
HAL Id: hal-01408041
https://hal.science/hal-01408041

Submitted on 14 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of parameterized communicating automata
via split-width

Marie Fortin, Paul Gastin

To cite this version:
Marie Fortin, Paul Gastin. Verification of parameterized communicating automata via split-width.
19th International Conference on Foundations of Software Science and Computation Structures (FoS-
SaCS 2016), Apr 2016, Eindhoven, Netherlands. pp.197-213, �10.1007/978-3-662-49630-5_12�. �hal-
01408041�

https://hal.science/hal-01408041
https://hal.archives-ouvertes.fr

Verification of parameterized communicating
automata via split-width

Marie Fortin and Paul Gastin

LSV, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
mfortin@ens-cachan.fr, gastin@lsv.ens-cachan.fr

Abstract. We study verification problems for distributed systems com-
municating via unbounded FIFO channels. The number of processes of
the system as well as the communication topology are not fixed a priori.
Systems are given by parameterized communicating automata (PCAs)
which can be run on any communication topology of bounded degree,
with arbitrarily many processes. Such systems are Turing powerful so we
concentrate on under-approximate verification. We extend the notion of
split-width to behaviors of PCAs. We show that emptiness, reachability
and model-checking problems of PCAs are decidable when restricted to
behaviors of bounded split-width. Reachability and emptiness are Ex-
ptime-complete, but only polynomial in the size of the PCA. We also
describe several concrete classes of bounded split-width, for which we
prove similar results.

Keywords: Parameterized distributed systems, Model checking, Split-width,
Message sequence charts

1 Introduction

We study verification problems for parameterized communicating automata
(PCAs), which model distributed systems consisting of arbitrarily many identi-
cal processes, distributed on some communication topology. Each process runs
a copy of the same finite automaton, that can send and receive messages from
other processes through FIFO channels. Though the system may contain un-
boundedly many processes, we assume that each process may only communicate
with a bounded number of other processes.

PCAs were introduced in [5] to study logical characterizations of parameter-
ized systems. They extend communicating finite-state machines [8]. While the
latter assume a fixed and known communication topology, a PCA can be run
on any communication topology of bounded degree. Communicating finite-state
machines are already Turing equivalent, and thus their verification is undecid-
able. The fact that PCAs can be run on arbitrarily large topologies induces
other sources of undecidability. For instance, a Turing machine can be simulated
on grid topologies by a PCA performing a bounded number of actions on each
process. Thus, some restrictions on the topologies are necessary. Yet, even when

fixing a simple class of topologies such as pipelines, and imposing rendez-vous
synchronization, reachability of PCAs is undecidable [6].

In order to regain decidability, we focus on under-approximate verification.
The idea is to restrict the verification problems to meaningful classes C of be-
haviors. Typically, we are interested in the following problem: given a PCA S,
is there a topology T and a behavior in C over T on which S reaches some
local/global state? Our aim is to study under-approximation classes C for which
verification problems of PCAs becomes decidable. Even when we cannot cover
all behaviors of a system with a decidable class, under-approximate verification
is still very useful to detect bugs. Usually, the classes Ci are parameterized and
cover more and more behaviors when the parameter i increases.

The behaviors of PCAs are described by message sequence charts (MSC) [17],
that is, graphs describing the communications between the different processes.
Each node of the graph corresponds to an action performed by some process
(sending or receiving a message), and the dependencies between the different
actions are indicated by the edges of the graph. For model-checking, the specifi-
cations of our systems are typically given as monadic second order logic (MSO)
or propositional dynamic logic (PDL) formulas over MSCs.

It is known that for any MSO definable class of bounded degree graphs,
having a decidable MSO theory is equivalent to having bounded tree-width [9].
This applies to classes of MSCs, and characterizes decidability of MSO model-
checking. However, showing a bound on tree-width is in general difficult. In the
case of MSCs over a fixed architecture, an alternative notion called split-width
has been introduced [1,2]. Split-width is equivalent to tree-width on MSCs, but
easier to use. It provides means to define uniform decision procedures, applying
to many well-studied restrictions of communicating finite-state machines [10].

Following this approach, we generalize the definition of split-width, and we
extend existing results over fixed architectures to the parameterized case. The
idea of split-width is to decompose an MSC into atomic pieces, that is, pairs
of matching send and receive events. This is done using two operations: split-
ting some edges between consecutive events of a same process, and dividing the
resulting graph into disjoint components. Intuitively, an MSC has bounded split-
width when this can be done while splitting a bounded number of edges at each
step, on a bounded number of processes.

We show that emptiness and reachability of PCAs restricted to MSCs of
bounded split-width are decidable. These problems are Exptime-complete but
only polynomial in the size of the PCA. Our decision procedures are based on an
interpretation of MSCs of bounded split-width into binary trees, and reductions
to tree automata verification problems.

In the extended version [?] we also prove that model-checking restricted to
bounded split-width is decidable. For MSO specifications, it has non-elementary
complexity. However, the under-approximate model-checking is respectively Ex-
ptime-complete and 2-Exptime complete for CPDL (PDL with converse) and
ICPDL (PDL with converse and intersection). In all cases, the problem is still
polynomial in the size of the PCA.

2

Further, we give several examples of concrete classes of MSCs with bounded
split-width, for which we show similar decidability and complexity results. In
particular, we consider existentially bounded or context bounded behaviors. But
our approach based on split-width is generic since it can be easily adapted to
other under-approximation classes, and it relaxes the assumptions of [6,7] which
only considered rendez-vous syncronization and pipeline, ring, or tree topologies.
In the case of context bounds, we show that it is sufficient to assume that the
communication topology has bounded tree-width. In the general case of bounded
split-width, we do not assume any restriction on the topology (apart from being
of bounded degree). But it should be noticed that a bound on split-width already
implies a bound on the tree-width of the communication topology.

Related work. Various models of parameterized systems have been considered
in the literature. In several cases, the assumptions of the model are sufficient
to get decidability results without additional restrictions on the behaviors. Ex-
amples include token-passing systems [3,15], models with a global store without
locking [14], message-passing systems communicating synchronously via broad-
cast [12, 13], or communicating via rendez-vous [4]. An important distinction
between the latter and PCAs is that PCAs use point-to-point communication:
a process can distinguish between its neighbors, and specify the recipients of its
messages. This makes the model more expressive, but also leads to undecidabil-
ity.

The emptiness and model-checking problems for PCAs have been considered
in [6] and [7], respectively. Both papers assume rendez-vous synchronization, and
a fixed class of topologies: pipelines, rings, or trees. Several notions of contexts are
introduced, and decision procedures are described for the corresponding classes
of context-bounded behaviors.

Communicating finite-state machines (over fixed topologies) have been more
extensively studied, and several restrictions are known to bring back decidability.
Our work generalizes some of them to the parameterized setting, namely, con-
text bounds (introduced in [18] for multi-stack concurrent systems), existential
bounds [16], and bounded split-width [2].

Split-width was first introduced for multi-pushdown systems [11], and then
generalized to communicating multi-pushdown systems [2].

Outline. In Section 2, we define topologies, PCAs, and MSCs. In Section 3,
we introduce split-width. In Section 4, we give several examples of classes of
bounded split-width, and state our results for the reachability problems of those
classes. In Section 5, we present in more details the decision procedures leading
to these results. In Section 6, we briefly present how they can be extended to
decide model-checking problems, and discuss possible extensions of our model.

2 Parameterized communicating automata

We describe our formal model for communicating systems: we introduce topolo-
gies, MSCs, and parameterized communicating automata. Our definitions are
taken from [5], except that we abstract away idle processes.

3

Topologies. We model distributed systems consist-
ing of an unbounded number of processes. Each pro-
cess is equipped with a bounded number of interfaces,
through which it can communicate with other pro-
cesses. A topology is a graph, describing the connec-
tions between the different processes (each of which is
represented by a node in the graph, see example on
the right). Throughout the paper, we assume a fixed
nonempty finite set N = {a, b, . . .} of interface names
(or, simply, interfaces).

a

b a

b

a

ba
b

c

a
b

c

b

d

b c

Definition 1. A topology over N is a pair T = (P,) where P is the
nonempty finite set of processes and ⊆ P × N × N × P is the edge re-
lation. We write p a b q for (p, a, b, q) ∈ , which means that the a-interface
of p is connected the b-interface of q. We require that, whenever p a b q, the
following hold:

(a) p 6= q (there are no self loops),

(b) q b a p (adjacent processes are mutually connected), and

(c) for all a′, b′ ∈ N and q′ ∈ P such that p a′ b′ q′, we have a = a′ iff q = q′

(an interface is connected to at most one process, and two distinct interfaces
are connected to distinct processes).

Message sequence charts. The possible behaviors of our systems are de-
picted as message sequence charts. A message sequence chart consists of a set of
processes, and, for each process, of a sequence of events. Each event corresponds
to an action of the process (sending or receiving a message through a given in-
terface), and matching send and receive events are connected by a message edge.

Events are labeled with elements of Σ
def
= {a? | a ∈ N}∪ {a! | a ∈ N}, according

to the type of action they execute.

Definition 2. A pre-message sequence chart (pre-MSC) over the set of inter-
faces N is a tuple M = (P,E,→,C, π, λ), where

– P and E are nonempty finite sets of processes and events, respectively.
– π : E → P is a surjective map determining the location of an event. For

p ∈ P , we let Ep
def
= {e ∈ E | π(e) = p}.

– λ : E → Σ associates with each event the type of action that it executes. We

let E?
def
= {e ∈ E | ∃a ∈ N .λ(e) = a?}, and E!

def
= {e ∈ E | ∃a ∈ N .λ(e) = a!}.

– → is a union
⋃
p∈P →p, where each →p ⊆ Ep × Ep is the direct-successor

relation of some total order on Ep.
– C ⊆ E!×E? defines a bijection from E! to E?. Moreover, for each (e, f) ∈ C,
π(e) 6= π(f).

Given such a pre-MSC, we define TM
def
= (P, {(p, a, b, q) ∈ P × N 2 × P |

∃(e, f) ∈ Ep×Eq. (eCf∧λ(e) = a!∧λ(f) = b?) or (fCe∧λ(e) = a?∧λ(f) = b!)}).
Not all pre-MSCs correspond to actual behaviors of systems. To define MSCs,

we additionally require that the events are coherently ordered, and that com-
munications are compatible with some topology and follow a FIFO policy.

4

p1 p2 p3

a!

b?a!

b?

b!

a?

a! b?

b!a?

Fig. 1. An MSC with 3 processes

p1 p2

a!

b?

b!

a?

p1 p2 p3

a! b?

a! c?

Fig. 2. pre-MSCs that are not MSCs

Definition 3. A message sequence chart (MSC) over N is a pre-MSC M =

(P,E,→,C, π, λ) such that the relation ≤ def
= (→∪C)∗ is a partial order, and:

– TM as defined above is a topology, called the observable topology of M .
– For all e1Ce2, f1Cf2 s.t. π(ei) = π(fi), we have e1 ≤ f1 iff e2 ≤ f2 (FIFO).

An MSC M is called compatible with a topology T when TM is a subgraph
of T . Intuitively, an MSC is compatible with a topology T when it can be
interpreted as a behavior over T , in which some processes may be inactive or
may not use all their interfaces. We denote by MSC the set of all MSCs over N ,
and by MSCT the set of all MSCs compatible with a topology T .

Example 4. An example MSC is depicted in Figure 1. The vertical lines represent
the succession of events on a given process, and C-edges are depicted by arrows.

Parameterized communicating automata. The idea is that each process of
a topology runs one and the same automaton, whose transitions are labeled with
actions of the form a!m, which emits a message m through interface a, or a?m,
which receives m from interface a. The acceptance condition of a parameterized
communicating automaton is given as a boolean combination of conditions of
the form “at least n processes end in state s”, written 〈#(s) ≥ n〉.

Definition 5. A parameterized communicating automaton (PCA) over N is
a tuple S = (S, ι,Msg , ∆, F) where S is the finite set of states, ι ∈ S is the
initial state, Msg is a nonempty finite set of messages, ∆ ⊆ S × (Σ ×Msg)×S
is the transition relation, and F is the acceptance condition, a finite boolean
combination of statements of the form 〈#(s) ≥ n〉, with s ∈ S and n ∈ N.

The size |F | of the acceptance condition of S is defined as the length of its
encoding, where all integer values are written in binary.

Let M = (P,E,→,C, π, λ) be an MSC. A run of S on M will be a mapping
ρ : E → S satisfying some requirements. Intuitively, ρ(e) is the local state of
π(e) after executing e. To determine when ρ is a run, we define another mapping,
ρ− : E → S, denoting the source state of a transition: whenever f → e, we let
ρ−(e) = ρ(f); moreover, if e is →-minimal, we let ρ−(e) = ι. With this, we say
that ρ is a run of S on M if, for all (e, f) ∈ C, there is a message m ∈ Msg
such that (ρ−(e), (λ(e),m), ρ(e)) ∈ ∆, and (ρ−(f), (λ(f),m), ρ(f)) ∈ ∆. A run

5

Fig. 3. Undecidability with pipelines
and rendez-vous synchronization

Fig. 4. Undecidability with a bounded number
of actions on each process, using grid topologies

ρ is accepting if it satisfies the acceptance condition. In particular, ρ satisfies
〈#(s) ≥ n〉 when |{e ∈ E | e is →-maximal and ρ(e) = s}| ≥ n.

The set of MSCs that allow for an accepting run is denoted by L(S). Given
a topology T , we let LT (S) = L(S) ∩MSCT .

Remark 6. We could add labels from a finite alphabet to the events of MSCs
and to the transitions of PCAs. Such labels can be handled similarly to the
λ-labeling, and all our results can easily be adapted to this setting. Similarly,
allowing internal transitions for PCAs would not add any technical difficulties.

Verification problems. The non-emptiness problem asks, given a PCA S,
whether its language L(S) is non empty; or in other words, whether LT (S) 6= ∅
for some topology T . The (local) reachability problem asks, given a PCA S and
a state s of S, whether there exists a run of S in which some process reaches
the state s. It can be seen as a special instance of the non-emptiness problem,
by modifying the acceptance condition of S to 〈#(s) ≥ 1〉.

Notice that the non-emptiness problem LT (S) 6= ∅ for a fixed topology
T is already undecidable, since two finite automata connected by two queues
can easily simulate a Turing machine. Furthermore, many decidable restrictions
over fixed topologies remain undecidable in the parameterized case: for instance,
bounding the number of contexts, or even of actions, performed by each pro-
cess, or imposing rendez-vous synchronization (even when restricted to pipeline
topologies [6]). The idea is that the unbounded number of processes can be used
to construct a PCA whose behaviors are grid-like MSCs of arbitrary height and
width (see Figures 3 and 4). It is then easy to encode runs of a Turing machine:
the unbounded horizontal direction encodes the tape of the machine, and the
vertical direction its evolution with time.

In the remaining of the paper, we will study several decidable underapprox-
imations of the problem. For a family (Ci)i of classes of MSCs (for the concrete
families studied in Section 4, the index i is a tuple of integers), we define the
problem C-NonEmptiness as follows (and similarly, C-Reachability):

Input: i in unary, a set of interfaces N , a PCA S over N .
Question: L(S) ∩ Ci 6= ∅ ?

6

M

a!

b?

b!

a?

a!

b?

b!

a?

a! b?

a! b?

M ′

a!

b?

b!

a?

a!

b?

b!

a?

a! b?

a! b?

M1

a!

b?

b!

a?

a!

b?

b!

a?

M ′
1

a!

b?

b!

a?

a!

b?

b!

a?

M3
a!

b?

b!

a?

M ′
3

a!

b?

b!

a?

M4
a!

b?

b!

a?
M5

...

a! b?

a! b?
M2

a! b?

a! b?
M ′

2

a! b? a! b? M7

Fig. 5. A split decomposition of width 4

(n) !-split
(ε)

(n′) tt-div
(B`BrB`)

(n1) !-split
(ε,B1B1)

(n′
1) tt-div
(B`Br, B`Br)

(n3) !-split
(B2, B2)

(n′
3) tt-div
(B`Br, BrB`)

(n4) C
(B!, B?)

a! b? (e)

C (n5)
(B?, B!)

a! b?

...

!-split (n2)
(B1, ε)

tt-div (n′
2)

(B`, B`Br)

(n6) C
(B!, B?)

(f) a! b?

C (n7)
(B!)

a! b?

Fig. 6. 4-DST associated with the de-
composition of Figure 5

3 Split-width

In this section, we introduce the notion of split-width, and state our decidability
result for MSCs of bounded split-width. The main motivation behind split-width
is that it allows to design generic decision procedures that apply to many under-
approximation classes, instead of having to develop for each class a specific
decision procedure with its complexity. Several examples of classes of MSCs
that are captured with split-width will be given in Section 4.

The idea of split-width is to decompose an MSC into atomic pieces consist-
ing of a pair of matching send and receive events, using two operations: split
(removing some process edges of the MSC), and divide (separating the resulting
graph into two independent parts). This is described below as a two-player game.
First, we introduce the notion of split MSC (an MSC missing some of its process
edges).

7

Definition 7. A split (pre-)MSC is a tuple M = (P,O,E,→, 99K,C, π, λ),
where (P,E,→ ∪ 99K,C, π, λ) is a (pre-)MSC, 99K ∩ → = ∅, O ⊆ P is the
set of open processes of M , and every split process is open, i.e., {p ∈ P |
(Ep)

2 ∩ 99K 6= ∅} ⊆ O.

The 99K edges are called elastic, and the→ edges rigid. Processes of P \O are
called closed. The intuition is that an open process of M is a process that may
be missing some of its events or process edges, and an elastic edge represents a
missing part of a process between two events. Any MSC can be seen as a split
MSC, by taking O and 99K empty.

A block of a split (pre-)MSC M is a maximal connected component of (E,→)
on some open process. In particular, M has exactly |O|+ |99K| blocks.

Several split MSCs are depicted in Figure 5. Elastic edges are represented by
red dotted lines. Open processes are indicated by dotted lines at their extremi-
ties. For instance, M ′ has one open process with 3 blocks, and M ′2 has 2 open
processes, with resp. 1 and 2 blocks.

We call splitting an edge of M the action of making elastic some rigid edge
e→ f of M . The resulting split MSC is M ′ = (P,O∪{π(e)}, E,→\{(e, f)}, 99K∪
{(e, f)},C, π, λ). For instance in Figure 5, M ′ is obtained by splitting two process
edges of M .

We say that M can be divided into M1 = (P1, O1, E1,→1, 99K1, π1, λ1) and
M2 = (P2, O2, E2,→2, 99K2, π2, λ2) when M1 and M2 are split (pre)-MSCs, and
E = E1] E2, → = →1]→2, C = C1]C2, π = π1] π2, λ = λ1] λ2, and for
i ∈ {1, 2}, Oi = O ∩ Pi and 99Ki ⊆ (→∪ 99K)+. For instance, in Figure 5, M ′

can be divided into M1 and M2. A connected component of M is a split MSC
M1 = (P1, O1, E1,→1, 99K1, π1, λ1) such that E1 is a connected component of
(E,→∪C). Then, either M = M1 or M can be divided into M1 and some M2.

Split-game. Let M be a split MSC with at most k blocks. A split-game with
budget k on M is a two player game in which the existential player (Eve) tries
to prove that M has split-width at most k, while the universal player (Adam)
tries to disprove it. Eve begins by trying to disconnect M by splitting some
of its process edges, with the condition that the resulting split MSC M ′ has
at most k blocks. Adam then chooses a connected component M ′′ of M ′, and
the game resumes on M ′′. Eve wins a play if it ends in an atomic MSC, i.e. a
pair of matching send and receive events. She loses if she cannot disconnect a
non-atomic MSC without introducing more than k blocks.

The split-width of an MSC M is the minimal k such that Eve wins the split-
game with budget k on M . It is defined identically for pre-MSCs. We denote by
SWk the set of MSCs of split-width at most k.

Example 8. Eve wins the split-game with budget 4 on M (see Figure 5). She
starts by splitting two process edges of M , which results in the split MSC M ′

with three blocks. M ′ has two connected components, M1 and M2, providing
two choices for Adam. If he chooses M2, Eve wins by cutting the only remaining
process edge: both connected components of the resulting M ′2 are atomic. If he
chooses M1, Eve split the middle process edge on the first process, which creates

8

two more blocks, and results in a total of four blocks. M ′1 has two isomorphic
connected components, so Adam’s choices are all equivalent. Eve can then cut
the two remaining process edges while still respecting her budget of four blocks.

Shuffle and merge. One can also give a bottom-up description of split-width.
The duals of the split and divide operations are called respectively merge (!)
and shuffle (tt). !(M) is the set of split MSCs that can be obtained by making
some elastic edges ofM rigid, and/or closing some of its open processes.M1ttM2

is the set of split MSCs M such that M can be divided into M1 and M2.
An MSC has split-width at most k when it can be obtain by combining

atomic MSCs with shuffle and merge operations, while keeping the number of
blocks at most k at each step.

Remark 9. The notion of open and closed processes is new. Our bound on the
number of blocks (i.e. the number of open processes plus the number of elastic
edges) replaces the bound on the number of elastic edges only that was used
in [1,2] for the split-width of MSCs over fixed architectures. When the topology
T is fixed, the two definitions are equivalent since the number of open processes
is already bounded by the number of processes in T . This is no longer true in the
parameterized case. For instance, the families of MSCs defined in Figures 3 and
4 can be decomposed into atomic pieces while using only two elastic edges, but
this introduces an unbounded number of open processes. In fact, they embed a
grid, hence they should have unbounded width.

Remark 10. For MSCs, split-width is equivalent to tree-width and clique-width:
there are linear bounds between the three measures (the proof is an easy adap-
tation from the non-parameterized case [10]). The motivation for introducing
split-width rather than using existing measures on graphs is that it allows to
take into account the specificities of MSCs, and is thus both simpler to under-
stand and to use. In particular, using tree-width or clique-width would result in
more involved automata constructions in Section 5.

Notice also that a bound on the split-width of an MSC M induces a bound
on the tree-width of the observable topology TM (See Theorem 20).

Decidability. The non-emptiness problem becomes decidable when restricted
to MSCs of bounded split-width. Roughly, the proof goes as follows. First, we
show that trees representing Eve’s winning strategies can be abstracted by trees
over a finite alphabet (that depends only on the bound k on split-width). Then,
we reduce the verification problems for PCAs to emptiness problems on tree
automata. The details for these constructions will be given in Section 5, and the
complexity lower bounds are proven in Appendix G. The proof is inspired from
the non-parameterized case [2], and we show that the complexity remains the
same in our setting.

Theorem 11. SW-NonEmptiness is Exptime-complete, and only polynomial
in the number of states and transitions of the input PCA.

9

4 Classes of bounded split-width

The decision procedures based on split-width are generic and apply to various
classes of MSCs (the main condition being that MSCs in the class have bounded
split-width). When the topology is fixed, this covers many well-studied restric-
tions [10]. In this section, we give two examples of such classes that can be gen-
eralized to the parameterized setting: existentially bounded MSCs, and context-
bounded MSCs. We also define a further extension of context-bounded MSCs,
called tile-bounded MSCs, and show that it is equivalent to bounded split-width.

Existentially bounded MSCs. M is called existentially k-bounded when
there exists a linearization ≤lin of its events (i.e. a total order extending ≤) such
that there are at most k process or message edges going out of any prefix of the
linearization: for all g ∈ E,∣∣{(e, f) ∈ E2 | (eC f ∨ e→ f) ∧ e ≤lin g <lin f

}∣∣ ≤ k .
In the case of MSCs over a fixed topology, this is equivalent to bounding the
number of pending messages at each prefix of the linearization, which is the usual
definition of existentially bounded. This is no longer the case when considering
topologies with an unbounded number of processes. For instance, the MSC of
Figure 3 is not existentially k-bounded. It is possible to find a linearization for
which every prefix has at most one pending message, but it is not possible to
simultaneously bound the number of non-terminated processes.

We denote by EBk the set of all existentially k-bounded MSCs over N .

Lemma 12. An existentially k-bounded MSC has split-width at most k + 2.

Proof. Eve’s strategy is as follows. She successively isolates the first events
of the linearization by splitting the process edges originating from them, until
a pair of matching send/receive events is disconnected. Adam chooses the re-
maining component, and Eve continues as before. In the split MSC obtained by
isolating the first events e1 <lin . . . <lin ei of the linearization and removing
the disconnected messages, each block either consists of a single ej (1 ≤ j ≤ i),
or only contains events that occur after ei in the linearization, and is the last
block on some open process. Blocks of the first kind are necessarily send events
whose matching receive event occurs after ei, hence they correspond to pend-
ing messages at ei. Now consider a block of the second kind, and let f be its
first event. Then f must occur after ei in the linearization (otherwise, its block
would be of the first kind). Moreover, since its process is open, there must be
some e ∈ {e1, . . . , ei} such that e → f in the initial MSC. Hence, each block of
the second kind correspond to a pending process edge at ei (the edge e → f).
Thus, there are in total at most k blocks. Eve introduces at most two extra
blocks when splitting a process edge. Hence she wins with budget k + 2. ut

Eve’s winning strategy results in a tree that is word-like [2,10], i.e., at every
binary node, one of the subtree is small (bounded size). Hence, we can use word
automata instead of tree automata, resulting in a better complexity for the
verification problems.

10

Theorem 13. EB-NonEmptiness is Pspace-complete.

Context-bounded MSCs. A context is an interval of events on a process, in
which only one interface is accessed, and in a single direction (send or receive).
More formally, let M = (P,E,→,C, π, λ) be an MSC. A context of M is a subset
c = {e1, . . . , en} of E such that e1 → · · · → en and λ(ei) = λ(ej) for all i, j.

An MSC M is k-context bounded when for all p ∈ P , there are contexts
c1, . . . , ci with i ≤ k such that Ep = c1] . . .] ci. The class of k-context bounded
MSCs has unbounded split-width. Actually, this is even the case for MSCs hav-
ing a bounded number of events on every process (see Figure 4). However, we
obtain a bound on split-width when we additionally require that the topology
has bounded tree-width (cf. Appendix B). The proof is in Appendix D.

Lemma 14. If M is a k-context-bounded MSC and TM has tree-width at most
h, then M has split-width at most k(h+ 1) + 2.

We denote by CBk,h the set of all k-context bounded MSCs over topologies
of tree-width at most h.

Theorem 15. CB-NonEmptiness is Exptime-complete, and polynomial in
the number of states and transitions of the input PCA.

Tile-bounded MSCs. We can generalize the notion of contexts introduced
above to tiles, which are independant parts of an MSC involving a bounded
number of processes. In some sense, this section gives the link between fixed
and parameterized topologies, when it comes to conditions ensuring decidabil-
ity. Intuitively, an MSC with split-width at most k over an arbitrary topology
(involving arbitrarily many processes) can be decomposed in tiles involving at
most some fixed number (k) of processes. Moreover, each tile has bounded split-
width and each process intersects at most some fixed number of tiles.

A k-tile is a split MSC T of split-width at most k and having only open
processes. In particular, T has at most k blocks, hence at most k processes.

Let M = (P,E,→,C, π, λ) be an MSC. A (k, `)-tile-decomposition of M is
a sequence T1, . . . , Tn of k-tiles such that M ∈ !(T1 tt . . . tt Tn) and every
process p ∈ P is part of at most ` tiles. An MSC is called (k, `)-tile-bounded
when it admits some (k, `)-tile-decomposition.

Example 16. A (5, 3)-decomposition with
three tiles is depicted on the right. The first
and the last process intersect with one tile,
the middle one with 3 tiles and the other
two processes intersect with two tiles. Tiles
T1 and T3 have split-width exactly 5 (note
that the first process is counted as open in
T1). Tile T2 tile has split-width 4.

T1

T2

T3

11

Example 17. A k-context bounded MSC M (see page 11) admits a (2k+2, 2|N |)-
tile-decomposition. The tile decomposition is given by defining, for each pair of
processes (p, q) connected in TM , a tile Tp,q induced by the contexts of p in
which it sends to q, and the contexts of q in which it receives from p. Notice that
a tile needs not be a connected graph. In particular, each tile has at most 2k
blocks, and can be decomposed by disconnecting one by one its messages, which
introduces at most 2 extra blocks. Each process of M takes part in at most 2|N |
tiles, one for each type (a!, a?, . . .) of contexts it has.

We obtain the same results as for context-bounded MSCs (cf. Appendix E.1).
We denote by TBk,`,h the set of (k, `)-tile-bounded MSCs M such that TM has
tree-width at most h.

Lemma 18. Let M ∈ TBk,`,h. Then M has split-width at most 2k2`2(h+ 1).

Theorem 19. TB-NonEmptiness is Exptime-complete, and polynomial in
the number of states and transitions of the input PCA.

In fact, such bounds are equivalent to bounding split-width, as shown by the
theorem below (proof is in Appendix E.2).

Theorem 20. Let M ∈ SWk. Then TM has tree-width at most k− 1, and M is
(k2 + 2k, 3|N |k)-tile-bounded.

5 Tree interpretation

We present the decision procedures leading to our complexity results. The general
idea is to encode MSCs of bounded split-width into binary trees over a finite
alphabet, and reduce our verification problems to problems on tree automata.

Split-terms. The encoding of MSCs of bounded split-width into trees is based
on the bottom-up description of split-width. Recall that an MSC has split-width
at most k if it can be constructed by combining through shuffles and merges
split MSCs with at most k blocks, the starting points being atomic MSCs. This
construction can be described by a split-term, that is, a term over the following
grammar: s ::= a! C b? | !(s) | s tt s (with a, b ∈ N).

However, since the merge and shuffle operations are ambiguous, a split-term
may correspond to several MSCs. The next step is to disambiguate these oper-
ations by adding labels to the nodes of split-terms, describing respectively how
the blocks of the children are shuffled, or which blocks are merged and which
processes are closed.

Compared to the non-parameterized case [1,2], the difficulty is that the num-
ber of processes may grow arbitrarily along the DST, instead of being fixed from
the beginning – and we still need to use labels from a bounded domain. The solu-
tion comes from the distinction between open and closed processes, and the fact
that the number of open processes stays bounded. Merge and shuffle operations
only act on open processes: a merge makes some elastic edges rigid (which are

12

all located on open processes, by definition), and/or closes some open processes.
Similarly, a shuffle of two split MSCs M1 and M2 may only combine some pairs
of open processes of M1 and M2 by shuffling their blocks and adding elastic
edges between them. It simply takes the disjoint union of closed processes.

Thus, the disambiguated labels will focus on open processes. The idea is to
describe how many blocks each process has after the operation, and the origin
of each block.

A k-disambiguated split-term (k-DST) is a split-term in which each inter-
nal node is labeled by a tuple of words (wp)1≤p≤m such that

∑m
p=1 |wp| ≤ k, and

– For a tt-node, the word wp ∈ {B`, Br}+ describes the composition of some
open process, where B` stands for a block coming from the left child, and Br
stands for a block coming from the right child (see for instance the label of
n′ in Figure 6 which describes the origin of the 3 blocks of the open process
of M ′ in Figure 5).

– For a !-node, the word wp ∈ {Bi | 1 ≤ i ≤ k}∗ describes how the blocks of
the p-th open process of its child are merged: Bi stands for a block resulting
from the merge of i consecutive blocks of the child. We use wp = ε to indicate
that process p is closed, merging all its blocks if any. For instance, in Figures 5
and 6 the label (B2, B2) of node n3 indicates that on both process of M ′3,
the two blocks are merged in M3.

– For a C-node,m ≤ 2 and the word wp ∈ {B!, B?} indicates that the p-th open
process consists of the send (resp. receive) event. If m = 2 then w1 6= w2.
For instance, n7 is labeled (B!), which means that in M7 the process of the
send event is open whereas the process of the receive event is closed.

Further examples and explanations are given in Appendix A. We denote by DSTk

the set of all k-DSTs. A k-DST is called valid when the label of each node is
coherent with the number of processes and blocks appearing in the label of its
child/children (see Appendix A for a formal definition). For instance, we cannot
have wp = B2B1 at a !-node if its child does not have 3 blocks on process p.

A valid k-DST t can be associated with a unique split pre-MSC (which is
not necessarily a split MSC) Mt = (P,O,E,→, 99K,C, π, λ), defined as follows.
E is the set of leaves of t, and λ associates with a leaf e its label. We let e C f
whenever e and f are respectively the left and right children of a same C-node.

To determine whether two leaves e and f are connected by a →-edge, we
proceed as follows. We track the block associated with leaf e, until reaching a
!-node n in which it is merged with the block on its right (see example in green
in Figure 6). Similarly, we track the block associated with leaf f , until reaching
a !-node n′ in which it is merged with the block on its left (in blue in Figure 6).
We set e → f if n = n′ and the blocks coincide. Similarly, we let e 99K f when
no merge ever occurs on the right of the block of e or on the left of the block of
f , and at the root, the block of f is located just after the block of e.

We identify processes with connected components of (E,→∪ 99K). To deter-
mine whether the process of an event e is open or closed, we walk up the tree
remembering the process of e, until reaching a !-node in which it is closed, or
the root (in which case it is open).

13

For example, in Figures 5 and 6 the split pre-MSC associated with the k-DST
starting in node ni (resp. n′i) is Mi (resp. M ′i).

The next lemma states that the conditions for Mt to be an MSC can be
checked by a tree automaton (proof given in Appendix A). We denote by DSTkmsc

the set of all valid k-DSTs t such that Mt is an MSC.

Lemma 21. One can construct in space polynomial in k and |N | a deterministic

bottom-up tree automaton Akmsc with 2O(|N |k4) states such that L(Akmsc) = DSTkmsc.

From PCAs to tree automata. Given a PCA, we can construct a tree
automaton that accepts a tree t ∈ DSTkmsc iff Mt is accepted by the PCA.

Lemma 22. Let S = (S, ι,Msg , ∆, F) be a PCA, and k ∈ N. There is a bottom-

up tree automaton AkS of size |S|O(k|F |2) such that L(AkS) ∩ DSTkmsc = {t ∈
DSTkmsc | Mt ∈ L(S)}. It can be constructed in space polynomial in k and |F |,
and logarithmic in |S| and |∆|.

Proof. AkS guesses a run of S on Mt, and inductively checks that it is a valid
accepting run. To do so, it remembers the states of S before and after each block
in the split MSC associated with the current subtree, that is, a pair (ρ−, ρ+)
of partial functions from [k] to S. (The blocks are numbered according to their
position in the concatenation w1w2 . . . wm of the words in the label of the current
node.) In addition, for each s ∈ S appearing in F , AkS remembers the number ns
of closed processes that ends in state s, up to the maximal n such that 〈#(s) ≥ n〉
appears in F . A state is accepting if it satisfies F .

At leaves, AkS remembers the type of action executed (in Σ), and at a C-

node of the form a! C b?, it guesses a message m and transitions p
a!m−−→ p′ and

q
b?m−−→ q′ of S. The functions ρ− and ρ+ of the C-node are initialized accordingly.

For instance, after reading a! C(B!,B?) b? and guessing the transitions, AkS goes
to the state where ρ−(1) = p, ρ+(1) = p′, ρ−(2) = q, ρ+(2) = q′ and ρ−, ρ+

are undefined elsewhere. After reading a! C(B?) b?, AkS checks that p = ι and
increments np′ , and moves to state ρ−(1) = q, ρ+(1) = q′.

The functions ρ− and ρ+ are updated at each tt- and !-node according to
the renaming of the blocks. At a !-node, AkS checks than whenever two blocks
b and b+ 1 are merged, ρ+(b) = ρ−(b+ 1). It also checks that each process being
closed starts in ι, and increments the counter ns of its end state s (unless it has
already reached its maximal value). ut

We then have L(S) ∩ SWk 6= ∅ iff L(AkS ∩ Akmsc) 6= ∅, which leads to an
algorithm in time polynomial in |S| and exponential in k, |N | and |F | to decide
the non-emptiness of L(S) ∩ SWk. This proves the upperbound of Theorem 11.

Classes of bounded split-with. The above decision procedure can be adapted
for any class C of MSCs of split-width at most k, provided we can construct
an automaton AC that accepts only encodings of MSCs in C, and at least one
encoding for each M ∈ C. Under those assumptions, and given a PCA S, deciding
whether L(S)∩C = ∅ e.g. reduces to deciding whether L(AkS ∩Akmsc ∩AC) = ∅.

14

Ck = EBk C(k,h) = CBk,h Ck = SWk C(k,`,h) = TBk,`,h

C-Reachability
Pspace-c Exptime-cC-NonEmptiness

C-CPDL-Sat/MC

C-ICPDL-Sat/MC Expspace-c 2-Exptime-c

C-MSO-Sat/MC Non-elementary

Fig. 7. Complexity results. All problems are only polynomial in the number of states
and transitions of the input PCA.

This applies in particular to existentially bounded MSCs, and context- or
tile-bounded MSCs over topologies of bounded tree-width. The construction of
AC is in all three cases based on the proof that C has split-width at most k (cf.
Appendix C, D and E, resp.).

Note that this would also apply for instance to any class of bounded split-
width that is recognized by a PCA.

6 Further results

Model-checking. The results presented in Sections 3 and 5 can be generalized
to model-checking problems (the details are in Appendix F). Our most gen-
eral decidability result states that the model-checking of PCAs against Monadic
Second-Order (MSO) formulas is decidable. The idea is to construct, for a given
specification ϕ, a tree automaton Akϕ that accepts a valid k-DST t iff Mt satis-
fies ϕ. The bounded split-width model-checking problem then reduces to testing
whether L(AkS ∩ Ak¬ϕ ∩ Akmsc) = ∅, and similarly for the other classes.

However, when the specification ϕ is given by an MSO formula, the con-
struction of Akϕ is non-elementary. Towards a better complexity, we study model
checking against PDL specifications. PDL is both expressive (it subsumes most
if not all temporal logics), easy to use and understand, and enjoys a very good
complexity. We show that model-checking against PDL formulas is Exptime-
complete, i.e., not harder than non-emptiness and reachability. It remains in Ex-
ptime when we extend PDL with converse (CPDL), and is 2-Exptime-complete
for ICPDL (PDL with converse and intersection). A summary of our results is
given in Figure 7.

Multi-pushdown processes. Our model could be extended by adding one
or several stacks to processes, similarly to what is done in the case of fixed
architectures [2]. We could also allow several FIFO channels between any pair
of processes. This means relaxing the definition of topologies to allow loops
or multiple edges, and similarly adapt the definition of MSCs. The definition
of split-width and k-DSTs is the same, except that at C-nodes, the send and
receive events may be placed on the same process. Our decision procedures
remain correct, with an additional check by Akmsc of the LIFO conditions on the
stacks. The results on existentially-bounded MSCs, context-bounded MSCs, or
tile decompositions are also still valid.

15

References

1. C. Aiswarya and P. Gastin. Reasoning about distributed systems: WYSIWYG
(invited talk). In FSTTCS’14, volume 29 of LIPIcs, pages 11–30. Leibniz-Zentrum
für Informatik, 2014.

2. C. Aiswarya, P. Gastin, and K. Narayan Kumar. Verifying communicating multi-
pushdown systems via split-width. In ATVA’14, volume 8837 of LNCS, pages 1–17.
Springer, 2014.

3. B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parameterized model checking
of token-passing systems. In VMCAI’14, volume 8318 of LNCS, pages 262–281.
Springer, 2014.

4. B. Aminof, T. Kotek, S. Rubin, F. Spegni, and H. Veith. Parameterized model
checking of rendezvous systems. In CONCUR 2014, volume 8704 of LNCS, pages
109–124, 2014.

5. B. Bollig. Logic for communicating automata with parameterized topology. In
CSL-LICS’14. ACM, 2014.

6. B. Bollig, P. Gastin, and A. Kumar. Parameterized communicating automata:
Complementation and model checking. In FSTTCS’14, volume 29 of LIPIcs, pages
625–637, 2014.

7. B. Bollig, P. Gastin, and J. Schubert. Parameterized Verification of Communicating
Automata under Context Bounds. In RP’14, volume 8762 of LNCS, pages 45–57.
Springer, 2014.

8. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of
the ACM, 30(2), 1983.

9. B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic -
A Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and
its applications. Cambridge University Press, 2012.

10. A. Cyriac. Verification of Communicating Recursive Programs via Split-width. PhD
thesis, ENS Cachan, 2014. http://www.lsv.ens-cachan.fr/~cyriac/download/

Thesis_Aiswarya_Cyriac.pdf.
11. A. Cyriac, P. Gastin, and K. Narayan Kumar. MSO decidability of multi-pushdown

systems via split-width. In CONCUR’12, volume 7454 of LNCS, pages 547–561.
Springer, 2012.

12. G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of ad hoc
networks. In CONCUR’10, volume 6269 of LNCS, pages 313–327. Springer, 2010.

13. G. Delzanno, A. Sangnier, and G. Zavattaro. On the power of cliques in the
parameterized verification of ad hoc networks. In FoSSaCS’11, volume 6604 of
LNCS, pages 441–455. Springer, 2011.

14. A. Durand-Gasselin, J. Esparza, P. Ganty, and R. Majumdar. Model checking
parameterized asynchronous shared-memory systems. In CAV 2015, volume 9206
of LNCS, pages 67–84. Springer, 2015.

15. E.A. Emerson and K.S. Namjoshi. On reasoning about rings. Int. J. Found.
Comput. Sci., 14(4):527–550, 2003.

16. B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model check-
ing algorithms for existentially bounded communicating automata. Inf. Comput.,
204(6):920–956, 2006.

17. ITU-TS Recommendation Z.120anb: Formal Semantics of Message Sequence
Charts, 1998.

18. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In TACAS’05, volume 3440 of LNCS, pages 93–107. Springer, 2005.

16

A Details on k-DSTs

Disambiguated split-terms. We give more detailed explanations on the la-
bels of DSTs, that should be helpful in understanding the examples and the
formalization of our constructions.

As explained in the main body of the paper, the idea is to describe how many
blocks each process has after the operation, and the origin of each block. In this
way, a tt-node is labeled by a tuple (wp)1≤p≤m, where m is the number of
open processes after the shuffle, and each wp describes the composition of some
open process. More precisely, wp is a word over {B`, Br}∗, where B` stands
for a block coming from the left child, and Br stands for a block coming from
the right child. For instance, M ′ in Figure 5 has only one open process, with
3 blocks, so the label of the associated node n′ in Figure 6 consists of a single
word w of length 3. The first and last blocks come from M1 (the left child), and
the second block comes from M2 (the right child), so w = B`BrB`. There is
no ambiguity regarding which blocks of M1 are respectively represented by the
two occurrences of B`, since the shuffle preserves by definition the order of the
blocks on each process. To handle the case of nodes with several open processes,
we add the convention that the order on the open processes (implied by the
labels of the DST) is preserved by the shuffle. For instance, the label of n′2 is
(B`, B`Br), which implies that the first open process is the first open process of
the left child, and the second open process comes from the shuffle of the second
open process of the left child, and of the first open process of the right child.

A !-node is labeled by a tuple (wp)1≤p≤m, where m is the number of open
processes before the merge. When an open process p is closed (and all its elastic
edges made rigid if it still had some), we set wp = ε. For instance, the label
of n indicates that all the elastic edges of M ′ are made rigid in M , and that
the corresponding open process of M ′ is closed in M . Else, wp is a word over
{B1, . . . , Bk}∗, where Bi stands for a block resulting from the merge of i suc-
cessive blocks (meaning that the i− 1 elastic edges separating these blocks have
been made rigid). For instance, the label (B2, B2) of node n3 indicates that on
both processes of M ′3, the two blocks are merged in M3.

Finally, a C-node is labeled by an element of {(), (B!), (B?), (B!, B?), (B?, B!)},
where B! (resp. B?) stands for a block consisting of the send (resp. receive) event
(meaning in particular that its process is open). The label of the node indicates
which processes of the associated split MSC are open, and how they are ordered.
For instance, n7 is labeled (B!), which means that in M7 the process of the send
event is open whereas the process of the receive event is closed. Both n4 and n5
are labeled by a pair of words, so their associated split MSC M4 and M5 are
isomorphic. The only difference is that in the rest of t, the sending process of
M4 will always come before its receiving process, while it is the opposite for M5.

Valid k-DST. The type of a node n in a k-DST t consists of its number of
open processes, together with the number of blocks on each open process. More
precisely, if n has label (wp)1≤p≤m, type(n) is the list obtained by removing all
occurrences of 0 in (|wp|)1≤p≤m. For instance, node n1 in Figure 5 has type (2),

17

and node n′1 has type (2, 2). A k-DST is called valid when for all nodes n with
label (wp)1≤p≤m, the following conditions hold:

– Assume n is a !-node with child n′. Then type(n′) is of the form (xp)1≤p≤m,
and for all p such that wp 6= ε, writing wp = Bi1 . . . Bis , we have xp =∑s
j=1 ij .

– Assume n is a tt-node with left and right children n` and nr. Let p1 < . . . <
ps be the indices p such that |wp|B` ≥ 1. Then type(n`) = (|wpi |B`)1≤i≤s.
Similarly, for the right child.

The set of all valid k-DSTs is denoted by DSTkvalid. It can be recognized by
a deterministic bottom-up tree automaton Akvalid with kO(k) states: Akvalid re-
members the type of the last seen node, and checks the validity conditions and
membership in DSTk, i.e., that each node has at most k blocks.

The conditions for Mt to be an MSC (instead of any pre-MSC) can also be
checked by a tree automaton.

Lemma 21. One can construct in space polynomial in k and |N | a deterministic

bottom-up tree automaton Akmsc with 2O(|N |k4) states such that L(Akmsc) = DSTkmsc.

Proof. Akmsc is the intersection of Akvalid with a tree automaton Amsc that keeps
in its state the known neighbors of each open process, that is, partial functions
neighbora : [k] → [k] ∪ {∗}. The meaning of neighbora(p) = q is that the a-
interface of the p-th open process points to the q-th open process (the order on
open processes refers to the label (wp)1≤p≤m). We let neighbora(p) = ∗ when the
a-interface of the p-th open process points to some closed process. neighbora is
undefined for all open processes p on which there is no event of type a! or a? yet.
Also, Amsc remembers the set of pairs of blocks that are connected by C-edges,
that is, a set C ⊆ [k]4 (the i-th block on the p-th open process being represented
by the pair (p, i)). Then, Amsc checks at each tt-node that:

– If two open processes p` and pr of the left and right children are shuffled into
some process p and both had a-neighbors, then their a-neighbors are open
processes q` and qr which are also shuffled in a same process q.

– For all a 6= b, if a process p` had an open a-neighbor q`, and is shuffled with
a process pr that had an open b-neighbor qr, then q` and qr are mapped to
different processes by the shuffle.

Moreover, states that violate the FIFO policy, that is, such that C contains two
pairs ((p, i), (q, j)) and ((p, i′), (q, j′)) such that i < i′ and j′ < j, are disabled.
Similarly, in order to check that in the resulting graph ≤ = (C∪→)∗ is a partial
order, states such that the graph ([k]2,C ∪ {(p, i), (p, i + 1)}) contains a cycle
are disabled. ut

Remark 23. We could also want to reason about a specific class T of topologies
among the classes of pipelines, rings, or trees, as in [6,7]. This can be done with
slight modifications of Akmsc, resulting in an automaton that recognizes exactly
the set of valid k-DSTs t such that TMt

∈ T.

18

B Tree-width

1

2

τ1 = forget3(12 � 23)

1

2

τ2 = forget3(13 � 23)

1

2

τ3 = τ1 � τ2

Fig. 8. Graphs denoted by τ1, τ2, and τ3, respectively

There are many equivalent definitions of tree-width. We use a definition in
terms of a graph algebra [9], which is closer to our definition of split-width.

We consider undirected simple graphs G = (V,E) equipped with a partial
injective coloring function c : V 7→ C of their vertices. We identify isomorphic
graphs. Given a finite set of colors C and x, y ∈ C, we denote by

– x the graph consisting of a single vertex colored x,
– xy the graph with two vertices labeled x and y and one edge between them,
– forgetx the operation of uncoloring a vertex,
– renamex,y(G, c) the graph (G, c′) obtained by permuting colors x and y in G:
c′(v) = y if c(v) = x, c′(v) = x if c(v) = y, and c′(v) = c(v) otherwise,

– (G, c) � (G′, c′) the union of G and G′ where the vertices with same color
are fused.

A k-term is a term over the algebra

τ ::= ∅ | x | xy | τ � τ | forgetx(τ) | renamex,y(τ) , with x, y ∈ [k] .

The semantics (Gτ , cτ) of a k-term is as expected. The tree-width of a graph G
is the least k such that G = Gτ for some (k + 1)-term τ .

Theorem 24. Let M be an MSC. If M has split-width at most k, then TM has
tree-width at most k − 1.

Proof. Let t be a k-DST for M . We construct by induction on t a k-term τ(t)
for TM , such that the open processes of t are the colored vertices of Gτ(t). More
precisely, the translation depends on the labels of the k-DST and is shown below:

– τ(a! C(w1,w2) b?) = xy, τ(a! C(w1) b?) = forgetx(xy), and τ(a! C() b?) =
forgety(forgetx(xy)).

– τ(t1tt(wp) t2) = τ(t1)� τ ′2 where τ ′2 = renamex1,y1(· · · renamexi,yi(τ(t2)) · · ·)
is obtained from τ(t2) by renaming colors so that the pairs of processes from
Gτ(t1) and Gτ ′

2
having the same color are exactly the pairs of processes being

fused in the shuffle.
– τ(!(wp)(t1)) = forgetx1

(. . . (forgetxi(τ(t1))) . . .), where x1, . . . , xi are the col-
ors in Gτ(t1) of the processes that are closed in the merge. ut

19

C Details for existentially-bounded MSCs

Lemma 25. One can construct in space polynomial in k a deterministic au-
tomaton AEBk with 2O(k) states over (k + 2)-DSTs such that EBk = {Mt | t ∈
L(AEBk ∩ Ak+2

msc)}.

Proof. The construction of AEBk is based on the proof of Lemma 12. We de-
scribe AEBk as a top-down automaton. Thus, we interpret !-node as splitting
edges rather than merging blocks (or opening rather that closing processes), and
tt-nodes as the removal of a single message edge (which is the case for Eve’s
strategy as described in the proof of Lemma 12).

Recall that in the proof of Lemma 12, events are detached one by one, ac-
cording to the order given by the linearization. More precisely, we associate with
any k-bounded linearization e1 <lin · · · <lin em of a split MSC M a (k+ 2)-DST
t such that M = Mt, with m !-nodes denoted x1, . . . , xm (x1 being the root,
and xm the !-node of greatest depth). It is defined uniquely by the following
conditions:

– If ei is the only event on its process, then xi opens its process.
– If ei is not →-maximal, then xi splits its outgoing process edge.
– If ei is→-maximal and is not the only event on its process, then xi does not

do anything (i.e. wp ∈ (B1)∗ for any word of its label).
– If ei is a receive event, then xi is immediately followed by a tt-node removing

its associated message pair.

The idea is for AEBk to accepts all, and only, such DSTs. We associate with each
node xi the prefix {e1, . . . , ei} of the linearization (and with any tt-node, the
prefix of its parent !-node).

In the top-down view, AEBk has a priori no information on the composition
of the different blocks at each node. To handle this, it guesses at each !-node
whether the two blocks resulting from the split (or the block resulting from
opening a process) consist of a single send event, a single receive event, or several
events. Later, it checks that its guesses are correct: it verifies that a block guessed
as a singleton is never split at a !-node, and that the labels of C-nodes are
coherent with the guessed type (send or receive) of the singleton blocks.

In addition, AEBk also guesses a linearization as follows. At each !-node,
it checks that at most one block is split and at most one process is open. If
some block is split, the left part is guessed to be a singleton and its event is
added to the linearization. This singleton block is marked. If no edge is split but
a process is opened, AEBk guesses that its block is a singleton, adds its event
to the linearization and marks it. If no edge is split and no process is opened,
AEBk chooses non-deterministically a singleton block which is not yet marked
and which is the first block on its process. As before, it marks this block and
adds its event to the linearization.

A run of AEBk on a DST t thus defines an enumeration of the events of Mt.
To ensure that it is a linearization, AEBk checks that at each tt-node, both
events being removed are marked, and that at each !-node, if the event added

20

to the linearization is a receive, then the next node is a tt-node removing its
associated message pair.

To ensure that the linearization e1 <lin · · · <lin em associated with a run of
AEBk is k-bounded, it is sufficient to prove that for all send events ei we have
|{(j, j′) | (ejCej′∨ej → ej′)∧j ≤ i < j′}| ≤ k. Indeed, when ei is a receive event,
adding ei to the prefix adds at most one pending process edge, and removes one
pending message. Hence the number of pending edges never increases at receive
events.

Let {e1, . . . , ei} be some prefix of the linearization, such that ei is a send
event. Let xi be the !-node at which ei is added to the linearization, and Mi its
associated MSC. For all 1 ≤ j ≤ i, event ej is either a singleton block of Mi, or
is part of a message pair which has been already removed. Moreover, all events
occurring after ei are events of Mi (and thus so are their matching events). So
any edge ej C ej′ with j ≤ i < j′ can be associated with the block formed by
ej in Mi. Similarly, any edge ej → ej′ with j ≤ i < j′ can be associated with
the block of ej′ in Mi (note that ej′ is necessarily on an open process, since its
incoming process edge is missing). In that case ej′ is necessarily the first event
of its block, so this mapping is injective.

Thus, to ensures that the linearization is k-bounded, AEBk can simply check
that at each !-node, if the event being added to the linearization is a send, then
there are at most k blocks.

Conversely, it is clear that all (k + 2)-DSTs obtained from the proof of
Lemma 12 and described above are accepted by AEBk . ut

21

D Details for context-bounded MSCs

Lemma 14. If M is a k-context-bounded MSC and TM has tree-width at most
h, then M has split-width at most k(h+ 1) + 2.

Proof. We first describe Eve’s strategy in the case of tree topologies, which have
tree-width 1. Eve starts by splitting all the edges separating the contexts of the
root p0 of TM . This creates at most k blocks, and divides M into one component
per child of p0. Adam chooses one of these components, associated with some
child p1 of p0. Eve splits all the edges separating the contexts of p1. The resulting
split MSC can be divided in two parts, M1 and M2, where M1 consists of all
the contexts in which p0 and p1 communicate with one another. In M1, each
connected component has the form described in Figure 9: it is composed of some
contexts in which p0 sends to p1, and matching receive contexts of p1, or the
opposite. Since the messages are received in the same order as they are sent,

Fig. 9. A connected component of M1

they can be detached one by one with two splits, which creates two extra blocks.
So Eve wins on this part with budget 2k + 2. Therefore, Adam must choose a
component of the remaining part M2. But M2 is again a k-context-bounded split
MSC over a tree topology (with root p1), whose blocks are the contexts of the
root p1. So whatever component of M2 Adam chooses, Eve can apply the same
strategy as for the previous move.

In the general case where TM has tree-width bounded by h, the strategy of
Eve is similar: she separates at each step all the contexts of some processes.
Her strategy for choosing these processes is determined by some (h+ 1)-term τ
for TM .

Alternatively, we can construct in a bottom-up fashion a DST τ for M by
induction on τ . The colored vertices of τ correspond to the open processes of τ
and the blocks of each open process correspond to some of its contexts. We can
assume that τ contains no occurrence of ∅, x, and renamex,y, and that for each
subterm τ1 � τ2 and pairs of colors (x, y) occurring both in τ1 and τ2, if there is
an edge in Gτ1 (resp. Gτ2) between the vertices colored x and y, then there is
none in Gτ2 (resp. Gτ1).

– xy is some (2k + 2)-DST tp,q denoting the split MSC induced by all the
contexts in which the processes p and q colored x and y in Gxy communicate

22

with one another. We have explained above for tree topologies how to obtain
such a (2k + 2)-DST.

– τ1 � τ1 is the shuffle of τ1 and τ2, according to the partial order of M .
– forgetx(τ1) is the merge of τ1 closing the process colored x in Gτ1 , and keep-

ing unchanged all the other processes. Notice that the blocks/contexts of a
process are merged when it is closed.

At any node of τ (except subterms of tp,q), there are at most (h + 1) open
processes and at most k blocks on each open process. Hence τ is a (k(h+1)+2)-
DST. ut

Lemma 26. One can construct in space polynomial in k and h a tree-automaton
ACBk,h with |N |O(kh) states such that CBk,h = {Mt | t ∈ L(ACBk,h ∩ Ak

′

msc)},
where k′ = k(h+ 1) + 2.

Proof. ACBk,h recognizes DSTs such that: (1) at any moment, there are at most
h+1 open processes (this is given by the node labels); (2) until a process is closed,
each of its blocks are contexts (ACBk,h remembers the type of each block/context
in its state, and checks that there is no merge between two blocks of different
types); (3) when a process is closed, it has at most k blocks, hence at most k
contexts; (4) there are always at most k+ 1 blocks on each process, and at most
k blocks on a process which communicates with at least two different processes.

For any k-context bounded MSC M such that TM has tree-width at most
h, we can construct (based on the proof of Lemma 14) a (k(h + 1) + 2)-DST
accepted by ACBk,h . Conversely, it is clear that any MSC accepted by ACBk,h

is k-context-bounded. The fact that its topology has tree-width at most h is a
consequence from the fact that it uses at most h + 1 open processes (see proof
of Theorem 24). ut

23

E Details for tile-bounded MSCs

E.1 Decidability

Lemma 18. Let M ∈ TBk,`,h. Then M has split-width at most 2k2`2(h+ 1).

Proof. Let {T1, . . . , Tn} be a (k, `)-tile-decomposition of M . Note that, if the
observable topology TTi of a k-tile Ti is not connected, we can replace Ti by
several k-tiles having connected observable topologies. This does not change the
number of tiles intersecting each process. Hence, w.l.o.g., we can assume that
the observable topology TTi is connected for all i. We denote by Pi ⊆ P the set
of processes of Ti, and by ti some k-DST denoting Ti.

We are going to construct a DST for M from successive shuffles of the ti, in
an order defined according to some (h+ 1)-term τ for TM . The idea is to follow
the order in which the processes are added to the topology in the tree-term, and
to add a tile Ti as soon as all its processes have been added to the topology and
uncolored. The elastic edges separating the different tiles are made rigid as soon
as possible, and open processes are closed as soon as all their tiles have been
added to the split MSC.

For P ′ ⊆ P , we let MP ′ be the sub-MSC of M resulting from the shuffle of
all the Ti’s such that Pi ⊆ P ′, followed by a merge (merging all blocks that are
consecutive in M , and closing all processes that already have all their events).
In particular, M = MP .

For each subterm τ ′ of τ , we define a DST τ ′ such that, with Pτ ′ the set of all
uncolored processes of Gτ ′ , we have Mτ ′ = MPτ′ . To keep the definition simple,
we do not provide the disambiguating labels. At shuffle nodes, we follow on each
open process the ordering of the blocks defined by M . At merge nodes, we merge
consecutive blocks and we close processes as soon as possible, as explained above.

– If τ ′ = x or τ ′ = xy, then τ ′ is empty since Pτ ′ = ∅.
– if τ ′ = τ1 � τ2 then τ ′ = !(τ1 tt τ2 tt ti1 tt . . . tt tij) where i1, . . . , ij

are the indices i such that Pi ⊆ (Pτ1 ∪ Pτ2) but Pi * Pτ1 and Pi * Pτ2 .
Since Pτ ′ = Pτ1] Pτ2 , using the induction hypothesis, we can check that
Mτ ′ = MPτ′ .

– If τ ′ = forgetx(τ ′′): let p be the process being uncolored. We let τ ′ = !(τ ′′tt
ti1 tt . . .tt tij), where i1, . . . , ij are the indices i such that Pi ⊆ Pτ ′ = Pτ ′′]
{p}, but Pi * Pτ ′′ . Since Pτ ′ = Pτ ′′] {p}, using the induction hypothesis,
we can check that Mτ ′ = MPτ′ .

To prove that τ is a 2k2`2(h + 1)-DST, we show that before each !-node,
there are at most 2k`(h + 1) open processes. Since there are at most ` tiles on
each process and k blocks on each tile, there is always at most k` blocks on each
process.

First, consider some open process q of Mτ ′ , for a subterm τ ′ of τ . Since
processes are closed as soon as possible, some tile Ti of q must still be missing
in Mτ ′ (cf. Figure 10). In our construction, a tile is added as soon as all its
processes have been added and uncolored in the tree-term, so this means that

24

some process of Ti must be missing or colored in Gτ ′ . Suppose for instance that
some processes of Ti are missing (represented by dotted lines in Figure 10). Using
the fact that TTi is connected, there must be processes u and v in Ti such that
u is in Gτ ′ , but v is not. Then u must be a colored process of Gτ ′ .

So in all cases, an open process q of Mτ ′ must share a tile with some colored
process of Gτ ′ . Now, each colored process u is part of at most ` tiles, and each
tile has at most k processes (see Figure 11). So there are at most k` process
sharing a tile with u. Moreover, there are at most (h+ 1) colored process. So, at
most k`(h+ 1) processes of Mτ ′ share a tile with (any) colored process of Gτ ′ .

q u v

Ti

Fig. 10. Tiles of an open process q

≤ k processes

≤ k

≤ k

≤ `
tiles

≤ h+ 1 colored processes

Fig. 11. Number of open processes

Finally, observe that our reasoning about open processes of Mτ ′ also holds
for processes q of Gτ ′ that are not in Mτ ′ . (All we need is that some tile of q
is missing.) Thus, there are at most k`(h + 1) processes of Gτ ′ that are either
open processes of Mτ ′ or not in Mτ ′ .

We are now ready to prove that τ is a 2k2`2(h+ 1)-DST:

– All nodes of the ti’s have at most k blocks, since the ti’s are k-DSTs.
– Consider a subterm τ ′ = !(τ1 tt τ2 tt ti1 tt . . . tt tij) of τ , as defined

above. We show that t′ = τ1 tt τ2 tt ti1 tt . . . tt tij has at most 2k`(h+ 1)
open processes. Notice that each process of t′, be it open or closed, is in
Pτ ′ = Pτ1]Pτ2 . Hence, we show that t′ has at most k`(h+1) open processes
in Pτ1 , and at most k`(h+ 1) open processes in Pτ2 .
If an open process p ∈ Pτ1 of t′ is also a process of τ1, then it must be open
as well in τ1. Moreover, at most k`(h + 1) processes of Gτ1 are either not
processes of τ1, or open processes of τ1. So t′ has at most k`(h + 1) open
processes in Pτ1 .

– Consider a subterm τ ′ = !(τ ′′ tt ti1 tt . . .tt tij) of τ , as defined above. We

show that t′ = τ ′′tt ti1 tt . . .tt tij has at most k`(h+1)+1 open processes.

25

As in the previous case, t′ has at most k`(h+1) open processes in Pτ ′′ . Since
all processes of t′ are in Pτ ′ = Pτ ′′]{p}, t′ has in total at most k`(h+ 1) + 1
open processes. ut

Lemma 27. One can construct in space polynomial in k, `, h a tree-automaton
ATBk,`,h with 2O(k2`h2) states such that TBk,`,h = {Mt | t ∈ L(ATBk,`,h ∩Ak

′

msc)},
where k′ = 2k2`2(h+ 1).

Proof. The idea is that ATBk,`,h recognizes DSTs of the form described in the
proof of Lemma 18. In particular, using the same notations as in that proof,
they are all of the form:

τ ::= !(ti1tt. . .tttij) | !(τtt(ti1tt. . .tttij)) | !((τttτ)tt(ti1tt. . .tttij)) ,

where ti1 , . . . , tij denote k-tiles. Notice that in the proof of Lemma 18, some of
the τ1, τ2 may be empty and thus are not truly part of the complete DST (and
then, neither is their father !-node). This explain why we can have DST of the
form !(ti1 tt . . .tt tij). However, we assume that all !-nodes described in the
proof (except those such that there child node is empty) are actual nodes of the
DST, though they may perform no action (i.e. be such that wp ∈ (B1)∗ for any
word of the label).

To check if a DST is of the above form, the bottom-up automaton ATBk,`,h

remembers for each node a value stage ∈ {0, 1, 2}, with stage = 0 for the internal
nodes of the ti’s, stage = 1 for the root of a ti or a shuffle of several ti’s, and
stage = 2 for all other nodes. So initially, stage = 0, and at some point, ATBk,`,h

guesses that a tile is complete and goes to stage = 1. Then only certain shuffles
and merges are allowed, so that ATBk,`,h recognizes DSTs of the form described
above (it uses some additional information to distinguish, among nodes such
that stage = 2, those of the form τ , τ tt τ , τ tt t, or (τ tt τ) tt t), where the
root of t is in state stage = 1).

As long as stage = 0, ATBk,`,h checks that it is indeed reading some k-DST
and not just any k′-DST, and that no process is ever closed. This can be achieved
with a slight modification of the automaton Akvalid. Then, when stage ∈ {1, 2},
ATBk,`,h remembers the number of tiles currently intersecting with each open
process, and checks that it never gets greater than `. This ensures that all DSTs
accepted by ATBk,`,h are (k, `)-tile-bounded.

In addition, ATBk,`,h guesses an (h + 1)-term τ for the observable topology
T of the current split MSC. Following the proof of Lemma 18, it guesses τ in
such a way that all processes of T (open or closed) are uncolored processes of
Gτ . It forgets about the (h + 1)-term itself, as well as what happens on closed
processes of T (all of them are uncolored in τ , and thus do not intervene in the
remaining of the tree-term, nor naturally in the remaining of the DST). However,
it keeps in its state the subgraph Hτ of Gτ induced by the other processes, i.e.
colored vertices of Gτ , uncolored vertices of Gτ that are not part of T yet,
and open processes of T . In the proof of Lemma 18, there are always at most
m = 2k`(h+ 1) such processes.

26

First, for all nodes such that stage ∈ {0, 1} (i.e. when the current split MSC
is a tile in construction, or a disjoint shuffle of tiles), ATBk,`,h remembers the
observable topology T of the current split MSC. Recall that all processes of the
split MSCs associated with such nodes are open, and thus can be identified with
elements of [k′]. We ignore the interface names, and represent T by a subset
of [k′]2.

Then, for each node such that stage = 2, ATBk,`,h keeps in its state a graph
Hτ with set of vertices included in [m], together with a partial coloring function
c : [m]→ [h+1], and a partial injective function num : [m]→ [k], such that c and
num have disjoint domains. The intuition is that num(v) = p when the vertex v
of Hτ is the p-th open process of T . When c(v) is defined, it gives the color of
the vertex of Hτ associated with v. We explain simultaneously the construction
of Hτ performed by ATBk,`,h , and how it can be associated inductively with an
(h+1)-term τ , such that T is a subgraph of Gτ that uses only uncolored vertices,
and Hτ is the subgraph of Gτ induced by all the vertices that are not closed
processes of T .

– Consider a !-node with child n′ where the value for stage goes from 1 to 2.
This corresponds to a set of tiles being merged. (In the proof of Lemma 18,
this happens when enough processes have finally been uncolored in the tree-
term to cover all processes of some tiles.)
ATBk,`,h must initialize Hτ . To do so, it guesses a graph Hτ = Gτ of tree-
width at most h and functions c and num such that the topology T ′ stored
at node n′ is a subgraph of Hτ (the correspondence between the vertices
being given by num).

– Consider a shuffle between a node n1 such that stage = 2 and a node n2
such that stage = 1. This means that some tiles (denoted by n2) are added
to the current MSC (denoted by n1). This can only happens when all the
processes of n2 are already uncolored in the tree-term.
ATBk,`,h takes for Hτ the graph stored for n1, and checks that the topology
T2 stored for n2 is a subgraph of Hτ . If a process of n2 is shuffled with a
process p1 of n1, then it must correspond to the process num1(p1). Other
processes of n2 (all of which are open) can be associated with any process
of Hτ for which num1 is undefined. The function num1 is then updated and
extended into num to follow the possible additions of open processes from
n2, and renumbering of the open processes of n1.
T2 is thus a subgraph of Gτ , and by induction hypothesis, so is the topology
T1 of the split MSC associated with n1 (both respecting num). Thus, the
topology T after the shuffle is still a subgraph of Gτ .

– Consider a shuffle between two nodes n1 and n2 for which stage = 2. Let
Hτ1 and Hτ2 be the graphs stored respectively for the right and left child.
In the proof of Lemma 18, a node of this form correspond to a node τ1 � τ2
in the tree-term. To construct the DST τ1 � τ2, the first step is to take
the shuffle of τ1 and τ2 (afterwards, a second shuffle corresponding to the
previous case is performed to add missing tiles). Recalled that the processes
of τ1 are uncolored processes of τ1, and similarly for τ2. Thus, they are not

27

fused in τ1 � τ2, and the shuffle τ1 tt τ2 is disjoint (that is, wp ∈ B∗` ∪B∗r for
each word of the label).
At such a node, ATBk,`,h thus start by checking that the shuffle is disjoint.
It also checks that Hτ1 � Hτ2 contains at most m vertices, where Hτ1 and
Hτ2 are the graphs stored respectively for the left and right children. It then
takes Hτ = Hτ1 �Hτ2 .
This correspond to taking τ = τ1�τ2. By induction hypothesis, the topologies
T1 and T2 for the left and right child are subgraphs of resp. Gτ1 and Gτ2 that
only use uncolored vertices, hence are disjoint subgraphs of Gτ . Moreover,
the topology T is the disjoint union of T1 and T2. Thus it is also a subgraph
of Gτ .

– Consider a !-node such that stage = 2 for the child node n′. Then ATBk,`,h

may guess an uncoloring of a vertex of the graph Hτ ′ stored for n′, or a
parallel union with a graph H of tree-width at most h and such that Hτ ′ �H
has at most m vertices. ATBk,`,h then removes from the resulting graph all
the processes that are closed during the merge, and takes it as the new value
for Hτ .
This corresponds to taking for τ = τ ′, τ = forgetx(τ ′), or τ = τ ′ � τ ′′, where
τ ′′ is an (h+ 1)-term for H. Since T does not change, it is still a subgraph
of Gτ .

Any valid k’-DST accepted by ATBk,`,h then denotes a (k, `)-bounded MSC
over a topology of tree-width at most h. Conversely, all k′-DSTs described in
the proof of Lemma 18 are accepted by ATBk,`,h . ut

E.2 Equivalence with bounded split-width

Lemma 28. Let t be a valid k-DST, and M = Mt. Let M ′ be some sub-MSC
of M (i.e., there exists N ′ such that M ∈ !(N tt N ′), with b blocks. Then N
has split-width at most k + b.

Proof. We writeM = (P,O,E,→, 99K,C, π, λ),M ′ = (P ′, O′, E′,→′, 99K′,C′, π′, λ′),
and for a k-DST r, Mr = (Pr, Or, Er,→r, 99Kr,Cr, πr, λr).

We define a (k + b)-DST t′ for M ′, by restricting t to the events that are
in N . More precisely, for each subterm s of t, we define a (k + b)-DST s′ such
that Ms′ is a sub-MSC of Ms, Es′ = Es ∩ E′, Os′ = Ps′ ∩ (Os ∪ O′), and
99Ks′ = E2

s′ ∩ (99Ks ∪ 99K′).

– If s is a leaf of t, we let s′ = s if s denotes an event of N , and s′ = ∅
otherwise.

– If s = !(wp)(s1), we let s′ = !(w′
p)

(s′1), where (w′p) is defined so that for all
elastic edge e 99K f of Ms1 that are also in Ms′1

, if e 99K f is made rigid in
Ms, and is rigid in N , then it is also made rigid in Ms′ .

– If s = s1 tt(wp) s2, we let s′ = s′1 tt(w′
p)
s′2, where (w′p) is defined so that the

order in which the blocks of s′1 and s′2 are shuffled respect the order defined
by s.

28

To prove that t′ is a (k+ b)-DST, we need to show that for all subterm s of t,
s′ has at most k blocks, i.e. |Os′ |+ |99Ks′ | ≤ k + b.

By definition, we have |Os′ | ≤ |Os|+ |O′|, and |99Ks′ | ≤ |99Ks|+ |99K′|. Then,
since t is a k-DST, |Os|+ |99Ks| ≤ k. And M has b blocks, i.e. |O′|+ |99K′| ≤ b.
Hence |Os′ |+ |99Ks′ | ≤ k + b. ut

Theorem 20 is obtained as the combination of Lemma 24 and 29.

Lemma 29. Let M be an MSC with split-width at most k. Define

` =

1 + 2k if |N | = 2

1 + |N | (|N | − 1)k − 1

|N | − 2
otherwise.

Then M admits a (k2+2k, `)-tile decomposition where each tile contains at most
k processes.

Proof. Let t be a valid k-DST such that M = Mt = (P,E,→,C, π, λ). We first
introduce some notations.

For each subterm s of t we consider the associated split MSC Ms. We denote
by Os (Cs resp.) the set of open (closed resp.) processes of Ms. In particular,
Ot = ∅ and Ct = P . We also denote by Es the set of events of Ms.

A subset F ⊆ E is C-closed if for all e C f , either both events are in F or
none of them are in F . For a C-closed subset F ⊆ E, we denote by MF the split
MSC induced by F , i.e., the split MSC whose set of events is F , and such that
two events of F are connected by a →- or C-edge in MF iff they are in M . The
open processes of MF are those on which some events of M are missing. The
elastic edges are such that the order of the events in MF is compatible with M .
Notice that M ∈ !(MF ttME\F).

We will define a tuple of tiles (Tp)p∈P which forms a (k2+2k, `) decomposition
of M . These tiles will be defined below by induction on t. Intuitively, whenever a
process p is closed at some subterm s of t, we define the tile Tp as the split-MSC
induced by the set of events that are not yet covered by some tile and that are
connected to p via open processes.

For each p ∈ P , let Xp ⊆ E be the subset of events of the tile Tp. We will
ensure the following, where s is an arbitrary subterm of t and Fs =

⋃
p∈Cs Xp:

1. For all p ∈ P , Tp is a (k2 + 2k)-tile which contains at most k processes, each
of which being at distance at most k from p in the topology TM . The tiles
are pairwise disjoint: Xp ∩Xq = ∅ for all p 6= q.

2. The tiles (Tp)p∈Cs are contained in Ms and cover all events of the closed
processes of Ms: {e ∈ E | π(e) ∈ Cs} ⊆ Fs ⊆ Es. On the other hand, some
events of Ms located on open processes may not be in Fs.

3. The split MSC MFs induced by Fs has at most k blocks on each process.

Before defining the tile-decomposition (Tp)p∈P , we first show that the above
conditions allow to derive the theorem. First, by 1, each Tp is a (k2 + 2k)-tile,

29

e1 e2

p

Fr

Fr

G

G

Fig. 12. Definition of Tp. The set of events covered by the previous tiles, Fr, is repre-
sented in blue. It consists of all events of the closed processes (here, the fourth process
only), and some of the events of the open processes. All events that are not in Fr

are added to the new tile Tp (in green), except e1 and e2, since the path from their
processes to p (leftmost process) goes through a closed process.

the tiles are pairwise disjoint and since Ct = P , by 2, they cover M . Hence,
M ∈ !(ttp∈P Tp). It remains to show that each process q ∈ P intersects at
most ` tiles (where ` is defined in the statement of the theorem). By 1, if a tile
Tp intersects process q then p is at distance at most k from q in TM . It is easy
to check that the number of processes at distance at most k from q is at most `.

We turn now to the definition of the tiles (Tp)p∈P . Assume that process p
is closed at subterm s = !(r) of t. We may assume that no blocks are merged
on other processes and no other processes are closed. Hence, the set of closed
processes is Cs = Cr] {p}. By induction, Tq is already defined for all q ∈ Cr.

Let G be the set of events in Er \Fr which are located on processes connected
to p in TMr

via open processes of Mr only : an event e ∈ Er \Fr is in G if π(e) = p
or π(e) = p1 · · · pi = p in TMr

for some p1, . . . , pi ∈ Or.
Let us show that G is C-closed. So consider an edge e C f with one end

in G, say e ∈ G. Assume f ∈ Fr. Since each tile is C-closed, so is Fr and we
deduce e ∈ Fr, a contradiction. Hence, f ∈ Er \Fr and by 2 we have π(f) ∈ Or.
Moreover, π(e) is connected to p via processes in Or only, and thus so is π(f).
Therefore, f ∈ G.

We define Tp as the tile of M induced by G (see Fig. 12). We show that
conditions 1, 2, and 3 are satisfied at s.

Proof of condition 1. By definition, Tp is disjoint from the existing tiles (Tq)q∈Cr .

30

Moreover, since t is a k-DST, there are at most k open processes in any
subterm, in particular |Or| ≤ k. We deduce that Tp contains at most k processes,
each of which being at distance at most k from p in the topology TM .

It remains to show that Tp has split-width at most k2 + 2k. By Lemma 28,
it is enough to show that Tp has at most k2 + k blocks.

A block of Tp is an interval on some block of Mr, delimited on each side
either by (a) an end of the said block, or (b) by a block of the split MSC MFr

induced by Fr (see Fig. 13). This is the case since for every process q ∈ Or, the
set {e ∈ Er \ Fr | π(e) = q} is either entirely contained in G or disjoint from G.

(a) (b) (b) (a) (b) (b)

Fig. 13. Blocks of Tp (in green) and of MFr (in blue) on the third process of Figure 12.

Since Mr has at most k blocks, there are at most 2k blocks of Tp that are
delimited on at least one side by the end of a block of Mr (like the first two
ones in Figure 13). Moreover, by induction hypothesis 3 at r, MFr has at most k
blocks on each process. Thus, on each process, there are at most (k − 1) blocks
of Tp that are delimited on both sides by blocks of MFr . Counting all processes,
Tp has at most k(k − 1) blocks of this kind. Hence, Tp has in total at most
2k + k(k − 1) = k2 + k blocks.

Proof of condition 2. Recall that Cs = Cr] {p}. We have Fs = Fr] G. By
induction hypothesis, we know that {e ∈ E | π(e) ∈ Cr} ⊆ Fr ⊆ Er = Es. So we
only need to show that {e ∈ E | π(e) = p} ⊆ Fs = Fr] G. This is immediate,
since by definition, G includes all events e ∈ Er \ Fr which are on process p.
This means all events in E \ Fr which are on process p, since p is closed at s.

Proof of condition 3. Observe from the definition of G that on any process q of
Tp, the blocks of MFs are the blocks of Mr, and that on any other open process
q, the blocks of MF are the blocks of MFr . ut

31

F Satisfiability and Model-Checking

Monadic second-order logic. The set of monadic second-order formulas
(over N) is denoted by MSON , and is given by the following syntax:

ϕ ::= x = y | xC y | x→ y | a!(x) | a?(x)

| x ∈ X | ∃x.ϕ | ∃X.ϕ | ¬ϕ | ϕ ∨ ϕ (1)

| x@u | u a b v | u = v | u ∈ U | ∃u.ϕ | ∃U.ϕ

where a ∈ N , x, y, . . . and u, v, . . . denote first-order variables ranging respec-
tively over events and processes, and X,Y, . . . and U, V, . . . denote second-order
variables ranging respectively over sets of events and sets of processes.

MSON formulas are interpreted over MSCs M = (P,E,→,C, π, λ). Free
variables are interpreted by a partial function I that maps a variable x to an
event I(x) ∈ E, and X to a set I(X) ⊆ E. A variable u is mapped to a process
I(u) ∈ P , and U to a set I(U) ⊆ P . We write M, I |= x@u when π(I(x)) = I(u),
and M, I |= u a b v when I(u) a b I(v) in the observable topology TM of M .
The other cases are as expected. When ϕ is a closed formula, we simply write
M |= ϕ instead of M, I |= ϕ.

Since TM is entirely determined by the events of M , the part of the logic that
involves processes is redundant. Any formula ϕ ∈ MSON can be translated into
an equivalent formula over the syntax defined by the first two lines of (1).

Lemma 30. For any closed formula ϕ ∈ MSON , one can construct a tree au-
tomaton Akϕ such that L(Akϕ) ∩ DSTkmsc = {t ∈ DSTkmsc |Mt |= ϕ}.

Proof. The construction is by induction on ϕ. The only non-trivial case for
atomic formula is the→ relation. It can be retrieved by a deterministic bottom-
up tree automaton with O(k4) states, which accepts a valid k-DST t with two
marked leaves e and f iff e→ f in Mt. It remembers the blocks B and B′ of the
two marked leaves (that is, pairs in [k]2, where (p, i) represents the i-th block
on the p-th open process), and checks that there is no merge on the right of
B or the left of B′ until reaching a common ancestor where the two blocks are
merged.

The inductive cases are treated with standard constructions: union for dis-
junction, complementation for negation, and projection for existential quantifi-
cations. ut

Theorem 31. For C ∈ {SW,EB,CB,TB}, the satisfiability and model-checking
problems are decidable:
C-MSO-Sat:
Input: N , ϕ ∈ MSON , i.
Question: ∃M ∈ Ci,M |= ϕ ?

C-MSO-MC:
Input: N , ϕ ∈ MSON , S, i.
Question: ∀M ∈ L(S) ∩ Ci,M |= ϕ ?

Proof. The bounded split-width satisfiability problem reduces to testing whether
L(Akϕ ∩ Akmsc) 6= ∅, and the bounded split-width model-checking problem to

testing whether L(AkS ∩Ak¬ϕ ∩Akmsc) = ∅. For the other classes, we add the cor-
responding automaton to the intersection, as for the non-emptiness problem. ut

32

Propositional Dynamic Logic. The syntax of ICPDLN is given by

Φ ::= Eσ | Φ ∨ Φ | ¬Φ (global formula)

σ ::= a! | a? | σ ∨ σ | ¬σ | 〈π〉σ (state formula)

π ::= C | → | test(σ) | π + π | π · π | π∗ | π ∩ π | π−1 (path formula)

where a ∈ N . If intersection π ∩ π is not allowed, the fragment is PDL with
converse (CPDL). If backward paths π−1 are not allowed the fragment is called
PDL with intersection (IPDL). In simple PDL neither backward paths nor in-
tersection are allowed.

State formula and path formula are respectively evaluated over events and
pairs of events of an MSC. We only give a few cases:

– M, e |= a! if λ(e) = a!
– M, e |= 〈π〉σ if M, (e, f) |= π and M,f |= σ for some f ∈ E
– M, (e, f) |= C if (e, f) ∈ C
– M, (e, f) |= test(σ) if e = f and M, e |= σ .

The operations +, ·, ∗, ∩ and −1 correspond respectively to union, composition,
reflexive and transitive closure, intersection, and converse of the relations defined
by path formulas.

MSC properties are specified using global formulas. For the base case, M |=
Eσ if there exists e ∈ E such that M, e |= σ.

Lemma 32. For any Φ ∈ CPDLN (resp. Φ ∈ ICPDLN), one can construct in
PSpace (resp. ExpSpace) a tree automaton AkΦ such that L(AkΦ) ∩ DSTkmsc =

{t ∈ DSTkmsc |Mt |= Φ}.

Proof. The construction is again by induction on the formula, but uses alter-
nating two-way tree automata (A2A) rather than bottom-up automata. For any
CPDLN (resp. ICPDLN) formula Φ, we can construct an A2A of polynomial
(resp. exponential) size that accepts a valid k-DST t iff Mt |= Φ (see [2] for a
more detailed and very similar proof). It can then be translated into an expo-
nentially larger (ordinary) tree automaton. ut

Theorem 33. For bounded split-width, context-bounded or tile-bounded MSCs
(resp. existentially-bounded MSCs), the CPDL satisfiability and model-checking
problems are Exptime-complete (resp. Pspace-complete), and the ICPDL satis-
fiability and model-checking problems are 2-Exptime-complete (resp. Expspace-
complete). The model-checking problem is (in all cases) only polynomial in the
number of states and transitions of the PCA.

33

G Complexity lower bounds

Notice that reachability reduces to non-emptiness, and satisfiability to model-
checking.

Lemma 34. When the set of interfaces N and the bound k on split-width are
fixed rather than part of the input, and such that |N | ≥ 2 and k ≥ 3, SW-
Reachability is Ptime-hard.

Similarly, when |N | ≥ 3, a bound k ≥ 3 on the number of contexts, and a
bound h ≥ 1 on the tree-width of the topologies are fixed, CB-Reachability is
Ptime-hard.

Proof. The proof is by reduction from the non-emptiness problem for binary
tree automata. Without loss of generality, we assume here that tree automata
accept only trees where the root and every internal node have exactly two chil-
dren. Given a tree automaton A, we can construct in logarithmic space a PCA
S over N = {father, child1, child2} with a distinguished state accept, such that
there exists a MSC M ∈ SW3 (resp. M ∈ CB2) and a run ρ of S on M with
ρ(e) = accept for some event of M iff L(A) 6= ∅. More precisely, we define S in
such a way that for any connected MSC M , if there exist a run of S on M in
which S reaches accept, then M has split-width at most 3 and is existentially
3-bounded, TM is a tree, and there exists a labeling of TM such that the labeled
tree is accepted by A; and such that conversely, for any t ∈ L(A), there exists a
MSC M with observable topology t, and such that there is a run ρ of S on M
such that ρ(e) = accept for some event e of M .

The idea is that each process guesses (a) whether it is the a leaf, internal, or
the root; and (b) a transition of A. More precisely, if a process guesses that it

is a leaf, then it chooses a transition of A of the form
a−→ q, and sends q to its

father. If a process guesses that it is internal, it must start by receiving some
message q1 from its left child, then some q2 from its right child. It then guesses
a transition q1, q2

a−→ q of A and sends q to its father. If a process guesses that it
is a root, then it must receive some q1 from its left child, then some q2 from its
right child, such that there exists a transition of A of the form q1, q2

a−→ q with
q accepting. In that case, it goes to state accept.

Let M be a connected MSC which allows for a run ρ of S such that ρ(e) =
accept for some e. By definition of S, TM only contains edges of the form
p father childi q. Moreover, there is no edge π(e) father childi q. Thus, TM is
indeed a tree. Clearly, M is 3-context-bounded. It also has split-width at most 3:
we can disconnect M by splitting the edge of its root, which create two blocks.
In both of the resulting components, only one block (one event) remains on the
root. We can disconnect the corresponding message by splitting the first process
edge of the child node, leading to a total of 3 blocks. We are then back at the
initial situation, except that the root of the subtree is already open. ut

Lemma 35. When |N | ≥ 2 and k ≥ 3 are fixed, the problem EB-Reachability
is Nlogspace-hard.

34

Proof. The proof is the same as that of Lemma 34, but using word automata
instead of tree automata, and pipelines instead of trees for topologies. ut

Lemma 36. SW-Reachability and CB-Reachability are Exptime-hard.

Proof. The proof is similar to that of Lemma 34, but we reduce the intersection
problem for k tree automata. Each process simply repeats k times the behaviour
described above. (More details can be found in the proof of Lemma 37, which
uses the same kind of reduction but for word automata instead of tree automata.)
Each process has at most 3k events, hence the MSC is 3k-context bounded, hence
has split-width at most 6k + 2. ut

Lemma 37. EB-Reachability is Pspace-hard.

Proof. The proof is by reduction from the intersection problem for finite au-
tomata. Given finite automata A1, . . . ,Ak, we can construct in polynomial time
a PCA S over N = {left, right}, with a distinguished state accept, such that
L(A1)∩· · ·∩L(Ak) = ∅ iff there exist M ∈ EB(k+2) and a run ρ of S on M with
ρ(e) = accept for some event of M . The idea is that if S accept some connected
MSC M , then there exists a word w ∈ L(A1) ∩ · · · ∩ L(Ak) such that TM is a
pipeline with |w| processes, and conversely.

Each process guesses a transition for each Ai using the same (guessed) letter,
and sends it to its right neighbor. The (guessed) leftmost process must choose
transitions starting in initial states, and the (guessed) rightmost process checks
for all Ai that it can choose a transition ending in an accepting state. It then
goes to state accept. More precisely, S only accepts MSCs of the form described
in Figure 3 (or disjoint unions of such MSCs), with an arbitrary number of
processes, but k events on the leftmost process. The fact that the topology does
not contain any cycle is ensured by the fact that at least one process has no
right neighbor (the process reaching accept).

Any MSC accepted by S is existentially (k + 2)-bounded: the linearization
consists in taking first the events of the leftmost process (in order), then the
events of its right neighbor, and so on. ut

Lemma 38. SW-CPDL-Sat and CB-CPDL-Sat are Exptime-hard, and SW-
ICPDL-Sat and CB-ICPDL-Sat are 2-Exptime-hard.

Proof. The proofs are by reduction from the satisfiability problems for (I)CPDL
over binary trees with labels in some finite alphabet A.

First, there is a PDL formula Φ0 over N = A × {father, child1, child2} that
recognizes the set of MSCs M such that TM is a tree (and each process has at
most 3 interfaces, of the form (x, father), (x, child1), (x, child2) for some x ∈ A),
and each process is composed of first a receive from its father (if any), then a
send to its left child (if any), then a send to its right child (if any). We let tM be
the tree whose nodes are those of TM , and such that the label x of each node is
determined by its set of interfaces in TM . This defines a bijection between the set
of labeled binary trees and L(Φ0). Moreover, for any k ≥ 3, h ≥ 1, L(Φ0) ⊆ SWk

and L(Φ0) ⊆ CBk,h.

35

Next, any (I)CPDL formula Ψ over trees can be translated in polynomial
time into an (I)CPDL formula Φ over MSCs, such that for any M ∈ L(Φ0),
M |= Φ ⇐⇒ TM |= Ψ . The formula Ψ is constructed inductively, by interpreting
a node in tM by the first event of the corresponding process in M . For instance,

– a state formula σ ≡ x (for some x ∈ A) over trees is translated into the state
formula ((x, father)? ∨ (x, child1)! ∨ (x, child2)!) ∧ ¬〈→−1〉> over MSCs.

– a path formula π =↓1 over trees, denoting a path between a node and its
left child, is translated into the path formula →∗ · test(

∨
x∈A(x, child1)!) ·C

over MSCs.

We then have L(Φ0 ∧ Φ) 6= ∅ ⇐⇒ L(Ψ) 6= ∅. ut

Lemma 39. EB-CPDL-Sat is Pspace-hard. EB-ICPDL-Sat is Expspace-
hard.

Proof. The proof is an in Lemma 38, but using words instead of trees. ut

36

