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1. Introduction

Recently many papers have been devoted to the extension of results involving sec-
ond order partial differential operators to fractional operators. More specifically,
fractional diffusion equations have been studied from the point of view of exis-
tence, comparison and regularity of the solutions, not only in the linear case but
also in the framework of nonlinear models of porous medium or fast diffusion type.
Concerning modeling issues, fractional diffusions are usually motivated by micro-
scopic jump processes. One can refer to [1, 2] for an extended review of models
arising from various areas of physics. We will not go in this direction. Relying on
known theoretical results like the ones of [3–7], our approach aims at the descrip-
tion of fundamental qualitative properties of such equations in relation with closely
associated, basic functional inequalities.
Standard fast diffusion or porous medium equations have simple features which

arise from the homogeneity of the nonlinear term or from the fact that the dif-
fusion operator is of second-order. These features explain the special role of self-
similar solutions, known as Barenblatt-Pattle, in the large time regimes: see [8]
for an historical presentation. Also remarkable is the fact discovered in [9] that
the Barenblatt-Pattle solutions are optimal for some Gagliardo-Nirenberg-Sobolev
inequalities, which are essential to measure the asymptotic stability of the self-
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similar solutions using relative entropy methods. Entropy functionals are indeed
deeply connected with fast diffusion equations, as these equations can be seen as
gradient flows of the entropies with respect to the Wasserstein’s distance (see [10]).
In the context of fractional fast diffusion or porous medium equations, it is there-

fore very natural to question the role of self-similar solutions in terms of large time
asymptotics and related functional inequalities. However, fractional order deriva-
tives and nonlinearities do not combine well and this raises a number of difficulties.
Self-similar solutions which generalize the Barenblatt-Pattle solutions to fractional
diffusion have been studied in connection with large time asymptotics in [4, 5]
and [11–13]. There is a certain flexibility in the generalization of the standard
nonlinear diffusion equations: this has been investigated in [14] and [15].
In the present paper, we shall specifically rely on the fractional fast diffusion

equation

∂u

∂t
= ∇ ·

(√
u∇(−∆)−s um− 1

2

)

with m < 1, which seems particularly well adapted to entropy – entropy production
inequalities as we shall see below. Such an equation has already been considered
in [15, Equation (MG)] from the point of view of self-similarity. Our purpose is to
clarify the interplay of this equation with fractional Gagliardo-Nirenberg-Sobolev
inequalities (see Section 2.3), and observe that, generically, optimal functions for
these inequalities differ from self-similar solutions that are supposed to govern the
large time behavior of the solutions of the evolution equation (Proposition 2.3). Be-
yond some results about, e.g., the existence of optimal solutions for the interpola-
tion inequalities (Proposition 2.1), we raise a number of open questions concerning
the large time asymptotics in Section 3 and the applicability of the Bakry-Emery,
or carré du champ, method in Section 4.

2. Preliminaries: a fractional interpolation inequality and a fractional

fast diffusion flow

2.1. The fractional Sobolev inequality

According to [16], for any α ∈ (0, d), with q = 2 d
d−α , the fractional Sobolev inequality

in R
d can be written as

‖w‖2
H̊

α
2 (Rd)

≥ Sd,α

(
∫

Rd

|w|q dx
)

2

q

∀w ∈ H̊
α

2 (Rd) (1)

where H̊
α

2 (Rd) is the space of all tempered distributions w such that

ŵ ∈ L1
loc(R

d) and ‖w‖2
H̊

α
2 (Rd)

:=

∫

Rd

|ξ|α| ŵ|2 dξ < ∞ .

Here ŵ denotes the Fourier transform of w and the optimal constant is given by

Sd,α = 2α π
α

2
Γ( d+α

2
)

Γ( d−α

2
)

(

Γ( d

2
)

Γ(d)

)α/d
.
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Up to translations, dilations and multiplications by a nonzero constant, the optimal
function is

w⋆(x) =
(

1 + |x|2
)− d−α

2 ∀x ∈ R
d .

It is easy to check that w⋆ solves

(−∆)
α

2 w⋆ = Cd,α w
d+α

d−α

⋆ where Cd,α = 2α
Γ( d+α

2
)

Γ( d−α

2
)
. (2)

With the notation Dα := ∇ (−∆)
α−1

2 , we get that (−∆)
α

2 = D∗
α/2 Dα/2 and (1) can

then be written as

‖w‖2
H̊

α
2 (Rd)

=
∥

∥Dα/2w
∥

∥

2

L2(Rd)
≥ Sd,α ‖w‖2Lq(Rd) ∀w ∈ H̊

α

2 (Rd) .

The case α = 2 was established in [17, 18], but one may refer to [19] in case
d = 3 and even to [20] for some early considerations on optimal functions. In the
fractional case α 6= 2, the dual form of the optimal inequality, i.e., the Hardy-
Littlewood-Sobolev inequality, was established in [21], while considerations on the
case α = 1 in connection with trace issues can be found in [22]. Later work in-
clude [23] and [24] among many other related papers. The issue of the symmetry
of the optimal functions, up to translations, was considered in [21] and established
in [25] using the moving planes method.

2.2. A fractional Gagliardo-Nirenberg-Sobolev inequality

With q = 2 d
d−α , a simple Hölder interpolation shows that

‖w‖L2p(Rd) ≤ ‖w‖1−ϑ
Lp+1(Rd) ‖w‖

ϑ
Lq(Rd) with ϑ =

d

p

p− 1

d+ α− p (d− α)
.

Together with Sobolev’s inequality, this provides an interpolation inequality of
Gagliardo-Nirenberg-Sobolev type. More precisely, we have the following state-
ment.

Proposition 2.1 Assume that α ∈ (0, d) and p ∈ (1, q] with q = 2 d
d−α . With the

above notations, the following Gagliardo-Nirenberg-Sobolev inequality

‖w‖L2p(Rd) ≤ CGNS ‖w‖ϑH̊α
2 (Rd)

‖w‖1−ϑ
Lp+1(Rd) ∀w ∈ D(Rd) (3)

holds with an optimal constant CGNS ≤ S
ϑ/2
d,α . Moreover, there exists a positive

optimal function in H̊
α

2 (Rd) ∩ Lp+1(Rd) which solves the Euler-Lagrange equation

(−∆)
α

2 w +wp − w2 p−1 = 0 , x ∈ R
d . (4)

In the above statement D(Rd) denotes the space of smooth functions with com-

pact support, but it is simple to extend it by density to the space
{

w ∈ H̊
α

2 (Rd) :
∫

Rd w
p+1 dx < ∞

}

. See [26, Theorem 2.1] for details. When p = q
2 = d

d−α , then
ϑ = 1 and CGNS = Sd,α. The symmetry of the optimal functions is not considered
here and the interested reader is invited to refer for instance to [27] for a related
problem.
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Sketch of the proof. This result is out of the scope of the present paper and the
proof is relatively standard, so let us give only a simple sketch. A reader interested
in further details is invited to refer to [28] and [29] for further details in similar
cases. The above result can actually be seen as a special case of those dealt with
in [26]. The convergence of sequences in the critical case has been analyzed in
details in [30]. We can therefore assume that p ∈ (1, q).
An optimal function for (3) can be obtained by considering

IM := inf

{

‖w‖2
H̊

α
2 (Rd)

+ ‖w‖p+1
Lp+1(Rd) :

∫

Rd

w2p dx = M

}

.

An optimisation on λ > 0 of wλ = λ
d

2p w(λ·) shows that the minimization of IM is
equivalent to the characterization of the optimality case in (3), and also that

IM = M
γ I1 with γ =

d+ α− p (d− α)

d− p (d− 2α)
< 1 .

With these preliminary observations, a concentration-compactness analysis can
be done as follows. Let us consider a sequence (wn)n∈N of nonnegative function

such that
∫

Rd w
2p
n dx = M for any n ∈ N and

lim
n→∞

‖wn‖2H̊α
2 (Rd)

+ ‖wn‖p+1
Lp+1(Rd) = IM .

1) The following result has been stated in [31, Lemma I.1, p. 231].

Lemma 2.2 Let R > 0 and p ∈ [1, 2∗/2). If (wn)n is bounded in H1(Rd) and if

lim sup
n→∞

∫

BR(x)
|wn|2p dy = 0

for any x ∈ R
d, then limn→∞ ‖wn‖Lr(Rd) = 0 for any r ∈ [2, 2∗).

Here 2∗ = ∞ if d = 1 or 2, and 2∗ = 2 d/(d − 2) if d ≥ 3. By an analogue of this

result in H̊
α

2 (Rd), with 2∗/2 replaced by q, vanishing cannot occur, which means
that, after eventually replacing wn by wn(· + yn) for some unbounded sequence
(yn)n∈N of points in R

d, we have

lim
R→∞

lim
n→∞

∫

BR(0)
|wn|2p dy > 0 .

2) Since γ < 1, it is straightforward to check that

IM1+M2
≤ IM1

+ IM2
,

which prevents dichotomy. As a consequence, for any ε > 0, there exists some
R > 0, large enough, such that

lim
n→∞

∫

BR(0)
|wn|2p dy ≥ M− ε .
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In other words, this means that the sequence (w2p
n )n∈N is tightly relatively compact

in the sense of measures.
3) Concentration is forbidden by Sobolev’s inequality (1). Altogether, this proves
that (wn)n∈N is weakly relatively compact in L2p(Rd) (see for instance [32,
Lemma 2.2]) and the conclusion holds by lower semi-continuity.
Let us take the logarithm of both sides in (3). An optimal function is a minimizer

of the functional

w 7→ ϑ log ‖w‖H̊α
2 (Rd) + (1− ϑ) log ‖w‖Lp+1(Rd) − log ‖w‖L2p(Rd) .

A variation shows that

ϑ (−∆)
α

2 w

‖w‖H̊α
2 (Rd)

+
(1− ϑ)wp

‖w‖Lp+1(Rd)

− w2 p−1

‖w‖L2p(Rd)

= 0 .

Using the homogeneity in (3) and a multiplication by a constant, the coefficients
can be adjusted so that w solves (4). �

2.3. A fractional fast diffusion equation

Let us consider the case

α = 2 (1− s) .

Any nonnegative solution u of

∂u

∂t
= ∇ ·

(√
u∇(−∆)−sw

)

with w = um− 1

2 (5)

which is smooth enough and has good decay properties as |x| → ∞ is such that

E
′ = 2m (1−m)

2m−1 I , (6)

where the entropy E and the Fisher information I are defined respectively by

E[u] :=

∫

Rd

um dx and I[u] :=

∫

Rd

∣

∣

∣
∇(1−s)um− 1

2

∣

∣

∣

2
dx ,

and ∇(1−s) is defined by

∇(1−s)w := ∇(−∆)−s/2w .

Above we consider E[u(t, ·)] as a function of t if u solves (5) and E′ denotes the
t-derivative of E[u(t, ·)].
Because the right hand side in (5) is in divergence form, we know that

M :=

∫

Rd

u dx

is independent of t ≥ 0 for any solution u which is smooth enough, and with enough
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decay as |x| → +∞. Let us assume that

m ≥ m1 :=
1

2
+

1

q
= 1− α

2 d
.

If m = m1 and v⋆ := wq
⋆, then v⋆(x) =

(

1 + |x|2
)−d

satisfies

v
m1− 1

2
⋆ = w⋆ and (−∆)1−s

(

v
m1− 1

2
⋆

)

= Cd,α v
d+α

2 d
⋆ = Cd,α

(

1 + |x|2
)s−1 √

v⋆

according to (2).
Assume now that m ∈ [m1, 1). If we introduce a generalized Rényi entropy power

functional F as in [33, 34], defined by

F := E
σ

with

σ :=
2

ϑ

1− ϑ

p+ 1
+ 1 =

m−mc

1−m
, p =

1

2m− 1
and mc := 1− α

d
,

then by applying Proposition 2.1 to w = um− 1

2 we obtain that

F
′ ≥ κ

using (6), where the constant κ depends only on d, s (or α), m and M, and can be
computed as

κ :=
2m (1 −m)

2m− 1
σ

(

M

C
2p
GNS

)
1

p ϑ

=
2m

2m− 1
(m−mc)

(

M

C
2p
GNS

)
d+α−p (d−α)

d (p−1)

.

2.4. Self-similar solutions

Let us introduce the time-dependent change of variables

u(t, x) =
1

Rd
v
(

logR,
x

R

)

(7)

where R = R(t) is given by the ordinary differential equation

Rµ−1 dR

dt
= 1 , R(0) = 1 , (8)

and the parameter µ is defined by

µ := d (m−mc) with mc = 1− α

d
.

If m is in the range [m1, 1), it is straightforward to check that µ is positive and the
scale R has the explicit expression

R(t) = (1 + µ t)1/µ ∀ t ≥ 0 .
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If u solves (5), it is then easy to check that v is a solution of

∂v

∂t
= ∇ ·

[√
v
(

∇(−∆)−s vm− 1

2 + x
√
v
)]

. (9)

This change of variable is classical in case of non-fractional operators but has
also been considered in the case of the fractional Laplacian, for instance in [11, 12].
A detailed analysis of self-similar profiles is available in [15]. In the fast diffusion
case, for an equation related with (5), we refer to [35], where the role of Barenblatt
type solutions for regularization effects has been clarified.

Proposition 2.3 Let p = 1
2m−1 . Under the assumptions of Proposition 2.1, if w

is an optimal function for (3), then v = w2p is not a bounded, positive, stationary
solution of (9) such that I[v] is finite, unless s = 0, α = 2 or m = d+1

d+2 (1−s) .

In other words, we claim that (4) does not provide stationary solutions of (9) as
it is the case in the non-fractional case, except in the special case corresponding to
m = d+1

d+2 (1−s) , which was observed in [14, 15].

Proof. We argue by contradiction and consider a solution of

∇ ·
[√

v
(

∇(−∆)−s vm− 1

2 + x
√
v
)]

= 0 .

We deduce that w = vm− 1

2 solves

0 = ∇(−∆)−s vm− 1

2 + x
√
v = ∇(−∆)−sw + xwp

where p = 1/(2m − 1) and, as a consequence,

−(−∆)1−sw +∇ · (xwp) = 0 .

With α = 2 (1 − s), if w simultaneously solves (4) up to a multiplication by a
constant, a scaling and a translation, this means that wp = v is such that

∇ · (xwp) = aw2 p−1 − bwp

for some positive constants a and b that can be adjusted. With

a =
p

p− 1
and b =

p

p− 1
− d ,

we find that

w(x) =
(

1 + |x|2
)

1

1−p ∀x ∈ R
d .

The result follows from [14, Theorem 3.1]. �

The case m = m1 is almost explicit. In order to illustrate Proposition 2.3, let us
give some details. With the notations of Section 2.1, if we choose

v
m1− 1

2
⋆ = w⋆ ⇐⇒ v⋆ = w

2 d

d−α

⋆ ⇐⇒ v⋆(x) =
(

1 + |x|2
)−d ∀x ∈ R

d ,

7



we obtain that

∇ (−∆)−1 (−∆)1−s v
m1− 1

2
⋆ + x

√
v⋆ = ∇ (−∆)−1

Cd,αw
d+α

d−α

⋆ + x
√
v⋆

= ∇ (−∆)−1

(

Cd,α v
d+α

2 d
⋆ − Cd,2 v

d+2

2 d
⋆

)

6= 0

unless α = 2.

For later purpose, let us define the self-similar profile B as the unique radial
solution of

∇(−∆)−s
B

m− 1

2 + x
√
B = 0

such that
∫

Rd B dx = M. We recall that these solutions are the so-called Barenblatt
profiles when s = 0 and refer to [36] for more details. It is straightforward to check
that

u⋆(t, x) =
1

Rd
B

(

logR,
x

R

)

is a self-similar solution of (5) if R = R(t) is given by (8).

3. Global rates of convergence and formal large time asymptotics

The generalized Rényi entropy power functional defined as in Section 2.3 by

F[u] =

(
∫

Rd

um dx

)σ

is such that

F[u(t, ·)] ≥ F[u0] + κ t ∀ t ≥ 0

if u solves (5) with initial datum u0 on the one hand, and a direct computation
shows that the self-similar solution u⋆ satisfies the relation

F[u⋆(t, ·)] = F[B] (1 + µ t) ∀ t ≥ 0 .

Corollary 3.1 With the above notations and under the assumptions of Propo-
sition 2.3, we have the estimate

κ < κ⋆ := µF[B] .

Proof. The inequality κ ≤ κ⋆ is a straightforward consequence of the above com-
putations, with u0 = B. The strict inequality follows from Proposition 2.3. �

Now let us investigate the large time asymptotics at formal level. Inspired by [8,
35], we expect that for any m ∈ [m1, 1),

u(t, x) ∼ u⋆(t, x) as t → +∞

8



as in [37, Theorem 1.4], and thus

F[u(t, ·)] = κ⋆ t
(

1 + o(1)
)

= F[B] (1 + µ t)
(

1 + o(1)
)

.

Using the self-similar change variables (7)-(8), the equivalence u ∼ u⋆ amounts to

v(t, ·) → B as t → +∞ .

So far this question is open. Next let us investigate at formal level the question of
the attraction of the solutions by the self-similar solutions.
If u solves (5) and u⋆ is the self-similar solution with same mass, we define the

relative entropy by

E [u] = 1
m−1

∫

Rd

(

um − um⋆ − mum−1
⋆ (u− u⋆)

)

dx .

A straightforward computation shows that

d

dt
E [u(t, ·)] = m

m−1

∫

Rd

(

um−1 − um−1
⋆

) ∂u

∂t
dx− m

∫

Rd

um−2
⋆ (u− u⋆)

∂u⋆
∂t

dx

= − m
m−1

∫

Rd

∇
(

um−1 − um−1
⋆

)

·
(√

u∇(−∆)−s um− 1

2

)

dx

+ m

∫

Rd

∇
(

um−2
⋆ (u− u⋆)

)

·
(√

u⋆ ∇(−∆)−s u
m− 1

2
⋆

)

dx .

At formal level, we investigate the limit as ε → 0 of

uε = u⋆

(

1 + ε u
1

2
−m

⋆ f
)

.

First, let us notice that

√
uε =

√
u⋆ +

1
2 ε u

1−m
⋆ f + o(ε) , u

m− 1

2
ε = u

m− 1

2
⋆ +

(

m− 1
2

)

ε f + o(ε) ,

um−1
ε = um−1

⋆ + (m− 1) ε
f√
u⋆

+ 1
2 (m− 1) (m − 2) ε

f2

um⋆
+ o(ε2) .

As a consequence, we find that

E [u] = m
2 ε2

∫

Rd

u1−m
⋆ f2 dx+ o(ε2)

and

d

dt
E [u(t, ·)] = − m

2 ε2 Qu⋆
[f ] + o(ε2)

9



where the quadratic form Qu⋆
is defined by

Qu⋆
[f ] :=

∫

Rd

∇
( f√

u⋆

)

·
(

(2m− 1)
√
u⋆∇(−∆)−s f + u1−m

⋆ f ∇(−∆)−s u
m− 1

2
⋆

)

dx

+ (m− 2)

∫

Rd

∇
(

f2

um⋆

)

·
(√

u⋆ ∇(−∆)−s u
m− 1

2
⋆

)

dx .

If s = 0, we observe that

1
2m−1 Qu⋆

[f ] =

∫

Rd

u⋆

∣

∣

∣
∇
( f√

u⋆

)

∣

∣

∣

2
dx− 1−m

2

∫

Rd

(

(2−m)
|∇u⋆|2
u2⋆

− ∆u⋆
u⋆

)

f2 dx .

To characterize the asymptotic stability of u⋆, the point is to notice that Qu⋆
[f ]

controls
∫

Rd u
1−m
⋆ f2 dx.

Proposition 3.2 With the previous notations, if s = 0 and m1 ≤ m < 1, there
exists a positive constant C which depends on only on m and d such that

Qu⋆
[f ] ≥ 2

1−m

C
Rµ

∫

Rd

u1−m
⋆ f2 dx

for any smooth function f such that
∫

Rd u
3

2
−m

⋆ f dx = 0.

We recall that R = R(t) is given by (8), and u⋆ depends on t, so that the above
inequality holds for any t ≥ 0. When s = 0, µ = dm− (d− 2) and Rµ(t) = 1 + µ t
for any t ≥ 0. By density, it is easy to extend the above inequality to any function
f ∈ L∞(dt,L2(Rd, u1−m

⋆ dx)) such that Qu⋆
[f ] is finite for any t ≥ 0.

Proof. The result follows from the change of variables (7) and [38, Corollary 1]:
the above inequality can be rewritten in the form of a spectral gap inequality
with a constant which is independent of t. Also see [36] for earlier spectral gap
computations. �

In self-similar variables, Proposition 3.2 shows that B is linearly stable, and this
is enough to prove that u⋆ is asymptotically linearly stable when s = 0. Actually
one also knows that B is globally stable when s = 0, with explicit global rates,
which is a far deeper issue. Proposition 3.2 immediately raises two open questions:

(i) Is u⋆ asymptotically linearly stable for any s ∈ (0, n) ?
(ii) Can we prove that u⋆ is, under the appropriate mass normalization, a global

attractor and deduce that the asymptotic rate of convergence of any solution
towards u⋆ is determined by the spectral gap Λ associated with the inequality

QB[g] ≥ Λ

∫

Rd

B
1−m g2 dx

for any admissible function g such that
∫

Rd B
3

2
−m g dx = 0 ?
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4. On the Bakry-Emery method applied to the fractional fast

diffusion equation and generalized Rényi entropy powers

In this section we do a computation based on the generalized Rényi entropy powers
in case s = 0 and emphasize the points which differ when s > 0. So far such
a computation has been done using the so-called pressure variable um−1 as, for
instance, in [33, 34]. Here we base our computations on

f := um− 1

2 .

With this simple change of variables, we obtain that

∂f

∂t
= um−1

[

(

m− 1
2

)

∆f + 1
2

|∇f |2
f

]

and compute the time derivative of the Fisher information

I[u] =

∫

Rd

|∇f |2 dx

as

I
′ = − 2

∫

Rd

(∆f)
∂f

∂t
dx = − (2m− 1)

∫

Rd

um−1 (∆f)2 dx−
∫

Rd

um−1 ∆f
|∇f |2
f

dx .

The computation of the r.h.s. relies on two identities. Here we assume that integra-
tions by parts can be taken without any special precautions. A detailed discussion
of this issue can be found in [39].

• First identity: we use an integration by parts to obtain

−
∫

Rd

um−1 ∆f
|∇f |2
f

dx

=

∫

Rd

∇f · ∇
(

um−1 |∇f |2
f

)

dx

=

∫

Rd

(∇um−1) · ∇f
|∇f |2
f

dx+ 2

∫

Rd

um−1 Hf :
∇f ⊗∇f

f
dx

−
∫

Rd

um−1 |∇f |4
f2

dx

where Hf denotes the Hessian matrix of f . After integrating by parts again, we
obtain

−
∫

Rd

um−1 ∆f
|∇f |2
f

dx = 2

∫

Rd

um−1 Hf :
∇f ⊗∇f

f
dx− 1

2m−1

∫

Rd

um−1 |∇f |4
f2

dx

(10)
using

∇
(

um−1
)

= 2 (m−1)
2m−1 um−1 ∇f

f
. (11)
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• Second identity: using again (11), we find that

− (2m− 1)

∫

Rd

um−1 (∆f)2 dx = (2m− 1)

∫

Rd

∇f · ∇
(

um−1 ∆f
)

dx

= 2 (m− 1)

∫

Rd

um−1 ∆f
|∇f |2
f

dx+ (2m− 1)

∫

Rd

um−1∇f · ∇∆f dx .

Next we use the identity ∇f · ∇∆f = 1
2 ∆
(

|∇f |2
)

− ‖Hf‖2 and obtain

− (2m− 1)

∫

Rd

um−1 (∆f)2 dx

= 2 (m− 1)

∫

Rd

um−1∆f
|∇f |2
f

dx− (2m− 1)

∫

Rd

um−1 ‖Hf‖2 dx

+
(

m− 1
2

)

∫

Rd

um−1 ∆
(

|∇f |2
)

dx

where, using twice (11), we obtain that

∫

Rd

um−1 ∆
(

|∇f |2
)

dx = 2 (m−1)
2m−1

∫

Rd

|∇f |2∇ ·
(

um−1 ∇f

f

)

dx

= 2 (m−1)
2m−1

∫

Rd

um−1 ∆f
|∇f |2
f

dx+ 2 (m−1)
2m−1

[

2 (m−1)
2m−1 − 1

]

∫

Rd

um−1 |∇f |4
f2

dx

= 2 (m−1)
2m−1

∫

Rd

um−1 ∆f
|∇f |2
f

dx− 2 (m−1)
(2m−1)2

∫

Rd

um−1 |∇f |4
f2

dx .

Notice that the above computation will cause trouble for a generalization to the
case of a function f which is defined as a non-local expression of um− 1

2 . Hence

− (2m− 1)

∫

Rd

um−1 (∆f)2 dx

= 3 (m− 1)

∫

Rd

um−1∆f
|∇f |2
f

dx− (2m− 1)

∫

Rd

um−1 ‖Hf‖2 dx

− m−1
2m−1

∫

Rd

um−1 |∇f |4
f2

dx .

We can evaluate
∫

Rd u
m−1 ∆f |∇f |2

f dx using (10) and get that

− (2m− 1)

∫

Rd

um−1 (∆f)2 dx

= − 3 (m− 1)

(

2

∫

Rd

um−1 Hf :
∇f ⊗∇f

f
dx− 1

2m−1

∫

Rd

um−1 |∇f |4
f2

dx

)

− (2m− 1)

∫

Rd

um−1 ‖Hf‖2 dx− m−1
2m−1

∫

Rd

um−1 |∇f |4
f2

dx .
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This provides the second identity

− (2m− 1)

∫

Rd

um−1 (∆f)2 dx

= − (2m− 1)

∫

Rd

um−1 ‖Hf‖2 dx− 6 (m− 1)

∫

Rd

um−1 Hf :
∇f ⊗∇f

f
dx

+ 2 (m−1)
2m−1

∫

Rd

um−1 |∇f |4
f2

dx . (12)

Collecting terms of our two identities (10) and (12), we have found that

I
′ = − (2m− 1)

∫

Rd

um−1 ‖Hf‖2 dx− 2 (3m − 4)

∫

Rd

um−1Hf :
∇f ⊗∇f

f
dx

− 3−2m
2m−1

∫

Rd

um−1 |∇f |4
f2

dx ,

that we can also write as

I
′ = − (2m− 1)

(

1− m1

m

)

∫

Rd

um−1

∣

∣

∣

∣

∆f − 1
2m−1

|∇f |2
f

∣

∣

∣

∣

2

dx−R

with

R := (2m− 1)
m1

m

∫

Rd

um−1 ‖Hf‖2 dx

− 2
(

3 (1 −m1) +
m1

m

)

∫

Rd

um−1 Hf :
∇f ⊗∇f

f
dx

+ 2m (1−m1)+m1

m (2m−1)

∫

Rd

um−1 |∇f |4
f2

dx .

Recalling that m1 = (d− 1)/d, the reader is invited to check that

R = 2m−1
m

∫

Rd

um−1
∥

∥

∥
Lf − 1

2m−1 Mf
∥

∥

∥

2
dx

using the notations

Lf := Hf − 1
d ∆f Id and Mf :=

∇f ⊗∇f

f
− 1

d

|∇f |2
f

Id ,

so that

Hf :
∇f ⊗∇f

f
= Hf : Mf + 1

d ∆f
|∇f |2
f

= Lf : Mf + 1
d ∆f

|∇f |2
f

and

‖Lf‖2 = ‖Hf‖2 − 1
d (∆f)2 and ‖Mf‖2 =

(

1− 1
d

) |∇f |4
f2

.
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Finally we introduce the Rényi entropy power F defined by

F := E
σ with σ :=

2

d

1

1−m
− 1 .

If 1− 1
d = m1 ≤ m < 1, proving that, as a function of t, F is concave amounts to

proving that

G := 2m−1
2m (1−m) E

2−σ
F
′′ = (σ − 1) 2m (1−m)

2m−1 I
2 + E I

′

is nonpositive, because of (6). We observe that

∫

Rd

um−1

∣

∣

∣

∣

∆f − 1
2m−1

|∇f |2
f

+ 2m
2m−1

I

E

√
u

∣

∣

∣

∣

2

dx

=

∫

Rd

um−1

∣

∣

∣

∣

∆f − 1
2m−1

|∇f |2
f

∣

∣

∣

∣

2

dx−
(

2m
2m−1

)2 I
2

E

and, as a consequence,

G = − (2m− 1)
(

1− m1

m

)

E

∫

Rd

um−1

∣

∣

∣

∣

∆f − 1
2m−1

|∇f |2
f

+ 2m
2m−1

I

E

√
u

∣

∣

∣

∣

2

dx

− 2m−1
m E

∫

Rd

um−1
∥

∥

∥
Lf − 1

2m−1 Mf
∥

∥

∥

2
dx .

Summarizing, when s = 0 and by assuming that there are no boundary terms
in the integrations by parts, we establishes that F is a concave increasing function,
and shows that

F
′ ≥ κ = κ⋆

with the notations of Sections 2.3 and Corollary 3.1. According to [39], this is
equivalent to the proof of Inequality (3). The main difference with [39] is that the

computations are done in terms of f = um− 1

2 instead of um.
When s 6= 0, it would be desirable to do a similar computation with

f = (−∆)−s/2 um− 1

2

but there are several obstructions. First of all, according to Proposition 2.3, we
cannot expect that κ = κ⋆. In other words, the self-similar solution u⋆ is not
optimal for Inequality (3). We can hope that monotonicity of F′ holds for some
non optimal constant as a consequence of the Bakry-Emery method applied to the
fractional fast diffusion equation and generalized Rényi entropy powers: proving it
is still open. Technically another obstruction arises from the computations as we
have no identity equivalent to (11). As in [11, 12] in the porous medium case, one
could expect that a Stroock-Varadhan identity [40–42] allows to give a proof of the
optimality with non-optimal constants, and also characterize the stability of the
self-similar solutions as t → +∞, but this is so far also an open question.
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