Full metastable asymptotic of the fisher information - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Mathematical Analysis Année : 2017

Full metastable asymptotic of the fisher information

Résumé

We establish an expansion by Γ-convergence of the Fisher information relative to the reference measure e (−βV) dx, where V is a generic multiwell potential and β → ∞. The expansion reveals a hierarchy of multiple scales reflecting the metastable behavior of the underlying overdamped Langevin dynamics: distinct scales emerge and become relevant depending on whether one considers probability measures concentrated on local minima of V , probability measures concentrated on critical points of V, or generic probability measures on R^d. We thus fully describe the asymptotic behavior of minima of the Fisher information over regular sets of probabilities. The analysis mostly relies on spectral properties of diffusion operators and the related semiclassical Witten Laplacian and covers also the case of a compact smooth manifold as underlying space.
Fichier principal
Vignette du fichier
DiGesu_Mariani_Full_Metastable_Asymptotics.pdf (432.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01400800 , version 1 (22-11-2016)

Identifiants

Citer

Giacomo Di Gesù, Mauro Mariani. Full metastable asymptotic of the fisher information. SIAM Journal on Mathematical Analysis, 2017, ⟨10.1137/16M1077805⟩. ⟨hal-01400800⟩
267 Consultations
109 Téléchargements

Altmetric

Partager

More