Verification of parameterized communicating automata via split-width
Résumé
We study verification problems for distributed systems communicating via unbounded FIFO channels. The number of processes of the system as well as the communication topology are not fixed a priori. Systems are given by parameterized communicating automata (PCAs) which can be run on any communication topology of bounded degree, with arbitrarily many processes. Such systems are Turing powerful so we concentrate on under-approximate verification. We extend the notion of split-width to behaviors of PCAs. We show that emptiness, reachability and model-checking problems of PCAs are decidable when restricted to behaviors of bounded split-width. Reachability and emptiness are Exptime-complete, but only polynomial in the size of the PCA. We also describe several concrete classes of bounded split-width, for which we prove similar results.
Domaines
Théorie et langage formel [cs.FL]Origine | Fichiers produits par l'(les) auteur(s) |
---|