Flows and functional inequalities for fractional operators - Archive ouverte HAL
Article Dans Une Revue Applicable Analysis Année : 2017

Flows and functional inequalities for fractional operators

Résumé

This paper collects results concerning global rates and large time asymptotics of a fractional fast diffusion on the Euclidean space, which is deeply related with a family of fractional Gagliardo-Nirenberg-Sobolev inequalities. Generically, self-similar solutions are not optimal for the Gagliardo-Nirenberg-Sobolev inequalities, in strong contrast with usual standard fast diffusion equations based on non-fractional operators. Various aspects of the stability of the self-similar solutions and of the entropy methods like carré du champ and Rényi entropy powers methods are investigated and raise a number of open problems.
Fichier principal
Vignette du fichier
DZ2016b.pdf (220.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01404580 , version 1 (28-11-2016)

Identifiants

Citer

Jean Dolbeault, An Zhang. Flows and functional inequalities for fractional operators. Applicable Analysis, 2017, 96 (9), pp.1547-1560. ⟨hal-01404580⟩
142 Consultations
155 Téléchargements

Altmetric

Partager

More