RN , k ∈ {1, · · · , n} and we denote Z = (Z1, ..., Zn). The number n is �xed throughout this
section (so there is no asymptotic procedure going on; but morally n is large because we are
interested in estimating the error as n → ∞). Our aim is to settle an integration by parts
formula based on the law of Z. The basic assumption is the following: there exists z∗,k ∈ RN

and ε∗, r∗ > 0 such that for every Borel set A ⊂ RN and every k ∈ {1, · · · , n}

Lz∗(ε∗, r∗) P(Zk ∈ A) > ε∗λ(A ∩Br∗(z∗,k)) (28)

where λ is the Lebesgue measure on RN . This condition is sometimes called the Doeblin
condition. One can also say that the random variables Zk, k ∈ {1, . . . , n} are lower bounded
by the Lebesgue measure. We also de�ne

Mp(Z) := 1 ∨ sup
k6n

E[|Zk|p] (29)

and assume that Mp(Z) <∞ for every p > 1.
It is easy to check that (28) holds if and only if there exists some non negative measures µk
with total mass µk(RN) < 1 and a lower semi-continuous function ϕ > 0 such that P(Zk ∈
dz) = µk(dz) + ϕ(z − z∗,k)dz. Notice that the random variables Z1, · · · , Zn are not assumed
to be identically distributed. However, the fact that r∗ > 0 and ε∗ > 0 are the same for all
k represents a mild substitute of this property. In order to construct ϕ we have to introduce
the following function: For v > 0, set ϕv : RN → R de�ned by

ϕv(z) = 1|z|6v + exp
(

1− v2

v2 − (|z| − v)2

)
1v<|z|<2v. (30)

Then ϕv ∈ C∞b (RN), 0 6 ϕv 6 1 and we have the following crucial property: for every p, k ∈ N
there exists a universal constant Cq,p such that for every x ∈ RN , q ∈ N and i1, · · · , iq ∈
{1, · · · , N}, we have

ϕv(z)| ∂q

∂zi1 · ∂ziq
(lnϕv)(z)|p 6 Cq,p

vpq
, (31)

with the convention lnϕv(z) = 0 for |z| > 2v. As an immediate consequence of (71), for every
non negative function f : RN → R+

E[f(Zk)] > ε∗

∫
RN
ϕr∗/2( z − z∗,k )f(z)dz. (32)
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By a change of variable

E[f(
1√
n
Zk)] > ε∗

∫
RN
nN/2ϕr∗/2

(√
n(z − z∗,k√

n
)
)
f(z)dz. (33)

We denote

m∗ = ε∗

∫
RN
ϕr∗/2(z)dz = ε∗

∫
RN
ϕr∗/2(z − z∗,k)dz (34)

and
φn(z) = nN/2ϕr∗/2(

√
nz) (35)

and we notice that
∫
φn(z)dz = m∗ε

−1
∗ .

We consider a sequence of independent random variables χk ∈ {0, 1}, Uk, Vk ∈ RN , k ∈
{1, · · · , n} with laws given by

P(χk = 1) = m∗, P(χk = 0) = 1−m∗, (36)

P(Uk ∈ dz) =
ε∗
m∗

φn(z − z∗,k√
n

)dz,

P(Vk ∈ dz) =
1

1−m∗
(P(

1√
n
Zk ∈ dz)− ε∗φn(z − z∗,k√

n
)dz).

Notice that (33) guarantees that P(Vk ∈ dz) > 0. Then a direct computation shows that

P(χkUk + (1− χk)Vk ∈ dz) = P(
1√
n
Zk ∈ dz). (37)

This is the splitting procedure for 1√
n
Zk. Now on we will work with this representation of the

law of 1√
n
Zk. So, we always take

1√
n
Zk = χkUk + (1− χk)Vk.

Remark 2.2. The above splitting procedure has already been widely used in the litterature: in
[28] and [23], it is used in order to prove convergence to equilibrium of Markov processes. In
[7], [8] and [32], it is used to study the Central Limit Theorem. Besides, in [27], the above
splitting method (with 1Br∗ (z∗,k) instead of φn(z− z∗,k√

n
)) is used in a framework which is similar

to the one in this paper. Last ine [4], this exact framework is used to prov total variation
convergence in a regular settings.

2.3 Markov chains

In this section, n ∈ N will still be �xed and will be the number of time step between 0 and
T equipped with the time grid tnk = kT/n, k ∈ N. We consider two sequences of independent
random variables Zk ∈ RN , κk ∈ R, k ∈ N and we assume that Zk are centered veri�es (71).
We construct the Rd valued Markov chain

Xn
tk+1

= ψ(κk, X
n
tk
,
Zk+1√
n
, tnk+1 − tnk), k ∈ N (38)
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where
ψ ∈ C∞(R× Rd × RN × R+;Rd) and ψ(κ, x, 0, 0) = x. (39)

We denote

‖ψ‖1,r,∞ = 1 ∨
r∑
|α|=0

r−|α|∑
|β|+|γ|=1

‖∂αx∂βz ∂
γ
t ψ‖∞. (40)

Remark 2.3. The reason to consider the random variables κk is the following. In the Victoir
Ninomiya scheme, at each time step k, one throws a coin κk ∈ {1,−1} and employs di�erent
form of the function ψ according to the fact that κk is equal to 1 or to −1.

Since the function ψ only needs to be measurable with respect to κ and that all our estimates
will be done in terms of ‖ψ‖1,r,∞, then without loss of generality, we can simplify the notations
and denote

ψk(x, z, t) = ψ(κk, x, z, t).

Then, we slightly modify the de�nition (40) and instead, in the sequel, we will consider the
norm

‖ψ‖1,r,∞ = sup
k∈N
‖ψk‖1,r,∞ = 1 ∨ sup

k∈N

r∑
|α|=0

r−|α|∑
|β|+|γ|=1

‖∂αx∂βz ∂
γ
t ψk‖∞. (41)

Finally for r ∈ N∗, we denote

Kr(ψ) = (1 + ‖ψ‖1,r,∞) exp(‖ψ‖2
1,3,∞). (42)

2.3.1 The regularization property

In the following, we will not work under P, but under a localized probability measure de�ned
as follows. We �x S 6 T and we consider the set

ΛS = { 1

bSn/T c

bSn/T c∑
k=1

χk >
m∗
2
}. (43)

Using Hoe�ding's inequality and the fact that E[χk] = m∗, it can be checked that

P(Λc
S) 6 exp(−m2

∗bSn/T c/2)) (44)

We consider also the localization function ϕn1/4/2, de�ned in (30), and we construct the random
variable

Θ = ΘS,n = 1ΛS ×
n∏
k=1

ϕn1/4/2(Zk). (45)

Since Zk has �nite moments of any order, the following inequality can be shown: for every
l ∈ N there exists C such that

P(ΘS,n = 0) 6 P(Λc
M) +

n∑
k=1

P(|Zk| > n1/4) 6 exp(m2
∗bSn/T c/2) +

M4(l+1)(Z)

nl
. (46)
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We de�ne the probability measure

dPΘ =
1

E[Θ]
ΘdP. (47)

We still �x T > 0 and n ∈ N∗ and we consider the Markov chain (Xn
t )t∈πT,n , de�ned in (38).

We also recall that ΘS,n is de�ned in (45) and we introduce (QΘ,n
t )t∈πT,n such that,

∀t ∈ πnT , QΘ,n
t f(x) := EΘt,n [f(Xn

t (x))] =
1

E[Θt,n]
E[Θt,nf(Xn

t (x))]. (48)

Notice that (QΘ,n
t )t∈πT,n , is not a semigroup, but this is not necessary. We are not be able

to prove the regularization property for Qn but for its modi�cation QΘ,n. Considering the
hypothesis of Theorem 2.1, this is su�cient to obtain total variation convergence.

Proposition 2.4. A. Let T > 0 and n ∈ N∗. We assume that n and t ∈ π0,T
T,n are su�ciently

large in order to have :

3‖ψ‖1,3,∞

n1/4
+
M8(Z)

n
+ exp(−m2

∗nt/(2T )) 6
1

2
(49)

and

n1/2 > 3
2N+2

λ∗
‖ψ‖2

1,3,∞. (50)

Moreover we assume that

inf
κ∈R

inf
x∈Rd

inf
|ξ|=1

N∑
i=1

〈∂ziψ(κ, x, 0, 0), ξ〉2 > λ∗. (51)

Then for every q ∈ N and multi index α, β with |α| + |β| 6 q, there exists l ∈ N∗ and
C > 1 which depend on m∗, r∗ and the moments of Z such that

‖∂αQn,Θ
t ∂βf‖∞ 6 C

Kq+3(ψ)l

(λ∗t)q(q+1)
‖f‖∞ (52)

with Kr(ψ) de�ned in (42). In particular, Qn,Θ
t (x, dy) = pn,Θt (x, y)dy and (x, y) 7→

pn,Θt (x, y) belongs to C∞(Rd × Rd).

B. There exists C > 1, such that for every l ∈ N and t ∈ πTT,n, we have

‖Qn
t f −Q

n,Θ
t f‖∞ 6 4(exp(−m2

∗nt/(2T )) +
M4(l+1)(Z)

nl
)‖f‖∞. (53)

Remark 2.4. (52) means that the strong regularization property Rq,η, with η(q) = q(q + 1),
holds for QΘ,n.

Now, we have obtained regularization property under regularity assumption on the scheme
function (see hypothesis of Property 2.4), we can come back to our initial problem.
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3 Markov di�usion processes with locally bounded coe�-

cients

We consider the d-dimensional di�usion process

dXt = V0(Xt)dt+
N∑
i=1

Vi(Xt) ◦ dW i
t . (54)

For now we assume that Vi ∈ C∞(Rd;Rd), i = 0, . . . , N , (Wt)t>0 a standard Brownian motion
and ◦dW i

t the Stratonovich integral with respect to W i. In the same way we will denote V0,Ito

such that

dXt = V0,Ito(Xt)dt+
N∑
i=1

Vi(Xt)dW
i
t . (55)

The in�nitesimal operator of this Markov process is

A = V0 +
1

2

N∑
i=1

V 2
i (56)

with the notation V f(x) = 〈V (x),∇f(x)〉. In the latter, when it is relevant, we will denote
by Xt(x) the process starting at x.

3.1 Regularization of the coe�cients of the di�usion

In this section, we assume that the coe�cients Vi ∈ C∞b (D;Rd) for a subset D of Rd. Moreover
we denote Dv the biggest compact contained in {x ∈ D, infy∈Rd\D |x − y| > v} with the
convention infy∈∅ |x− y| = +∞. Now for v > 0 and D ⊂ Rd, we introduce φDv ∈ C∞b (Rd : Rd)
such that φDv (x) = x if x ∈ Dv, is constant if x ∈ Rd \ D. Moreover we assume that φDv ∈
C∞b (Rd \ Dv;Rd) and that for all x ∈ Rd \ Dv, we have

|∂αφDv (x)| 6 C

v|α|
, (57)

where C does not depend on v. Now, we can introduce a regularization of (54). For i =
0, · · · , N , we denote V D,vi = Vi ◦ φDv and we de�ne

dY D,vt = V D,v0 (Yt)dt+
N∑
i=1

V D,vi (Y D,vt ) ◦ dW i
t . (58)

In order to prove weak convergence for bounded measurable test functions, we will use this
modi�cation of the underlying process. For δ > 0 we de�ne

X t(x) =

{
Xt(x), if t 6 T − δ,
Yt−(T−δ)(XT−δ(x)), if T − δ 6 t 6 T,

(59)
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Indeed, let us assume that we are able to build a scheme for Y that converges for the total
variation distance when T−δ 6 t 6 T (for instance, see Theorem 4.2 for the Ninomiya Victoir
scheme or [4] for a more detailed approach). Then if we are able to �nd a scheme which satis�es
(12) and (15) for t 6 T − δ, then Theorem 2.1 will ensure convergence for measurable test
function between X and its scheme. The last step consists in estimating the distance between
the underlying process (respectively scheme) and its modi�cation (resp. modi�ed scheme).
This is the purpose of the next section.

3.2 Concentration inequalities

We begin with a �rst practical lemma.

Lemma 3.1. Let T ⊂ R+ and let (Ht)t∈T and (Kt)t∈T two processes taking values in Rd. Let
y ∈ Rd and v > 0. We de�ne the processes (H(y, v)t)t∈T and (K(y, v)t)t∈T with H(y, v)t =
Ht1supt∈T |Ht−y|<v andK(y, v)t = Kt1supt∈T |Kt−y|<v. We assume that (H(y, v)t)t∈T and (K(y, v)t)t∈T
follow the same law. Then

P(sup
t∈T
|Ht − y| < v) =P(sup

t∈T
|Kt − y| < v) (60)

Proof. We consider that H and K are non null processes. Otherwise th proof is imme-
diate. We have {supt∈T |Ht − y| < v} = {supt∈T |Ht − y| < v} ∩ ({H = H(y, v)} ∪ {H =
H1supt∈T |Ht−y|>v}). Moreover, since the processH is not zero, we have {H = H1supt∈T |Ht−y|>v} =
{supt∈T |Ht − y| > v} and {supt∈T |Ht − y| < v} ∩ {H = H1supt∈T |Ht−y|>v} = ∅ so we obtain

P(sup
t∈T
|Ht − y| < v) =P(sup

t∈T
|H(y, v)t − y| < v) = P(sup

t∈T
|K(y, v)t − y| < v) = P(sup

t∈T
|Kt − y| < v)

where we use the fact that (H(y, v)t)t∈T and (K(y, v)t)t∈T follow the same law.

The continuous case - The Bernstein's inequality

Proposition 3.1. Let (Mt)t>0 a continuous Ft-local martingale such thatM0 = 0 and 〈M〉∞ =
∞, a.s., then, for all v > 0,

P( sup
06s6t

|Ms| > v|〈M〉t 6 c) 6 2 exp(−v
2

2c
) (61)

Proof. In order to prove (61), we will use the following result which corresponds to the speci�c
case of the Brownian motion.

Lemma 3.2. Let (Wt)t>>0 a standard Brownian motion, then

∀v > 0, P( sup
06s6t

|Ws| > v) 6 2 exp(−v
2

2t
) (62)
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Proof of Lemma 3.2. We recall that for all α > 0, ξα(W )t = exp(αWt− α2t
2

) is a σ(Ws, s 6 t)-
martingale. Using the symmetry of the Brownian motion and the maximum inequality for
non negative martingales, it follows

P( sup
06s6t

|Ws| > v) =2( sup
06s6t

Ws > v) = 2P
(

exp(α sup
06s6t

Ws −
α2t

2
) > exp(αv − α2t

2
)
)

62P
(

sup
06s6t

ξα(W )s > exp(αv − α2t

2
)
)
6 2

E[ξα(W )t]

exp(αv − α2t
2

)
= 2 exp(−αv +

α2t

2
)

The function α 7→ exp(−αv+ α2t
2

) being convex, we obtain infα>0 exp(−αv+ α2t
2

) = exp(−v2

2t
)

and (62) follows.

Now, since M0 = 0 and 〈M〉∞ =∞, we can use the Dambis, Dubins-Schwarz Theorem. If we
set Tt = inf{s : 〈M〉s > t}, then Wt = MTt is a FTt- local martingale and Mt = W〈M〉t . It
follows from Lemma 3.2 that

P( sup
06s6t

|Ms| > v|〈M〉t 6 c) =P( sup
06s6〈M〉t

|Ws| > v|〈M〉t 6 c) = E[P( sup
06s6〈M〉t

|Ws| > v|〈M〉t)|〈M〉t 6 c]

6E[2 exp(− v2

2〈M〉t
)|〈M〉t 6 c] 6 2 exp(−v

2

2c
).

Applying this result to Markov di�usions we get the following result

Corollary 3.1. Let 0 < δ 6 T . Assume that (Xt)t>0 follows a di�usions of the form (55)
with V0,Ito, Vi ∈ C0

b (Rd;Rd). Then, for all v > 0, we have

P( sup
T−δ6t6T

|XT −Xt| > v|XT ) 6 2 exp(−
v2/2− δ2‖V0,Ito1Bv(XT )‖2

∞

δ
∑N

i=1 ‖Vi1Bv(XT )‖2
∞

). (63)

Proof. Let ε > 0. Using Lemma 3.1, we have

P( sup
T−δ6t6T

|XT −Xt| > v|XT ) = P( sup
T−δ6t6T

∣∣∣ ∫ T

t

V0,Ito(Xs)ds+
N∑
i=1

∫ T

t

Vi(Xs)dW
i
s

∣∣∣ > v|XT )

=P( sup
T−δ6t6T

∣∣∣ ∫ T

t

V0,Ito(Xs)1Bv(XT )(Xs)ds+
N∑
i=1

∫ T

t

Vi(Xs)1Bv(XT )(Xs)dW
i
s

∣∣∣ > v|XT )

6P( sup
T−δ6t6T

∣∣∣ N∑
i=1

∫ T

t

Vi(Xs)1Bv(XT )(Xs)dW
i
s

∣∣∣ > v − δ‖V0,Ito1Bv(XT ))‖∞).

Now, (63) follows from Proposition 3.1 with (Mt)06t6δ =
∑N

i=1

∫ T
T−t Vi(Xs)1Bv(XT )(Xs)dW

i
s

using that 〈M〉t 6 δ
∑N

i=1 ‖Vi1Bv(XT )‖2
∞.
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The discrete case

Proposition 3.2. The Hoe�ding inequality. Let (Mn)n∈N be a discrete centered Markov pro-
cess such that there exists two sequences (bdn)n∈N 6 (bun)n∈N such that for all k ∈ N∗, P(Mn −
Mn−1 ∈ [bln, b

u
n]) = 1, then

P(|Mn| > v) 6 2 exp(− 2v2∑N
k=1(bul − blk)2

). (64)

Corollary 3.2. We �x T > 0 and n ∈ N∗. Let 2T/n 6 δ 6 T and de�ne δ̃n = inf{t; t >
δ, T − t ∈ πT,n}. We assume that (Xn

tk
)k∈N is de�ned by (38) with ψk ∈ C1

b (Rd×RN ×R+;Rd)
and Zk ∈ [blk(Z), buk(Z)] and that

n > sup
k∈N∗

T 2/(buk(Z)− blk(Z))2. (65)

Then, for every v > 0 we have

P( sup
t∈πTT,n;t>T−δ̃n

|Xn
T −Xn

t | > v|Xn
T ) 6 2 exp(− CZv

2

δ‖ψ1Bv(XT )‖2
1,1,∞

), (66)

with CZ = infk∈N∗ T/(12(buk(Z)− blk(Z))2).

Proof. Let N = 1 for sake of simplicity in the writing. We have

Xn
tnk+1
−Xn

tnk
= w0

k+1

∫ 1

0

(1− λ)∂tψ(κk, X
n
tk
, λw0

k+1, w
1
k+1)dλ+ w1

k+1

∫ 1

0

(1− λ)∂zψ(κk, X
n
tk
, 0, λw1

k+1)dλ,

with w0
k+1 = T/n and w1

k+1 ∈ [blk+1(Z)/
√
n, buk+1(Z)/

√
n].We apply Lemma 3.1 and Proposi-

tion 3.2 in order to obtain

P( sup
t∈πTT,n;t>T−δ̃n

|Xn
T −Xn

t | > v|Xn
T ) 6

2 exp(− v2

4
∑n

k=kδ
(T/n‖∂tψ1Bv(Xn

T )‖∞)2 + (1/
√
n(buk(Z)− blk(Z))‖∂zψ1Bv(Xn

T )‖∞)2
),

with kδ = n(T − δ̃n)/T . Since |δ− δ̃n| 6 T/n and 2T/n 6 δ, it follows that n−kδ 6 3nδ/(2T ).
Therefore, using (65), we rearrange the terms and the proof of (66) is completed.

3.3 Convergence results for Markov di�usion with locally bounded

coe�cients.

Let n ∈ N∗, q ∈ N, v > 0 and ψ̃ ∈ Cqb (R × Rd × RN × R+). We introduce the hypothesis
concerning the existence of a regular modi�cation of the Markov discrete process de�ned in
(38). We will exploit this modi�cation in the neighborhood of the terminal date T and when
the terminal value of the Markov process belong to a compact set.
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(Reg(ψ, ψ̃, v, q, n, δ)) For allm > n, we assume that there exists a discrete process (X
m

t )t∈πT,m
de�ned by

∀k ∈ N∗, X
m

tmk+1
= ψ̃(κk, X

m

tmk
, Zk+1/

√
m, tmk+1 − tmk ),

and such that,

(Xm
tmk
1supT−δ̃m6tm

j
6T |X

m
tm
j
−Xm

T |6v)T−δ̃m6tmk 6T
Law
= (X

m

tmk
1supT−δ̃m6tm

j
6T |X

m
tm
j
−Xm

T |6v)T−δ̃m6tmk 6T

on the event {Xm
T−δ̃m = X

m

T−δ̃m} ∩ {X
m
T = X

m

T ∈ D2v},

with δ̃m de�ned in (25). Moreover, we also suppose that (49) (50) and (51) hold with ψ
replaced by ψ̃. Finally, we denote (PD,vt )t>0 the semigroup of the process (Y D,vt )t de�ned in
(58) and (QD,v,m)t∈πT,m the one associated to (X

m

t (x))t∈πT,m . and we assume that Em(h, q) (see
(13)) and E∗m(h, q) (see (20)) hold between (PD,v,mt )t∈πT,m = (PD,vt )t∈πT,m and (QD,v,mt )t∈πT,m .

Theorem 3.1. We recall that T > 0 is �xed. Let q ∈ N, h > 0, δ ∈ (0, T ) and ψ̃ ∈ Cqb (R ×
Rd×RN×R+). For a given n ∈ N∗, we consider the Markov semigroup (Pt)t>0 (see (54)), and
the approximation Markov chain (Qn

t )t∈πT,n (see (38)), de�ned above. Moreover, we assume
that there exists n0 ∈ N∗ such that T/n0 6 2δ and, (49), (50) and (65) hold with n = n0 and
t = δ/2. Then, for all n > n0, we have the following property.

Assume that (Reg(ψ, ψ̃, v, q, n, δ)) holds and that, on the interval [0, T −δ], P n and Qn satisfy
respectively (11) for q = 0 and (12) for this q and that E ′n,pol(h, q) (see (15)) holds. Then,
there exists l ∈ N∗, C, β > 1 such that we have for every bounded and measurable test function
f on Rd with supp(f) ⊂ D2v,

E[f(XT (x))− f(Xn
T (x))] 6C(exp(−v

2/2− δ2‖V0,Ito1D‖2
∞

δ
∑N

i=1 ‖Vi1D‖2
∞

) + exp(− CZv
2

δ‖ψ̃1D‖2
1,1,∞

))‖f‖∞

+C(1 + |x|β)
Kq+3(ψ̃)l

(λ∗S)η(q)
‖f‖∞/nh (67)

with η(q) = q(q + 1) and CZ = infk∈N∗ T/(12(buk(Z)− blk(Z))2).

Proof. First we de�ne

X t(x) =

{
Xt(x), if t < T − δ̃n,
Yt−(T−δ̃n)(XT−δ(x)), if T − δ̃n 6 t 6 T,

X
n

tnk+1
(x) =

{
Xn
tnk+1

(x), if tnk < T − δ̃n,

ψ̃k(X
n

tnk
(x), w1

k+1, w
0
k+1) if T − δ̃n 6 tnk 6 T,

with Y de�ned in (58) and δ̃n de�ned in (25). First,from Lemma 3.1, we have

P( sup
T−δ̃n6t6T

|Xt −XT | > v|XT ∈ D2v) = P( sup
T−δ̃n6t6T

|X t −XT | > v|XT ∈ D2v)
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because (Xt1supT−δ̃n6t6T |Xt−XT |6v)T−δ̃n6t6T and (X t1supT−δ̃n6t6T |Xt−XT |6v)T−δ̃n6t6T follow the

same law as soon as XT−δ̃n = XT−δ̃n and XT , XT ∈ D2v. Moreover, we deduce from Lemma
3.1 again and (Reg(ψ, ψ̃, v, q, n, δ)) that

P( sup
T−δ̃n6tnk6T

|Xn
tnk
−Xn

T | > v|Xn
T ∈ D2v) = P( sup

T−δ̃n6tnk6T
|Xn

tnk
−Xn

T | > v|Xn

T ∈ D2v).

Then from the Corollary 3.1 and the Corollary 3.2, we deduce that for every bounded and
measurable test function f with supp(f) ⊂ D2v, we have

E[f(XT )− f(Xn
T )] 6 |E[f(XT )− f(X

n

T )]|

+ 4‖f‖∞
(
P( sup

T−δ̃n6t6T
|Xt −XT | > v) + P( sup

T−δ̃n6t6T
|X t −XT | > v)

+ P( sup
T−δ̃n6tnk6T

|Xn
tnk
−Xn

T | > v) + P( sup
T−δ̃n6tnk6T

|Xn

tnk
−Xn

T | > v)
)

6 |E[f(XT (x))− f(X
n

T (x))]|+ C‖f‖∞
(

exp(−v
2/2− δ2‖V0,Ito1D‖2

∞

δ
∑N

i=1 ‖Vi1D‖2
∞

)

+ exp(− CZv
2

δ‖ψ̃‖2
1,1,∞

)
)

Now, we use Theorem 4.2 and Theorem 2.1 in order to estimate |E[f(XT (x)) − f(X
n

T (x))]|
and we obtain (67).

Remark 3.1. Notice that from Lemma 3.1, we deduce that the previous result remains true if
we replace V by V D,v in (67) or if we replace ‖ψ̃1D‖1,1,∞ by ‖ψ1D‖1,1,∞, ‖ψ̃‖1,1,∞ or ‖ψ‖1,1,∞
if thos quantities are �nite.

4 Second order total variation convergence towards CIR

processes

In this section, we are going to apply the results we have just obtained in a general setting to
the case of a second weak order scheme for the CIR process. This scheme was �rst introduced
in [2] and is built using cubature method. Initially those methods were used in [26] to build
the so called Ninomiya Victoir schemes for SDE with smooth coe�cients. Then, Alfonsi [2],
inspired by this approach, built a second weak order scheme for the CIR process. Finally, in
[4], the author have shown that the total variation convergence takes place for those cubature
scheme as soon as the coe�cients of the SDE are smooth. In this section, our purpose to
exploit and extend those result in order to obtain total variation convergence results for the
CIR which has singular coe�cients in the neighborhood of zero.
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4.1 The Ninomiya Victoir scheme

We begin by presenting the Ninomiya Victoir scheme [26]. Let us de�ne exp(V )(x) := ΦV (x, 1)
where ΦV solves the deterministic equation

ΦV (x, t) = x+
∫ t

0
V (ΦV (x, s))ds. (68)

By a change of variables one obtains ΦεV (x, t) = ΦV (x, εt) so we have

exp(εV )(x) := ΦεV (x, 1) = ΦV (x, ε).

We also notice that the semigroup of the above Markov process is given by P V
t f(x) =

f(ΦV (x, t)) and has the in�nitesimal operator AV f(x) = V f(x). In particular the relation
P V
t AV = AV P

V
t reads

V f(ΦV (x, t)) = AV P
V
t f = P V

t AV f = V (x)∂x (f ◦ ΦV ) (x, t).

Using m times Dynkin's formula P V
t f(x) = f(x) +

∫ t
0
P V
s AV f(x)ds we obtain

f(ΦV (x, t))) = f(x) +
m∑
r=1

tr

r!
V rf(x) +

1

m!

∫ t

0

(t− s)mV m+1P V
s f(x)ds. (69)

We present now a second order scheme introduced de�ned as in [2]. We consider a sequence
ρk, k ∈ N of independent Bernoulli random variables and we de�ne ψk : Rd ×RN ×R+ → Rd

using a splitting procedure. Let us de�ne

ψ(ρ, x, w1, w0) =

{
exp(w0V0) ◦ exp(w1,1V1) ◦ · ◦ exp(w1,NVN) ◦ exp(w0V0)(x), if ρ = 1,

exp(w0V0) ◦ exp(w1,NVN) ◦ · ◦ exp(w1,1V1) ◦ exp(w0V0)(x), if ρ = −1.

(70)

Moreover, we denote w0
k = T/n and w1

k = (w1,i
k )i=1,·,N with wik =

√
TZi

k/
√
n, i = 1, · · · , N

and we assume that Zk, k ∈ N are independent random variables which are lower bounded
by the Lebesgue measure: there exists z∗,k ∈ RN and ε∗, r∗ > 0 such that for every Borel set
A ⊂ RN and every k ∈ N

Lz∗(ε∗, r∗) P(Zk ∈ A) > ε∗λ(A ∩Br∗(z∗,k)). (71)

Finally, we assume that the sequence Zk satis�es the following moment conditions:

E[Zi
k] = E[(Zi

k)
3] = E[(Zi

k)
5] = 0, E[(Zi

k)
2] = 1, E[(Zi

k)
4] = 3,

∀p > 1, E[|Zk|p] <∞. (72)

We recall that T > 0, n ∈ N, and tnk = Tk/n. One step of the scheme for di�usion with
regular coe�cients (between times tk and tk+1) is given by

Xn
tnk+1

= ψ(ρk, X
n
tnk
, wk+1, w

0
k+1). (73)
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4.1.1 Convergence results for di�usion with smooth coe�cients

Smooth test functions
Here, we assume that the test function is smooth. We state a �rst result, which is the

starting point in order to prove the convergence in total variation distance.

Theorem 4.1. Let (Xt)t>0 the process de�ned by (54) and (Xn
t )t∈πT,n given by (73). We also

assume that (72) holds.

A. We assume that for all l 6 3, we have V l
0 : C∞pol(Rd,Rd) → C∞pol(Rd,Rd) and for all

i = 1, · · ·N , we have V 2l
i , A

l : C∞pol(Rd,Rd) → C∞pol(Rd,Rd). We also assume that∑N
i=0 Vi(x) 6 C(1 + |x|) and that for all t > 0, x 7→ ΦVi(x, t) ∈ C0

pol(Rd). Then,
En,pol(2, 6) (see (14)) and E ′n,pol(2, 6) (see (15)) are satis�ed for (Xt)tπT,n and (Xn

t )t∈πT,n.

B. Suppose that Vi ∈ C∞b (Rd;Rd). Then, there exists some universal constant C, l > 1 such
that for every f ∈ C6

b (Rd), we have

sup
tnk6T
|E[f(Xtnk

))− E[f(Xn
tnk

)]| 6 CC6(V )l‖f‖6,∞/n
2, (74)

with Ck(V ) := supi=0,·,N ‖Vi‖k,∞.

Proof. We will prove only point A. The proof of (15) for B. is very similar. Then, it simply
remains to show (12) which is done in the literature (see [4]). We focus on the proof of (15).
We will assume that N = 1 for sake of simplicity. It is su�cient to prove that the schemes
with transition probability laws ΦV0(tk+1−tk, .) and ΦVi(

Zik√
n
, .) are weak second order schemes.

We will prove that they are ν-order schemes, for all integer ν ∈ N∗ as soon as Zk matches
the 2ν + 1 moments of the centered normal distribution and has �nite moments of any order.
First, we notice that the sublinear growth of the coe�cients implies that the moments functions
x 7→ E[|Xt(x)|q] belong to C0

pol(Rd) (see [1]). Let us consider f ∈ C∞b (Rd,R). According to the
de�nition of V0, we have ∀l ∈ N, V l

0f ∈ C∞pol(Rd). Writing as expansion (69), we get :

∀ν ∈ N,
f(ΦV0(t, x)) = f(x0) +

∑ν
l=1

tl

l!
V l

0f(x) +Rν+1
0,t f(x0)

with

Rν+1
0,t f(x) =

∫ t

0

(t− s)ν

ν!
V ν+1

0 f(ΦV0(x, s))ds

We have already precised that V ν+1
0 f ∈ C∞pol(Rd). Besides we have ΦV0 ∈ C0

pol(Rd,R;Rd), then
for all t ∈ [0, 1], there exists β ∈ N such that

|Rν+1
0,t f(x)| 6 C(1 + |x|β)tν+1‖f‖ν+1,∞

so the scheme with transition probability ΦV0 is a ν-order scheme for the operator V0.
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Let Hk =
√
tZ1

k . We have

E[f(ΦV1(Hk, x))] = x+
∑

2l62ν+1

tl

2ll!
V 2l

1 f(x) + E[Rν+1
1,Hk

f(x1)]

with

Rν+1
1,Hk

f(x) =
H2ν+2
k

(2ν + 1)!

∫ 1

0

(1− s)2ν+1V 2ν+2
1 f(ΦV1(x, sHk))ds

Moreover, V 2ν+2
1 f,∈ C∞pol(Rd,R) and ΦV1 ∈ C0

pol(Rd,R;Rd) and again, there exists β ∈ N∗,
C > 0, such that

E[|Rν+1
1,Hk

f(x)|] 6 E[|Hk|2ν+2]

(2ν + 1)!
C(1 + |x|β])‖f‖2ν+2,∞ 6 C(1 + |x|β)tν+1‖f‖2ν+2,∞

and the scheme with transition probability ΦV1 is a ν-order scheme for the operator V1.

Finally, for all f ∈ C∞pol then Af ∈ C∞pol and we obtain (15) using the Ninomiya-Victoir
composition and the polynomial control of the moments of the di�usion and ΦVi . The proof
of (14) is very similar so we leave it out.

Remark 4.1. Notice that property (12) has already been studied in [1] for the CIR and since
ΦVi ∈ C0

pol(Rd), we can use Property 2.1 in order to obtain the weak convergence for smooth
test functions with polynomial growth.

Bounded measurable test functions
Under an ellipticity condition we are going to obtain an estimate of the total variation

distance between a di�usion process of the form (54) and its second order scheme (73).

Theorem 4.2. We assume that Vi ∈ C∞b (Rd;Rd), i = 0, · · · , N , and

inf
|ξ|=1

N∑
i=1

〈Vi(x), ξ〉2 > λ∗ > 0 ∀x ∈ Rd. (75)

Let S ∈ (0, T/2). Then there exists n0 ∈ N∗ such that for every n > n0, there exists l ∈ N∗,
C > 1 such that for every bounded and measurable function f : Rd → R,

sup
t∈π2S,T

T,n

|E[f(Xt)]− E[f(Xn
t )]| 6 C

C6(V )lK9(ψ)l

(λ∗S)42
‖f‖∞ /n

2. (76)

Remark 4.2. This result has already been obtained in [4]. The result (76) signi�es the con-
vergence in total variation distance for the weak error with order 2. We notice that, the key
point of this proof does not rely on the weak order of the scheme. This is the fact that, the
splitting procedure (70) in order to build the scheme, always includes a di�usion part (through

exp(
Zik√
n
V i)) together with the ellipticity condition (75). Consequently a similar procedure could

be used in order to prove the convergence in total variation for even higher order scheme as
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soon as we control this error for smooth test function. Finally, it is important to notice that
the generic property (71) is crucial here. On the one hand it enables to apply a Malliavin
inspired calculus crucial to achieve total variation convergence. On the other hand, since the
random variable (Zk)k∈N∗ do not have a speci�c law but only satisfy the Doeblin condition (71)
and (72), the result can be seen as an invariance priciple.

4.2 The CIR model

The CIR model is a R+-valued random process de�ned by the following SDE,

dXt = (a− kXt)dt+ σ
√
XtdWt. (77)

This model was �rst presented in 1985 inspired from Vasicek (1977), by modifying the volatility
term introducing a "square root" term, among others in order to guarantee non-negativity.
We suppose in this paper a, k, σ > 0. In this case, it is impotant to notice that the model
does not reach 0 for 2a > σ2.

4.2.1 Second weak order scheme for the CIR process

The Ninomiya Victoir scheme for the CIR
Applying the notations from (54), we have

∀x ∈ R, V0,cirf(x) = (a− kx− σ2

4
)∂xf(x) (78)

∀x ∈ R+, V1,cirf(x) = σ
√
x∂xf(x) (79)

Solving the PDE (68) brings the following �ows

∀x ∈ R, φ0,cir(t, x) = xe−kt + (a− σ2

4
)
1− e−kt

k

∀x ∈ R+, φ1,cir(t, x) = (
√
x+

σ

2
t)2.

At this point, we distinguish two cases. Indeed, we notice that if σ2 > 4a and x 6 x∗(t) =
k−1(σ

2

4
−a)(ekt−1), then φCIR0 (t, x) takes negative values and then the scheme (73) is not well

de�ned anymore. In this case, we will introduce another scheme in the neighborhood of zero
and we will use a switching procedure. Otherwise, we will prove that,as soon as the scheme
(73) is well de�ned, then it is a second weak order scheme. As a consequence, if 4a > σ2, we
de�ne

ψcir(x,w
1, w0) = exp(w0V0,cir) ◦ exp(w1V1,cir) ◦ exp(w0V0,cir)(x). (80)

Besides, we denote w0
k = T/n and w1

k =
√
TZk/

√
n, where Zk, k ∈ N∗ are independent

random variables which are lower bounded by the Lebesgue measure (see (71)). Finally, we
assume that the sequence Zk satis�es the moment conditions (72).
One step of the scheme for the CIR di�usion (between times tk and tk+1) is given by

Xn
tk+1

= ψcir(ρk, X
n
tk
, w1

k+1, w
0
k+1). (81)
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4.2.2 Second weak order scheme in the neighborhood of zero

It is easy to show that

E[Xt] = xe−kt +
a

k
(1− e−kt) (82)

V ar[Xt] = x
σ2

k
(e−kt − e−2kt) + a

σ2

2k2
(1− e−kt)2 (83)

Now, we consider the case σ2 > 4a. First of all we have to identify the bound such that, for
every time step we use the scheme (81) or we introduce another scheme. Since we will consider
some bounded random variables Zk, we will use the following result in order to chose if we
switch schemes.

Lemma 4.1. We assume that σ2 > 4a. Let t > 0, A > 0, w1 ∈ [−A,A] and de�ne

K(t, A) = e
kt
2

(σ2

4
− a
)

1− e−kt2

k
+

√e
kt
2

(
σ2

4
− a
)

1− e− kt2
k

+
σ

2
A

2 . (84)

Then :

∀x > K(t, A), φ0,cir(
t

2
, .) ◦ φ1,cir(w

1, .) ◦ φ0,cir(
t

2
, x) > 0.

Proof. We �rst notice that if K(t, A) > x∗( t
2
) and then for all t ∈ [0, 1], the function x 7→

φ0,cir(
t
2
, .) ◦ φ1,cir(w

1, .) ◦ φ0,cir(
t
2
, x) is well de�ned. Moreover φ0,cir is increasing with respect

to x and :

φ0,cir(
t

2
, K(t, A)) =

√e
kt
2

(
σ2

4
− a
)

1− e− kt2
k

+
σ

2
A

2

Since all terms in parenthesis are positive and w1 > −A, we deduce that

φ1,cir(w
1, .) ◦ φ0,cir(

t

2
, K(t, A)) =

√e
kt
2

(
σ2

4
− a
)

1− e kt2
k

+
σ

2
(A+ w1)

2

6 e
kt
2

(
σ2

4
− a
)

1− e− kt2
k

= x∗(
t

2
).

and the prof is complete.

Now, it remains to present the scheme that we will use in the neighborhood of zero.
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Moments matching approach Our purpose is to verify for each step if the Ninomiya
Victoir scheme remains positive. Otherwise, we switch with a scheme inspired from Andersen
[3] and introduced in [2]. We recall that the �rst two moments of the CIR :are given by

E[Xt] = xe−kt +
a

k
(1− e−kt)

E[X2
t ] = x

σ2

k
(e−kt − e−2kt) + a

σ2

2k2
(1− e−kt)2 + E[Xt]

2.

Let us introduce the discrete random process (ζt)t>0 ∈ {y1, y2} ∈ R2
+ and denote uq(x, t) =

E[Xq
t ]. Then, one step of the scheme in the neighborhood of zero for the CIR will be given by

Ytk+1−tk with (y1, y2) given by the solution of the following equation

{
P (Yt = y1)y1 + P (ζt = y2)y2 = u1(x, t)
P (Yt = y1)y2

1 + P (ζt = y2)y2
2 = u2(x, t).

(85)

In this equation the only �xed parameters are u1(t, x) and u2(t, x), and obviously P (Yt = y2) =
1 − P (Yt = y1) ∈]0, 1[. Thus we can �x values for y1 and y2 to solve the �rst equation and
then the second will give a second order equation to solve to �nd P (Yt = y1). For instance, if
v ∈]0, 1[, let us choose :

y1 = v
u1(t, x)

P (ζt = y1)
, y2 = (1− v)

u1(t, x)

P (ζt = y2)

The second equation gives :

u2(t, x)P (ζt = y1)2 + [(1− 2v)u1(t, x)− u2(t, x)]P (ζt = y1) + v2u1(t, x)2 = 0

Thus, if we consider the second order equation which depends on the parameter v :

u2(t, x)κ2 + [(1− 2v)u1(t, x)− u2(t, x)]κ+ v2u1(t, x)2 = 0 (86)

We want to �nd a couple (κ(v), v), where κ(v) is a solution of the equation below, such as
κ(v) ∈]0, 1[. Let us denote :

∆v(t, x) = [(1− 2v)u1(t, x)− u2(t, x)]2 − 4v2u1(t, x)2u2(t, x)

For sake of simplicity we set v = 1
2
that simpli�es the calculus and as shown below, ful�ll the

desired conditions. We obtain the following solution for (86) :

κ(1/2) =
u2(t, x)±

√
u2(t, x)(u2(t, x)− u1(t, x)2)

2u2(t, x)

Now, we set

P (ζt = y1) =
1

2

(
1−

√
1− u1(t, x)2

u2(t, x)

)
.
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Since u1(t, x) > max(a2
(

1−e−kt
k

)
, 2xa

k
(e−kt − e−2kt)), we are able to bound :

P (ζt = y1) >
1

2

(
1−

√
1− a

a+ σ2

)
.

Then, we have the following crucial property in order to prove the second order convergence.
Assume that 0 < K(t) < Ct, then, for all q ∈ N, there exists C > 0 such that

∀t ∈]0, 1], x ∈ [0, K(t)], ∃C > 1,E[Y q
t ] < Ctq. (87)

We de�ne the transition function in the neighborhood of zero by

ψ̂cir(ρ, x, w
0) =


u1(w0, x)

2p(x,w0)
, if ρ = 1,

u1(w0, x)

2(1− p(x,w0))
, if ρ = −1.

(88)

with p(x,w0) = 1
2
(1 −

√
1− u1(w0,x)2

u2(w0,x)
). Now let w0

k = T/N . We de�ne a step of the second
order scheme for the CIR in the neighborhood of zero by

Xn
tk+1

= ψ̂cir(ρk, X
n
tk
, w0

k+1)., (89)

with (ρk)k∈N the sequence of random variables such that P(ρk = 1|Xn
tk

) = p(Xn
tk
, w0

k+1). Finally
in the case σ2 > 4a, we use the Lemma 4.1 and we de�ne the CIR scheme by

Xn
tk+1

=

{
ψcir(ρk, X

n
tk
, w1

k+1, w
0
k+1), if Xn

k > K(T/n, 3/
√
n),

ψ̂cir(ρk, X
n
tk
, w0

k+1), if Xn
k < K(T/n, 3/

√
n).

(90)

4.3 Convergence results

4.3.1 Smooth test functions

We focus on the convergence of the CIR schemes de�ned in (81) and (90). We will use Property
2.1. In order to apply this result we we need to establish the following straightforward property.

Lemma 4.2. Let l ∈ N. Then, we have

V 2l
1,cir : C∞p (R∗+,R)→ C∞p (R∗+.R) (91)

Proof. It is su�cient to show the result for l = 1. We have :

∀f ∈ C∞p (R∗+,R), V 2
1,cirf(x) = σ2

√
x

(
1

2
√
x
∂xf(x) +

√
x∂2

xf(x)

)
=

σ2

2
∂xf(x) + σ2x∂2

xf(x) ∈ C∞(R∗+,R)
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The property (91) enables to obtain the following short time estimate.

Theorem 4.3. let us assume that (Xt)t>0 is the process given by (77) and (Xn
tk

) is de�ned
by (81) if 4a > σ2 and (90) otherwise. We denote by µk and νnk their probability transition
measures. Then, there exists l ∈ N∗, C, β > 1, such for all f ∈ C6

b (R+;R), we have E ′n,pol(2, 6)
(see (15)) and

∀x ∈ R+, |E[f(XT (x)]− E[f(Xn
T (x)]| 6 C(1 + |x|β)‖f‖6,∞/n

2. (92)

Proof. First we recall that the proof of (12) for the CIR di�usion and its scheme are given in
[2]. If 4a > σ2, it is su�cient to use Theorem 4.1 A. to obtain (15) and then (74) follows from
Property 2.1. Now, let σ2 > 4a. Here, the only thing we still have to check is that (15) is
satis�ed for the moment matching scheme as soon as x ∈ [0, K(T/n, 3/

√
n)] with K de�ned

in (84). This is a consequence of the two following results.

Lemma 4.3. Let us consider the case σ2 > 4a. For K de�ned in (84), λ ∈ R, we have, for
all q ∈ N,

∃Cq > 0, tq ∈ [0, 1], ∀t ∈ [0, tq], x ∈ [0, K(t, λ
√
t)[, E[Xq

t ] 6 Cqt
q (93)

Proof. Let us consider the function g(x) = xν+1 for x > 0. Applying Ito's formula to g for the
CIR process gives :

Xν+1
t = xν+1 +

∫ t

0

[
(ν + 1)Xν

s (a− kXs) +
1

2
ν(ν + 1)σ2Xν

s

]
ds+

∫ t

0

(ν + 1)X
ν+ 1

2
s σdWs

Using localization by considering the stopping time µm = inf{t > 0 : |Xt| > m} and the
Fubini theorem, we get

E[|Xν+1
t∧µm|] 6 xν+1 + E

[∣∣ ∫ t∧µm

0

[
(ν + 1)Xν

s (a− kXs) +
1

2
ν(ν + 1)σ2Xν

s

]
ds
∣∣]

6 xν+1 +

∫ t

0

[
(ν + 1)a+

1

2
ν(ν + 1)σ2

]
E[|Xν

s∧µm|]− kE[Xν+1
s∧µm ]ds

Reasoning by induction, we assume that ∃Cν > 0, tν ∈ [0, 1],E[Xν
s∧µm ] 6 Cνt

ν . Since x ∈
[0, K(t, λ

√
t)[ with K(t) = O(t)

t→0

, ∃tν+1 ∈ [0, 1] such that :

∀t ∈ [0, tν+1],E[|Xν+1
t∧µm|] 6 K(t, λ

√
t)ν+1 + Cν

(
(ν + 1)a+ 1

2
ν(ν + 1)σ2

)
tν+1 +

∫ t
0
kE[|Xν+1

s∧µm|]ds

Applying Gronwall lemma and the fact that 0 6 t 6 tν+1, and that there exists C > 0 such
that K(t, λ

√
t) < Ct we deduce :

E[|Xν+1
t∧µm|] 6

(
Cν

[
(ν + 1)a+

1

2
ν(ν + 1)σ2

]
+ C

)
ektν+1

Finally, continuity of the �ow and Fatou lemma give the result.
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Using this result (15) will be a consequence of the following theorem

Lemma 4.4. Let ν, µ ∈ N, x ∈ [0, C∗(t)[ with C∗(t) = O
t→0

(t) and (Yt)t>0 ∈ R+ a random

process such that ∀q = 1, ..., ν,E[Y q
t ] = E[Xq

t ] with (Xt)t>0 the CIR process de�ned in (77) and
∀q ∈6 ν + 1, there exists Cq > 0, tYq ∈ [0, 1], ∀t ∈ [0, tYq ],E[|Yt|q] 6 Cqt

q. Then the scheme
with transition probability P(YT/n ∈ dx) satis�es (15) with h = p = ν + 1.

Proof. Let us write the Taylor expansion of f in point Yt :

f(Yt) = f(0) +
ν∑
l=1

Y l
t

l!
f (l)(0) +

∫ Yt

0

(Yt − y)ν

ν!
f (ν+1)(y)dy

Since (Yt)t>0 matches the �rst ν moments of the CIR we have :

E[f(Xt)− f(Yt)] = E
[∫ Xt

0

(Xt − y)ν

ν!
f (ν+1)(y)dy −

∫ Yt

0

(Yt − y)ν

ν!
f (ν+1)(y)dy

]
Moreover, Xt has uniformly bounded moments and f ∈ C∞b (R+), so using the Lemma 4.3, we
have

E[f(Xt)− f(Yt)] 6 C‖f‖ν+1,∞E
∣∣∣∣Xν+1

t

ν!
+
Y ν+1
t

ν!

∣∣∣∣
6 C‖f‖ν+1,∞t

ν+1

and the proof is completed.

The proof of (92) is a direct application of this theorem for ν = 3 and Y given by (90).

4.3.2 Convergence for measurable test function

Using the results of the previous section we are now able to study the total variation conver-
gence of the CIR scheme with weak order 2. We will be able to prove the convergence for
bounded measurable function but with support strictly contained in R+. We now introduce
this space. Let d2 > d1 > 0 and de�ne

Dcir = [d1, d2] (94)

Now, we provide a way to estimate the norms ‖ψ̃‖1,r,∞, r ∈ N∗. The �rst lemma treats several
cases of interest given the form of the coe�cients Vi.

Lemma 4.5. Let D a compact subset of Rd, T a compact subset of R, and v ∈ (0, 1). We
assume that φDv de�ned in (57) satisfy |φDv (x)| 6 |2x|.

A. We take aV , bV ∈ Rd and V (x) = aV + 〈bV , x〉. We denote by ΦV D,v the solution of (68)
with V replaced by V D,v. Let q ∈ N and α, β two multi indexes such that |α|+ |β| 6 q.
Then, there exists C > 1 such that, for all x ∈ Rd,

sup
t∈T
|∂αx∂

β
t ΦV D,v(x, t)| 6

{
C(1 + v−|α|+1) exp(C|bV |/v|α|)(a|β|V + b

|β|
V ), if α > 1

C(|aV |q + |bV |q)(|x|+ ‖V D,v‖∞), if α = 0
(95)
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B. Let ζ ∈ (0, 1) such that 1/(1− ζ) ∈ N, and assume that V (x) = xζ.We denote by ΦV D,u

the solution of (68) with V replaced by V D,u. Let q ∈ N and α, β two multi indexes such
that |α|+ |β| 6 q. Then, there exists C > 1 such that, for all x ∈ Rd,

sup
t∈T
|∂αx∂

β
t ΦV D,v(x, t)| 6 C(1 + v−ζ/(1−ζ)−|α|)(1 + |x|1−ζ−|α|) exp(Cv−ζ/(1−ζ)) (96)

Proof. In order to simplify the notations, we consider that d = 1. The proof for the multi
dimensional case follows the same line so we will leave it out. We focus on A. �rst. Using
(68), we have

ΦV D,v(x, t) = x+

∫ t

0

V D,v(ΦV D,v(x, s))ds = x+ aV t+

∫ t

0

bV φ
D
v (ΦV D,v(x, s))ds

First we study the derivatives with respect to x. If we assume that. It follows that

∂xΦV D,u(x, t) = 1 +

∫ t

0

bV ∂xφ
D
v (ΦV D,v(x, s))∂xΦV D,v(x, s)ds

Now, we use (57) and it follows that

|∂xΦV D,v(x, t)| = 1 +
C|bV |
v

∫ t

0

|∂xΦV D,v(x, s)|ds.

Now, using the Gronwall inequality, we conclude |∂xΦV D,u(x, t)| 6 exp(C|bV |t/u). Using a re-
cursive approach we obtain for higher orders |∂αxΦV D,u(x, t)| 6 C(1+u−|α|+1) exp(C|bV |t/v|α|).
Now, we study the derivative with respect to t. First, we notice that ΦV D,v(x, t) 6 |x| +
t‖V D,v‖∞. From (68), we have ∂tΦV D,v(x, t) = aV + bV φ

D
v (ΦV D,v(x, t)) and we use these for-

mula several times together with |φDv (x)| 6 |2x|, in order to obtain (95).
Now, we prove B. Using (68) up to order l = 1/(1− ζ), if we denote Id the identity function
(that is Id(x) = x), we obtain

ΦV D,v(x, t) =
l−1∑
i=0

ti

i!
(V D,v)iId(x) +

1

l!

∫ t

0

(t− s)l−1(V D,v)l(ΦV D,v(x, s))ds

Now we remark that for an operator V , if l > 2, V iId(x) can be written has

V iId(x) =
i−1∑
j=1

∑
|γ|=i−1

γ∈{1,·,l}i−j

Cj,γV (x)j
i−j∏
m=1

∂γmx V (x),

with Cj,γ ∈ R. Applying this decomposition to V (x) = (φDv (x))γ and i = l, we show that
(V D,v)lId(x) is a linear function of φDv (x) and moreover (V D,v)lId(x) 6 Cv−l+1(1 + |(φDv (x)|).
Finally, we have for i < l,
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|∂αx (V D,v)iId(x)| =|∂αx
i−1∑
j=1

∑
|γ|=i−1

γ∈{1,·,l}i−j

Cj,γV
D,v(x)j

i−j∏
m=1

∂γmx V D,v(x)|

6C(1 + v−i−|α|+1)(1 + |φDv (x)|i(ζ−1)+1−|α|) 6 C(1 + v−i−|α|+1)(1 + |x|i(ζ−1)+1−|α|)

It remains to use the Gronwall lemma and we conclude

|∂αxΦV D,v(x, t)| 6 C(1 + tl−1v−l−|α|+1)(1 + |x|(l−1)(ζ−1)+1−|α|) exp(Ctlv−l+1),

and (96) follows using the same approach as in the proof of A.

From Lemma 4.5, we immediatly obtain the following estimates

Lemma 4.6. Let v ∈ (0, 1], r ∈ N∗ and ψ̃cir the function de�ned as in (80) with V0,cir and

V1,cir replaced by V Dcir,v0,cir and V Dcir,v1,cir . Then, there exists Cr > 0 such that we have

‖ψ̃cir‖1,r,∞ 6 Cr(1 + d
1/2−r
1 + d2)(1 + v−r−1) exp(Cr/v

r) (97)

with ψ̃ de�ned in Lemma 4.6. Moreover, we have Cq(V
Dcir,2v
cir ) 6 Cv−q(1 + d

−q/2
1 + d2), and

the following ellipticity condition holds:

|V Dcir,v1,cir (x)|2 > σ2d1 > 0. (98)

Now, we have all these estimates, we can state our main result for the second weak order
convergence of the CIR process for bounded measurable functions.

Theorem 4.4. Let v ∈ (0, 1] and 0 < d1 6 d2, δ ∈ (0, T ). We us assume that (Xt)t>0 is the
process given by (77) and (Xn

t )t∈πT,n is de�ned by (81) if 4a > σ2 and (90) otherwise. Now,
let n0 ∈ N∗ such that 2T/n0 6 δ, (K(T/n0, 3/

√
n0) − 2v)+ < d1 and that assumptions (49)

and (50) hold with n = n0 and ψ replaced by ψ̃cir, that is:

3‖ψ̃cir‖1,3,∞

n
1/4
0

+
M8(Z)

n0

+ exp(−m2
∗n0δ/(2T )) 6

1

2
, n

1/2
0 > 3

2N+2

λ∗
‖ψ̃cir‖2

1,3,∞.

We also assume that (65) holds with n = n0.

Then, there exists C, β > 0, l∗ ∈ N for all bounded measurable test function f on Rd with
supp(f) ⊂ D2v

cir = [d1 + 2v, d2 − 2v], and n > n0, then

E[f(XT (x))− f(Xn
T (x))] 6C(exp(−v

2/2− δ2a2 ∨ (kd2)2

δσ2d2

) + exp(−CZC
−1
1 v4 exp(C1/v)

2δ(1 + d
−1/2
1 + d2)2

))‖f‖∞

+C(1 + |x|β)
Υ(v, d1, d2)l∗

(δd1)42
‖f‖∞/n2. (99)
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with Cr, r ∈ N∗, is introduced in Lemma 4.6, CZ is de�ned in (66) and,

Υ(v, d1, d2) = v−6(1 + d2 + d−3
1 )K0,9(v, d1, d2), (100)

with

K0,r(v, d1, d2) =Cr(1 + (1 + v−r−1)(1 + d
1/2−r
1 + d2) exp(Cr/v

r)) (101)

× exp
(
C3(1 + v−4)(1 + d

−5/2
1 + d2) exp(C3/v

3)
)
.

Proof. The proof follows from Theorem 3.1 (with Remark 3.1) and Lemma 4.6 since one can
easily veri�es that (Reg(ψcir, ψ̃cir, v, q, n0, δ)) holds.

Now, we give a structural result in order to obtain convergence for the total variation distance
for the CIR process with quasi order 2.

Corollary 4.1. Let v ∈ (0, 1] and 0 < d1 6 d2, δ > 0, n0 ∈ N. We assume that the hypothesis
from Theorem 4.4 are ful�lled with those parameters and that there exists a sequence (ρn)n∈N
taking positive values such that for all n > n0,

δ ∈ [δ(n, v, d1, d2), δ(n, v, d1, d2)] (102)

with

δ(n, v, d1, d2) =
exp

(
21−1l∗C3(1 + v−4)(1 + d

−5/2
1 + d2) exp(C3/v

3)
)

d1ρ
1/42
n

and

δ(n, v, d1, d2) =
v2

4σ2d2 ln(n)
∧ ln(ρn)σ2d2

(a ∨ kd2)2
∧ v4CZC

−1
1

(1 + d
−1/2
1 + d2)24 ln(n)

Then, there exists C, β > 0, such that for all bounded measurable test function f with supp(f) ⊂
D2v
cir = [d1 + 2v, d2 − 2v], and n > n0,

E[f(XT (x))− f(Xn
T (x))] 6 C(1 + |x|β)‖f‖∞ρn/n2. (103)

The reader may �rst notice that for ρn = ln(n)ζ , ζ > 42, we have δ(n, v, d1, d2) 6 δ(n, v, d1, d2)
for n large enough and we can �nd δ which satis�es the hypothesis from Theorem 4.4 and
(102) and for all bounded and measurable test function f with supp(f) ⊂ [d1 + 2v, d2 − 2v)

E[f(XT (x))− f(Xn
T (x))] 6 C(1 + |x|β)‖f‖∞ ln(n)ζ/n2. (104)

Moreover, through the sequence (ρn)n∈N, this result show that we can consider asymptotic
cases that are v → 0, d1 → 0 or d2 →∞. It is possible to do it expressing those parameters as
functions of n. Using the de�nition of δ and δ, it is then immediate to identify the speeds of
convergence of v(n)→ 0, d1(n)→ 0 or d2(n)→∞, with respect to n, which enable to obtain
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(102) and the hypothesis of Theorem 4.4.

In particular, let ε > 0 and de�ne ρn = nε. We �x d1 and v and put

d2(n) =
1

2
ln(nε/42)Cv with Cv = exp(−C3/v

3)/(21−1l∗C3(1 + v−4))

We observe that in this case δ(n, v, d1, d2(n)) = On→∞(n−ε/84) and δ(n, v, d1, d2(n)) = On→∞(ln(n)−3)
so for n large enough we can �nd δ > 0 wich satis�es the hypothesis from Theorem 4.4 and
(102). Moreover, since (Xt)t>0 is an a�nce process, for every λ > 0, we have P(Xt > d2(n)−
v) 6 E[exp(λXt)] exp(−λ(d2(n)− v)), with supt∈[0,T ] E[exp(λXt)] <∞. Since the same prop-
erty holds for the scheme, we put λ = 168/(εCv) and it follows that for there exists n0 ∈ N,
C, β > 0, such that for all bounded and measurable test function f with supp(f) ⊂ [d1+2v,∞),
and n > n0, we obtain

E[f(XT (x))− f(Xn
T (x))] 6 C(1 + |x|β)‖f‖∞/n2−ε + C‖f‖∞/n2 (105)

It is much more di�cult to obtain this type of result for test function with support contained
in (0,∞) since we do not have such estimates in the neighborhood of zero.

Proof of Corrolary 4.1. The result is a consequence of Theorem 4.4. First, we remark that
there exists C > 1 such that

d−42
1 Υ(v, d1, d2)l∗ 6C exp

(
2l∗C3(1 + v−4)(1 + d

−5/2
1 + d2) exp(C3/v

3)
)
,

where Υ is de�ned in (100). Since δ > δ(n, v, d1, d2), it follows that

Υ(v, d1, d2)/(d1δ)
42 6 Cρn

We study the other term in (99). Since δ 6 δ(n0, v, d1, d2), it follows that

exp(−v
2/2− δ2a2 ∨ (kd2)2

δσ2d2

)+ exp(−CZC
−1
1 v4 exp(C1/v)

2δ(1 + d
−1/2
1 + d2)2

)

6Cρn/n
2 + C/n2 exp(C1/v) 6 Cρn/n

2,

which completes the proof.
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