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FULL METASTABLE ASYMPTOTIC OF THE FISHER

INFORMATION

GIACOMO DI GESÙ AND MAURO MARIANI

Abstract. We establish an expansion by Γ-convergence of the Fisher informa-

tion relative to the reference measure e−βV dx, where V is a generic multiwell
potential and β → ∞. The expansion reveals a hierarchy of multiple scales

reflecting the metastable behavior of the underlying overdamped Langevin dy-

namics: distinct scales emerge and become relevant depending on whether
one considers probability measures concentrated on local minima of V , prob-

ability measures concentrated on critical points of V , or generic probability

measures on Rd. We thus fully describe the asymptotic behavior of minima of
the Fisher information over regular sets of probabilities. The analysis mostly

relies on spectral properties of diffusion operators and the related semiclassical

Witten Laplacian and covers also the case of a compact smooth manifold as
underlying space.

1. Introduction

The Fisher information of a probability measure µ relative to a reference measure
m on a smooth manifold is given by the expression

I(µ|m) := 1
2

∫
|∇%|2

%
dm = 2

∫
|∇√%|2 dm, (1.1)

assuming that % := dµ
dm exists and is sufficiently regular (see the precise Defini-

tion 3.1 below). This is a classical and ubiquitous object measuring the discrep-
ancy between two measures and appearing in various fields as Statistics, Information
Theory and Statistical Mechanics.

In the context of Statistical mechanics the reference measure usually appears in
the form mβ = e−βV dx, where V is a suitable potential describing the interaction
in the model, β is a positive parameter, proportional to the inverse temperature and
dx is the volume measure corresponding to the absence of interaction. The main
interest often lies in the dynamical properties of the associated heat flow evolution
featuring mβ as stationary measure. Under suitable regularity assumptions on V
it may be described by the Fokker-Planck equation

∂tu = ∆u+ β div(u∇V ) (1.2)

or, on a pathwise level, by the overdamped Langevin equation

Ẋt = −∇V (Xt) +
√

2β−1 Ẇt, (1.3)

where Wt is Brownian motion. The Fisher information may enter the description
and analysis of a Statistical Mechanics model in various ways: through functional
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2 G.DI GESÙ AND M.MARIANI

inequalities, prominently the Log-Sobolev and HWI inequality (see e.g. [1] and
references therein and in particular [18] for the β →∞ regime considered here); as
rate functional in Large deviation principles describing fluctuations of the empirical
occupation measure of (1.3) when t→∞, [5]; or also as a tool to give an alternative
construction of the dynamics (1.2) as gradient flow with respect to the relative
entropy functional [12] (see also the discussion at the end of this introduction).

1.1. The low temperature regime and metastability. In this paper we study
the asymptotic behaviour of the Fisher information relative to mβ = e−βV dx in the
low temperature regime, that is β →∞. When the potential V admits several local
minima, in this regime energy traps are created which slowdown the dynamics (1.3)
around these minima and produce metastability effects.

In the heuristic picture, there are several relevant time scales that feature a non-
trivial dynamics: on short time scales, i.e. when t = t(β) grows slowly as a function
of β, the system essentially follows the deterministic gradient flow with respect to
the potential V . In particular, all critical points of V are absorbing for the limiting
dynamics. On a longer time scale (see below), the process just lives on critical
points; however on this scale stable critical points (that is, local minima of V ) are
absorbing for the dynamics (once visited, the system sticks there).

When observed on even larger time scales, typically exponentially large in β [9,
Chap. 6.], even among the local minima distinctions become observable: on the
long run, rare but sufficiently large fluctuations may occur that allow the process
to climb the mountain pass which leads to another local minimum. This tunneling
or metastable transition among local minima favors the passage from a minimum
point to a deeper, energetically more convenient minimum point. Thus, on the long
run, the deeper the local minimum, the more time the process will spend around
it.

The reversible diffusion model (1.3) is a paradigmatic model for metastable phe-
nomena, that show up in the dynamical behavior of a large variety of complex real
world systems, and can be regarded as a mark of dynamical phase transitions. It
is often a detailed theoretical and numerical analysis of metastability that allows
for a proper upscaling of microscopic models - defined at the atomic or molecular
level - to macroscopic descriptions catching experimental observations in materials
science, biology and chemistry. We refer to Kramers’ influential [14], to [10] and
to [2, 16, 7] for recent brief reviews on some of the mathematical techniques used
in the analysis of metastability.

One expects the metastable behavior to be encoded somehow in the asymptotic
behavior of the Fisher information. We discuss below why Γ-convergence is the
natural tool to characterize this asymptotic behavior, in particular in the context
of metastability and convergence of multi-scale reversible dynamics. However, for
the sake of readability, we first shortly describe our main result in Section 1.2 below,
then informally explain how Γ-convergence can be used as a solid theoretical frame-
work for metastability in Section 1.3, in particular in the context of large deviations
of the occupation measure. We quickly review the applications of Γ-convergence
in multi-scale gradient flows in Section 1.4 (see also [19] where Γ-convergence is
exploited to upscale an essentially one-dimensional metastable Fokker-Planck equa-
tion). We recall the definition of Γ-convergence in Section 2.2 below, and refer to
[4] for a systematic treatment.
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1.2. Informal description of the main result. In this paper a full expansion
in the sense of Γ-convergence of the Fisher information is established, which indeed
features the complete cascade of metastable scales as informally described above.
Using standard techniques, it is not hard to see that, under mild assumptions on
the potential V , the rescaled Fisher information

Iβ := 1
β2 I(·|e−βV dx) (1.4)

Γ-converges (in the weak topology of probabilities) as β → ∞ to the linear func-
tional

I(µ) := 1
2

∫
dµ(x)|∇V |2(x).

On the dynamical level this corresponds to the convergence of the diffusion (1.2)-
(1.3) to the deterministic transport along the gradient of V . Note that Z−1

β e−βV dx

is the unique minimizer of Iβ , provided Zβ = exp(−βV ) < ∞. On the other
hand, if V admits several critical points, I(µ) vanishes on any probability that is
concentrated on such points.

This suggests that one may obtain a non-trivial Γ-limit also when multiplying
Iβ by a suitable diverging constant, so that, according to the heuristic picture
described above, the new limiting functional vanishes only on probability measures
concentrated on local minima. This is indeed the case, and βIβ also Γ-converges
to a functional J with the mentioned properties (see Theorem 2.3 for its explicit
characterization).

To capture the exponential scales associated with tunneling between local min-
ima we iterate the same procedure: assuming that there is a unique global minimum
point x0 of V and labelling by {x1, . . . , xn} the other local minimum points of V , we
investigate for each k = 1, . . . , n the Γ-limit of βeβWkIβ , where Wk is the mountain
pass barrier which separates xk from a deeper minimum (see Section 2 for precise
defintions). Under generic assumptions, we prove that for each k = 1, . . . , n also
βeβWkIβ Γ-converges to some Jk, which can again be explicitly characterized (see
Theorem 2.3) and involves the prefactors already appearing in the famous Kramers
formula for metastable critical times [14] (see also the Γ−convergence result in [19]).
Since Jk(µ) = 0 for all k’s iff µ = δx0 , this amounts to a full expansion of Iβ by
Γ-convergence (see [4, Chap. 1.10] and Section 2 of this paper). In other terms,
as far as infima over closed and open sets are concerned (that is, in the sense of
Γ-convergence)

Iβ(µ) ∼ I(µ) + 1
βJ(µ) +

n∑
k=1

1
β e
−βWkJk(µ). (1.5)

As a consequence of (1.5) and the Donsker-Varadhan Large Deviations Principle
[5] we infer that, in the sense of large deviations, it holds (see Corollary 2.5)

P

(
1
T

∫ T

0

dsf(Xs) ∼
∫
dµ(x)f(x), ∀f

)
∼ e−βT

(
I(µ)+

1
β J(µ)+

∑n
k=1

e−βWk
β Jk(µ)

)
.

(1.6)

That is, we characterize the sharp asymptotic of the l.h.s. for every µ ∈ P(Rd).
To prove our main result (1.5) we take a spectral point of view and exploit

results which were mainly developed in the context of the semiclassical spectral
analysis of Schrödinger operators. Indeed, as highlighted by the expression on the
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right hand side of (1.1), the Fisher information can be seen as a Dirichlet form
on L2(dm) and thus be studied from a spectral point of view by considering the
corresponding selfadjoint operator. When mβ = e−βV dx the latter is given by the
diffusion operator

Lβ = ∆− β∇V · ∇. (1.7)

It is well-known that a unitary transformation, sometimes called ground state trans-
formation, turns the generator into a Schrödinger operator acting now on the flat
space L2(dx). More precisely,

−e−
1
2βV Lβe

1
2βV = −∆ +

β2

4
|∇V |2 − β

2
∆V. (1.8)

The latter operator is a specific Schrödinger operator. This operator coincides with
the restriction on the level of functions of the Witten Laplacian, an operator act-
ing on the full algebra of differential forms, considered by Witten in his celebrated
paper [23]. Note that the small noise limit β → 0 turns now into a problem in
semiclassical analysis of Schrödinger operators. In this paper we use two important
results, established in this framework: the approximation of the low-lying spectrum
of Schrödinger operators via harmonic oscillators sitting at the bottom of the wells
[21], and the fine analysis of the splitting of the exponentially small eigenvalues
provided in [11]. For simplicity we restrict here to the case of Rd or of a compact
Riemannian manifold as state space, but our arguments could be adapted with-
out much difficulty to the case of a bounded domain with reflecting (Neumann)
boundary conditions, as considered e.g. in [19], by using [15] instead of [11].

1.3. Metastable dynamical systems. Here we informally describe some motiva-
tions to approach metastability via Γ-convergence of the Fisher information. By the
Birkhoff ergodic theorem, time-averages of an observable of an ergodic (determinis-
tic or random) dynamical system converge in the long time limit to the average of
the same observable with respect to the invariant measure m of the system. Assume
that we have a family of ergodic systems indexed by some parameter β, that for
the sake of simplicity we may take as real number. Under very weak and general
conditions, see e.g. [13], dynamical systems also satisfy a large deviation principle,
that we informally write for each fixed β as

Pβ

(
1
T

∫ T

0

dsf(Xs) ∼
∫
dµ(x)f(x), ∀f

)
' exp (−TEβ(µ)) , T � 1, (1.9)

where the rate Eβ(µ) ≥ 0 is a positive real valued function defined on probability
measures1. For each fixed β, we assume that the system has good ergodic properties,
i.e. Eβ(µ) = 0 iff µ = mβ is the invariant measure2, so that (1.9) can be interpreted
as a quantitative version of the Birkhoff theorem.

Suppose now that, informally speaking, a limiting behavior takes place as we
move the parameter β to some limit, say β → ∞. Then the invariant measure is

1Notice that (1.9) makes sense both for random and deterministic systems, as in the latter

case the initial distribution induces a probability measure on the trajectories of the system. In
other words, for the deterministic systems, the l.h.s. of (1.9) should be interpreted as the measure

of initial data such that
∫ T
0 f(Xs)ds ∼

∫
dµ(x)f(x).

2For the sake of simplicity we are assuming that at time 0 we start with distribution mβ . This

assumption is usually not needed in the random case, but crucial for deterministic systems.
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expected to converge to some limiting measure, mβ → m. Similarly one expects
concentration of time averages to take place in the parameter β as well, namely

Pβ

(
1
T

∫ T

0

dsf(Xs) ∼
∫
dµ(x)f(x), ∀f

)
' exp (−T aβ I(µ)) , T � 1, β � 1

(1.10)

where aβ is a sequence of real numbers converging to +∞. It is a general fact,
see e.g. [17], that the functional I in (1.10) is nothing but the Γ-limit of 1

aβ
Eβ .

If ergodic properties of the system hold uniformly in β, one would expect that
I(µ) = 0 iff µ = m = limβmβ .

On the other hand, we say that the system exhibits a metastable behavior (on
the scale (aβ)) in the limit β →∞, if the function I(µ) = Γ–limβ

1
aβ
Eβ , vanishes on

a set strictly larger than {m}. In other words, if there is a ’small-but-not-so-small’
probability that, for T large and β large, the time average of observables does not
behave as the spacial average w.r.t. the limiting invariant measure. In such a case,
(1.10) states in particular that one needs to consider time scales much longer than
aβ to observe convergence of the system to the invariant measure. If the system
features a metastable behavior, (1.10) is not completely satisfactory. Indeed, one
knows a priori that the l.h.s. should vanish if µ 6= m (as we sent T → ∞ before
β, and assumed mβ → m), but the r.h.s. does not catch the sharp asymptotic if
I(µ) = 0 (and µ 6= m). In other words, if µ 6= m and I(µ) = 0 (1.10) just states
that the l.h.s. vanishes on a slower scale than exp(−aβT ) but does not quantify this
scale.

In this case, one would expect a further non-trivial expansion in the r.h.s. of
(1.10), say for T � 1, β � 1

Pβ

(
1
T

∫ T

0

dsf(Xs) ∼
∫
dµ(x)f(x), ∀f

)
' exp

(
−T aβ

(
I(µ) + 1

bβ
J(µ)

))
, (1.11)

where bβ → ∞ and J(µ) is such that J(m) = 0, J(µ) = ∞ if I(µ) > 0, and thus
J(µ) gives the asymptotic value of the l.h.s. when I(µ) = 0 and µ 6= m. Actually, it
may happen that for such µ’s, the l.h.s. in (1.11) vanishes at different rates, so that
a further expansion of the exponent in the r.h.s. is necessary, until the exponential
behavior of the l.h.s. at each and every point in {I(µ) = 0} is characterized, and a
complete quantitative version of the ergodic convergence of averaged observables is
recovered.

The discussion informally carried over above can be made very precise, since
both large deviations and Γ-convergence always hold along subsequences, and thus
(1.9) can actually be used as a rigorous definition of Eβ , and the existence of a non-
trivial development by Γ-convergence [4, Chap. 1.10] (or equivalently of multiple
large deviations principles3 as in (1.11)) as a general definition of metastability.
However we refrain from giving a too abstract formulation of these statements that
are not instrumental to our results below.

3This should not be confused with what is called large and moderate deviations in the literature,
which is not related to metastability. Here the observables are fixed once and for all, and not

rescaled. And yet they feature multiple large deviations principles.
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1.4. Multiscale gradient flows. The relative entropy H(µ) of the probability
measure µ w.r.t. the reference measure m = e−βV dx is defined as

Hβ(µ) :=

∫
dm% log %, µ = %m (1.12)

It is a well-known fact [12] that the Fokker–Planck equation

∂tu = ∆u+ βdiv(u∇V ) (1.13)

can be written as a gradient flow of the relative entropy H with respect to the
2-Wasserstein distance on probability measures on Rd. Namely a curve (µβ(t)) of
probability measures with bounded second moments on Rd satisfies (1.13) iff

Hβ(µβ(0)) ≥ Hβ(µβ(t)) + 1
2

∫ t

0

‖∂sµβ(s)‖2ds+ 1
2

∫ t

0

|∇W2Hβ |2(µβ(s))ds (1.14)

where ‖ · ‖ is the tangent norm on the 2-Wasserstein and, most importantly for
us, the metric gradient |∇W2

Hβ |2 coincides with βIβ . Following the approach in
[20], and dividing both sides of (1.14) by β, one wants to pass to the limit β →∞.
Then, using the Γ-limit result Iβ → I in Theorem 2.3, one easily gathers that any
limit point (µ(t)) of (µβ(t)) satisfies∫

V dµ(0) ≥
∫
V dµ(t) + 1

2

∫ t

0

‖∂sµ(s)‖2ds+ 1
2

∫ t

0

∫
|∇V |2dµ(s)ds, (1.15)

provided the initial data satisfies 1
βHβ(µβ(0)) →

∫
V dµ(0). In other words, one

recovers the simple fact that the solution uβ to (1.13) satisfies uβ(t/β, x)→ u(t, x),
where u solves the dual transport equation

∂tu = div(u∇V ). (1.16)

Of course, if the inital data concentrates on critical points of V , (1.16) becomes
trivial, namely ∂tu = 0. Then the development by Γ-convergence gives the sharp
asymptotic of uβ(t/β2) exactly in these cases. It turns out that, when the initial
condition concentrates on local minima, even this limit is trivial, and still by the
Γ-development one can establish the limit of uβ(t/(βeβWk), x) where the Wk are
appropriate constants defined in A.5 below. We do not pursue these problems
here, since we plan a detailed study in the non-reversible case (namely when ∇V
in (1.16) is replaced by a generic vector field) in a follow-up paper. See [19] for a
detailed discussion on a similar model.

1.5. Plan of the paper. In Section 2 we introduce some definitions and state the
main result. In Section 3, we shortly review some basic properties of the Fisher
information functional. In Section 4 we cosnider suitable quasimodes associated to
the generator Lβ . In Section 5 we prove the Γ-convergence and equicoercivity results
for the Fisher information. In Section 6 and Section 7 we prove the development
by Γ-convergence of the Fisher information respectively under inverse power and
exponential rescaling.

2. Main result

2.1. Basic notation. Hereafter (M, g) is a smooth d-dimensional Riemannian
manifold without boundary and with metric tensor g. We assume that either M
is compact or that M = Rd and g is the canonical Euclidean tensor. Ω is the set
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of smooth, compactly supported 1-forms over M . For ψ ∈ Ω, ψ2 is understood
as 〈ψ,ψ〉g, while ∇, ∇·, Hess and ∆ are the covariant gradient, the divergence,
the Hessian and the (negative) Laplace-Beltrami operators on M . P(M) is the set
of Borel probability measures on M , and it is naturally equipped with the weak
topology of probability measures. If M is compact this is the weakest topology
such that the map µ 7→

∫
dµ f is continuous for all f ∈ C(M). If M is not com-

pact, the definition is slightly more involved, as one should require f to be bounded
and uniformly continuous with respect to any totally bounded distance on M (this
topology is independent on such a distance), see [22, Chap. 3.1]. In any case, P(M)
is a Polish space (that is a completely metrizable, separable topological space), and
it’s compact if M is compact.

2.2. Γ-convergence. In this section we briefly recall the basic definitions related
to Γ-convergence, see [4, Chap. 1]. For X a Polish space (we will always consider
X = P(M)) and (Hβ) a family of lower semicontinuous functions on X indexed by
the directed parameter β (we will always consider β > 0), one defines

(Γ–lim
β

Hβ)(x) := inf

{
lim
β
Hβ(xβ), {xβ} ⊂ X : xβ → x

}
,

(
Γ–lim
β

Hβ

)
(x) := inf

{
lim
β
Hβ(xβ), {xβ} ⊂ X : xβ → x

}
.

(2.1)

Whenever Γ–limβ Hβ = Γ–limβ Hβ =: H we say that Hβ Γ-converges to H in X.
Equivalently, Hβ Γ-converges to H iff for each x ∈ X:

– for any sequence xβ → x it holds limβ Hβ(xβ) ≥ H(x);

– there exists a sequence xβ → x such that limβ Hβ(xβ) ≤ H(x).

(Hβ) is equicoercive if for each M ∈ R the set
{

limβ Hβ ≤M
}

is precompact in X.
If Hβ is equicoercive and Γ-converges to H, then A := argmin(H) contains each
limit point of argmin(Hβ). Denote by A0 the set of such limit points. If A \ A0 is

nonempty, there exists a diverging sequence (a
(1)
β ) such that the functional

H
(1)
β := a

(1)
β (Hβ − inf

x∈X
Hβ(x)) (2.2)

admits a non-trivial (that it having somewhere a value different from 0 and ∞)

Γ-liminf. Notice that H
(1)
β inherits from Hβ the property of being equicoercive,

and that (Γ–limβ H
(1)
β )(x) = (Γ–limβ H

(1)
β )(x) = 0 if x ∈ A0 and (Γ–limβ H

(1)
β )(x) =

(Γ–limβ H
(1)
β )(x) = +∞ if x 6∈ A. If H

(1)
β admits a Γ-limit H(1) then we say that

the development by Γ-convergence

Hβ ∼ H + 1

a
(1)
β

H(1)
(2.3)

holds. Iterating the procedure with sequences such that a
(k)
β /a

(k+1)
β → 0, we say

that the development by Γ-convergence is full if it holds

Hβ ∼ H +
∑
k

1

a
(k)
β

H(k)
(2.4)

and for each x ∈ A \A0 there exists k such that H(k)(x) ∈ (0,∞).
Equicoercivity and Γ-convergence of a sequence (Hβ) imply an upper bound of

infima over open sets, and a lower bound of infima over closed sets, see e.g. [4,
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Prop. 1.18], and it is a relevant notion of variational convergence for the problems
discussed in the introduction. A full development by Γ-convergence then gives a
sharp asymptotic of each of such infima.

2.3. Assumptions on the potential. The potential V is a given real-valued func-
tion and we consider the following assumptions.

A.1 V ∈ C∞(M) is a Morse function. Namely the Hessian of V is non-
degenerate at any critical point of V .

A.2 In the case M = Rd (M is compact otherwise), it holds for some β0 ≥ 0

lim
x→∞

inf
β≥β0

(
1

4
|∇V |2 − 1

2β
∆V )(x) = +∞. (2.5)

A.3 In the case M = Rd (M is compact otherwise), it holds for some β0 ≥ 0
and all β ≥ β0

Zβ :=

∫
e−βV (x)dx < +∞. (2.6)

Remark 2.1. If M = Rd, A.1-A.3 imply that lim|x|→+∞ V (x) = +∞ (see [11,

Proposition 2.2]). Thus, in both cases of M compact and M = Rd, the set {V ≤ c}
is compact for all c ≥ infx∈M V (x).

Remark 2.2. Assumption A.2 says that, after the ground state transformation
of the diffusion generator Lβ and division by β2 (see (1.7),(1.8)), the Schrödinger
potential grows to infinity at infinity, uniformly in β.

Let ℘ be the set of critical points of V , namely z ∈ ℘ iff ∇V (z) = 0. By A.1-A.2,
℘ is finite. Let ℘0 ⊂ ℘ be the set of local minima of V and define W : ℘0 → (0,∞]
as

W (x) := inf
y 6=x : V (y)≤V (x)

inf
γ∈Γ(x,y)

sup
t∈[0,1]

V (γ(t))− V (x), (2.7)

where Γ(x, y) is the set of continuous curves connecting x and y in time 1. In other
words W (x) is the lowest mountain pass to climb when going from x to a deeper
minimum of V .

A.4 For each x ∈ ℘0 such that W (x) < +∞ there exists a unique point x̂ ∈ ℘
such that the two following conditions hold:

(i) V (x̂) = V (x) +W (x).
(ii) x̂ and x lie in the same connected component of the compact set
{y ∈M : V (y) ≤ V (x) +W (x)}.

In other words, there is a unique saddle point x̂ such that all the optimal
curves γ in the variational problem (2.7) pass through x̂.

A.5 W (x) 6= W (y) whenever x 6= y, x, y ∈ ℘0.

By A.5 we can label ℘0 = {x0, . . . , xn} by requiring

Wn < . . . < W1 < W0 = +∞, (2.8)

where we use the shorthand notation Wi := W (xi). Note that x0 is the unique
global minimizer of V and x̂i exists for i 6= 0 by A.4.
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2.4. The Γ-development theorem. For β ≥ β0 define the reference measure mβ

on M as

dmβ(x) = e−βV (x)dx, (2.9)

where dx is the Riemannian volume on M . The Fisher information at inverse
temperature β > 0 is the functional (see Definition 3.1 and (3.6) for further details)

Iβ : P(M)→ [0,+∞],

Iβ(µ) :=

{
1

2β2

∫
dmβ

|∇%|2
% if dµ

dmβ
= %;

+∞ otherwise.

(2.10)

We are interested in the variational convergence of Iβ in the low temperature regime,
namely when β →∞. In order to describe our main result we need to define further
notation.

For z ∈ ℘, we denote by (ξi(z))i=1,...,d the eigenvalues of HessV (z), labelled by
ordering ξ1(z) ≤ ξ2(z) ≤ . . . ≤ ξd(z). Then define

ζ : M → [0,+∞]

ζ(z) :=

{∑d
i=1 |ξi(z)| − ξi(z) = 2

∑
i : ξi(z)<0 |ξi(z)| if z ∈ ℘;

+∞ otherwise.

(2.11)

For k ≥ 1 and xk ∈ ℘0, the saddle point x̂k defined in A.4 is easily seen to satisfy
ξ1(x̂k) < 0 and ξi(x̂k) > 0 for i ≥ 2. Recalling the labelling (2.8) we define for
k = 1, . . . , n

ηk : M → [0,+∞]

ηk(x) :=


0 if x ∈ {x0, . . . , xk−1};
|ξ1(x̂k)|

π

√
det(HessV )(xk)
| det(HessV )(x̂k)| =

√
|ξ1(x̂k)|

∏d
i=1 ξi(xk)

π2
∏d
i=2 ξi(x̂k)

if x = xk;

+∞ otherwise.

(2.12)

The functions ζ and ηk are lower semicontinuous and coercive. Their expression
naturally appears when studying the asymptotic behaviour of eigenvalues of Lβ
(see Theorem 4.1 and 4.5 for this interpretation). Our main result is the following.

Theorem 2.3. Assume A.1-A.5. Then (Iβ) is an equicoercive sequence of lower
semicontinuous functionals. Moreover

Γ–lim
β

Iβ = I, (2.13)

Γ–lim
β

βIβ = J, (2.14)

Γ–lim
β

(β eβWkIβ) = Jk for k = 1, . . . , n, (2.15)

where the lower semicontinuous, coercive functionals I, J, Jk : P(M) → [0,+∞]
are defined as

I(µ) :=

∫
dµ(x) |∇V |2 (x). (2.16)

J(µ) =

∫
dµ(x) ζ(x) =

{∑
y∈℘ αyζ(y) if µ =

∑
y∈℘ αyδy;

+∞ otherwise.
(2.17)
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Jk(µ) =

∫
dµ(x) ηk(x) =

{
αk ηk(xk) if µ =

∑k
j=0 αjδxj ;

+∞ otherwise.
(2.18)

Remark 2.4. It holds infµ I(µ) = infµ J(µ) = infµ Jk(µ) = 0. The number of
minimizers of the functionals in the sequence I, J, Jn, . . . , J1 decreases from |℘|
to 1. More precisely we have

• I(µ) = 0 iff J(µ) < +∞, namely iff µ is concentrated on ℘.
• J(µ) = 0 iff Jn(µ) < +∞, namely iff µ is concentrated on ℘0.
• for k = 1, . . . , n-1, Jk+1(µ) = 0 iff Jk(µ) < +∞, and finally J1(µ) = 0 iff
µ = δx0

(that is the unique limit point of mβ, the minimizer of Iβ).

In other words, Iβ admits the following full development by Γ-convergence, see [4,
Chap. 1.10], as β →∞:

Iβ(µ) ∼ I(µ) +
1

β
J(µ) +

n∑
k=1

1

β
e−βWkJk(µ). (2.19)

In particular the asymptotic behavior of infima of Iβ on closed and open subsets is
characterized by a finite and non-zero leading order, see [4, Theorem 1.18].

Corollary 2.5. Consider the diffusion process Xβ defined through

Ẋβ
t = −∇V (Xβ

t ) +
√

2β−1Ẇt

Xβ(0) = x0.
(2.20)

Equivalently, let Xβ be the Markov process with generator β−1∆ − ∇V · ∇, and
starting at x0 ∈M . For β, T > 0, consider the empirical measure

θβ, T :=
1

T

∫ T

0

δXβt
dt ∈ P(M). (2.21)

In other terms, θβ,T is the random probability measure on M such that for all

test functions ϕ it holds
∫
dθβ,T (ϕ) = 1

T

∫ T
0
ϕ(Xβ

t )dt. Then, in the sense of large
deviations [6], and in the limit T >> β → +∞, θβ,T satisfies (independently of x0)

P(θβ,T ∼ µ) ∼ e−βT
(
I(µ)+

1
β J(µ)+

∑n
k=1

e−βWk
β Jk(µ)

)
. (2.22)

More precisely, for all I-regular (respectively J-regular and Jk-regular) sets A ⊂
P(M) it holds

lim
β→∞

lim
T→∞

1

β T
logP(θβ,T ∈ A) = − inf

µ∈A
I(µ), (2.23)

lim
β→∞

lim
T→∞

1

T
logP(θβ,T ∈ A) = − inf

µ∈A
J(µ), (2.24)

lim
β→∞

lim
T→∞

eβWk

T
logP(θβ,T ∈ A) = − inf

µ∈A
Jk(µ). (2.25)

Proof. It is not hard to check that, under A.1-A.3, the hypotheses in [5] are sat-
isfied, and thus for each fixed β > 0 the empirical measure θβ, T satisfies a large
deviations principle with rate β Iβ as T → +∞. As well known and easy to prove,
the rate function of the large deviations with speed aβ T , for the directed familiy
θβ, T as T → ∞ and β → ∞ is then given by the Γ-limit of 1

aβ
βIβ , see [17]. Thus

the statement follows from Theorem 2.3 when using respectively aβ = β, aβ = 1
and aβ = e−βWk . �
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3. The Fisher information

In this section we shortly collect some basic facts concerning the Fisher infor-
mation. We only sketch the proofs here since we just restate some facts in what is
a well understood framework. In this section we omit the dependence on β for the
sake of readability.

Definition 3.1. Let V ∈ C0(M). The Fisher information I : P(M) → [0,+∞]
induced by V is defined as

I(µ) = sup
ψ∈Ω

∫
dµ
(
eV∇ · ψ − 1

2 e
2V ψ2

)
. (3.1)

Define the measure m ∈ P(M) as dm(x) = e−V (x)dx.

Remark 3.2. As a supremum of linear and continuous functionals, I is convex and
lower semicontinuous. Moreover if V ∈ C1(M), the change of variable ψ → −e−V ψ
shows

I(µ) = sup
ψ∈Ω

∫
dµ
(
∇V · ψ −∇ · ψ − 1

2 |ψ|
2
)

=

{
1
2

∫
dm |∇%|

2

% if dµ = %dm and ∇ log % ∈ L2(µ)

+∞ otherwise

=

{∫
dx 2|∇h|2 + h2

(
|∇V |2

2 −∆V
)

if dµ = h2 dx and h ∈ H1(M)

+∞ otherwise.

(3.2)

Let now

P̃(M) :=

{
µ ∈ P(M) :

dµ

dm
∈ C2(M), ∃ε > 0 :

dµ

dm
≥ ε
}
. (3.3)

Proposition 3.3. Assume that Z :=
∫
dx e−V (x) < +∞ and V ∈ C1(M). Then I

is the lower semicontinuous envelope of Ĩ : P(M)→ [0,+∞] defined as

Ĩ(µ) =

{
1
2

∫
dm |∇%|

2

% if µ ∈ P̃(M)

+∞ otherwise.
(3.4)

Proof. Since changing V to V + logZ does not change I, here we assume Z = 1.
We need to prove that for each µ there exists µn ∈ P̃(M) such that µn → µ and

limn Ĩ(µn) ≤ I(µ). Otherwise said, that P̃(M) is I-dense in P(M). Setting

µn = (1− 1
n )µ+ 1

nm (3.5)

one easily gathers µn → µ and I(µn) ≤ I(µ). Therefore it’s enough to prove that

P̃(M) is I-dense in the set of µ ∈ P(M) with density bounded away from 0. This
is immediate from the density of smooth functions in weighted Sobolev spaces.

�

In view of Remark 3.2, the functional Iβ , already introduced in (2.10) and ap-
pearing in our main theorem, can be equivalently defined as

Iβ(µ) := β−2IβV , (3.6)

where IβV is the Fisher information induced by βV as defined in Definition 3.1.
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4. Spectral analysis of the generator

In this section we denote by 〈·, ·〉 the inner product in L2(mβ). Consider the
operator

Lβf := ∆f − β∇V · ∇f (4.1)

defined for f ∈ C∞c (M). By A.2 and standard results, it uniquely extends to a
self-adjoint operator in L2(mβ) with compact resolvent. We still denote by Lβ such
an extension.

4.1. Quasimodes of the bounded spectrum. For z ∈ ℘ and n = (n1, . . . , nd) ∈
Nd let

λz,n :=
ζ(z)

2
+

d∑
k=1

nk|ξk(z)|, (4.2)

where ζ and the ξk’s are defined in Subsection 2.4. The set (λz,n)n∈Nd is nothing
but the spectrum of a suitably rescaled quadratic approximation (i.e. of a harmonic
oscillator) around the point z ∈ ℘ of the Schrödinger operator (1.8), see also the
proof of Lemma 4.3 for this interpretation. Define also

Sλ :=
{

(z, n) ∈ ℘× Nd : λz,n = λ
}
. (4.3)

The following theorem conveniently resumes in our setting some of the main
results obtained in the paper [21] in a more general framework of semiclassical
Schrödinger operators. Throughout this Subsection 4.1 it is sufficient to assume
just A.1 and A.2.

Theorem 4.1 (Bounded eigenvalues). Fix Λ > 0. There exists εΛ > 0 such that
for each ε ∈ (0, εΛ) the following holds: there exists βε > 0 so that for β ≥ βε

Spec(− 1
βLβ) ∩ [0,Λ] ⊂

⋃
λ : Sλ 6=∅

(λ− ε, λ+ ε) ∩ [0,Λ]. (4.4)

Moreover, for each λ ∈ [0,Λ] such that Sλ 6= ∅, the cardinality of Spec(− 1
βLβ)∩(λ−

ε, λ+ε) equals, when each eigenvalue is counted with its multiplicity, the cardinality
of Sλ.

This theorem states that in the limit β → ∞, counting multiplicity, the spec-
trum of − 1

βLβ is well-aproximated by the spectrum of the direct union of suitable

Harmonic oscillators. It is necessary to fix a treshold Λ, since this harmonic ap-
proximation is not uniform for Λ→∞.

For λ ≥ 0 and ε > 0 denote by

Pβ,ε,λ := 1(λ−ε,λ+ε)(− 1
βLβ) (4.5)

the spectral projection of − 1
βLβ associated to the interval (λ− ε, λ+ ε).

Proposition 4.2. There exists an orthonormal base (Ψβ,z,n)z∈℘,n∈Nd of L2(mβ)

such that for every ε > 0, z ∈ ℘ and n ∈ Nd the following holds: there exists a
βε,z,n > 0 such that for β > βε,z,n and for every ϕ ∈ Cb(M),

Ψβ,z,n ∈ Range
(
Pβ,ε,λz,n

)
, (4.6)

lim
β

∫
Ψβ,z,n Ψβ,z′,n′ ϕdmβ =

{
ϕ(z) if z = z′ and n = n′

0 otherwise
. (4.7)
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We stress that eigenbases of Lβ in general fail to satisfy (4.6)-(4.7), due to
possible resonances (that is λz,n = λz′,n′ for some z 6= z′ and n, n′). We prove the
proposition after the preliminary Lemma 4.3.

Lemma 4.3. For each z ∈ ℘, n ∈ Nd there exists Ψ̃β,z,n ∈ C2
c (M) such that for

every ϕ ∈ Cb(M)

lim
β

∫
|(− 1

βLβ − λz,n)Ψ̃β,z,n(x)|2dmβ = 0, (4.8)

lim
β

∫
Ψ̃β,z,nΨ̃β,z′,n′ϕdmβ =

{
ϕ(z) if z = z′ and n = n′

0 otherwise
. (4.9)

Proof. First consider first the case M = Rd. Define for β > 0 the differential
operator (see also (1.8))

Aβ := −∆ +
1

4
β2|∇V |2 − 1

2
β∆V (4.10)

and let for z ∈ ℘

Hβ,z := −∆ + β2Qz − βCz, (4.11)

where

Qz(x) =
1

4
Hess2 V (z)(x− z) · (x− z), Cz =

1

2
Trace(HessV (z)). (4.12)

The operator Hβ,z extends to a self-adjoint operator in L2(dx), which is nothing
but a harmonic oscillator shifted by the constant βCz. In particular its spectrum is
given by (βλz,n)n∈Nd . Let now (Θz,n)n∈Nd be a corresponding orthonormal basis of
eigenfunctions of Hz,β=1; the Θz,n are Hermite functions centered at z. It is easy
to check that (Θβ,z,n)n defined by

Θβ,z,n(x) = β1/4Θz,n(z +
√
β(x− z)) (4.13)

is an orthonormal base of eigenfunctions of Hz,β and

lim
β→+∞

Θ2
β,z,ndx = δz(dx) in P(M). (4.14)

Then define Θ̃β,z,n(x) :=
χz(x)Θβ,z,n(x)√

Zβ,z,n
, where χz ∈ C∞c (M ; [0, 1]) is a smooth cut-

off function such that χ ≡ 1 on a ball Br(z) centered at z of radius r, and χ ≡ 0
on Bc2r(z), where r > 0 is chosen sufficiently small (in particular such that the χz’s
have pairwise disjoint supports).

It follows from Taylor expansion of the Schrödinger potential 1
4β

2|∇V |2− 1
2β∆V

that, as x→ z,

Aβ = Hβ,z +O
(
β2|x− z|3

)
+O (β|x− z|) . (4.15)

Thus one obtains∫ [
(Aβ − βλz,n)Θ̃β,z,n(x)

]2
dx =

1

Zβ,z,n

∫ [
Θβ,z,n∆χz + 2∇χz · ∇Θβ,z,n

+
(
O
(
β2|x− z|3

)
+O (β|x− z|)

)
χzΘβ,z,n

]2
dx.

(4.16)
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Hence, using the explicit form of the Θβ,z,n’s as Hermite functions centered at z, it
follows by Laplace asymptotics that

1
β2

∫ [
(Aβ − βλz,n)Θ̃β,z,n(x)

]2
dx = O(β−1). (4.17)

Moreover, from (4.14) and L2(dx) orthogonality of the Hermite functions (Θz,n)n
it easily follows for ϕ ∈ Cb(M)

lim
β

∫
Θ̃β,z,nΘ̃β,z′,n′ϕdx =

{
ϕ(z) if z = z′ and n = n′

0 otherwise
. (4.18)

Finally define Ψ̃β,z,n = Θ̃β,z,ne
βV
2 and notice that∫

|(− 1
βLβ − λz,n)Ψ̃β,z,n(x)|2dmβ = 1

β2

∫
|(Aβ − βλz,n)Θ̃β,z,n(x)|2dx

and ∫
Ψ̃β,z,nΨ̃β,z′,n′ϕdmβ =

∫
Θ̃β,z,nΘ̃β,z′,n′ϕdx.

Therefore (4.8) and (4.9) follow from (4.17) and (4.18).
The proof in the case of M a compact manifold follows from a straightforward

adaptation of the previous arguments: since the Laplace-Beltrami operator in co-
ordinates takes the form∑

i,j

gij∂i∂j +
(
∂jg

ij + gij∂j log
√

det g
)
∂j , (4.19)

using in particular local coordinates {y = y(z)} around each z ∈ ℘ such that the
metric tensor is the identity in 0, leads (instead of (4.15)) to the local estimate

Aβ = Hβ,z +
∑
i

[O (|y|) ∂i∂i +O(1)∂i] +O
(
β2|y|3

)
+O (β|y|) . (4.20)

Chosing r sufficiently small such that the support of χz is contained in the corre-
sponding local chart {y(z)}, one can argue as before through Laplace asymptotics
and show that the additional terms appearing in (4.20) give again an O(β) contri-
bution. �

Remark 4.4. Let T be a bounded operator on a Hilbert space H and let u, v ∈ H
be normalized. Then

|〈v, Tv′〉 − 〈u, Tu′〉| ≤ 2 ‖T‖
(√

1− 〈u, v〉2 +
√

1− 〈u′, v′〉2
)
. (4.21)

Proof. Write v = 〈u, v〉u + (v − 〈u, v〉u) and notice ‖v − 〈u, v〉u‖H = 1 − 〈u, v〉2.

Using the inequality
√

1− a2
√

1− a′2 +
√

1− aa′ ≤
√

1− a2 +
√

1− a′2 for a =
〈u, v〉 and a′ = 〈u′, v′〉 one gets the result by straigthforward linear algebra. �

Proof of Proposition 4.2. We use the same notation as in Theorem 4.1. Fix Λ > 0
large enough. For λ < Λ such that Sλ 6= ∅, for (z, n) ∈ Sλ take Ψ̃β,z,n as in

Lemma 4.3. Define Ψ̄β,z,n := Pβ,εΛ,λΨ̃β,z,n as the spectral projection of Ψ̃β,z,n

corresponding to the interval (λ− εΛ, λ+ εΛ), see (4.5).
Now for (z, n), (z′, n) ∈ Sλ, since Pβ,εΛ,λ is a projector,

〈Ψ̄β,z,n, Ψ̄β,z′,n′〉L2(mβ) =

〈Ψ̃β,z,n, Ψ̃β,z′,n′〉L2(mβ) − 〈Ψ̃β,z,n − Ψ̄β,z,n, Ψ̃β,z′,n′ − Ψ̄β,z′,n′〉L2(mβ). (4.22)
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The definition of Ψ̄β,z,n readily implies

‖Ψ̃β,z,n − Ψ̄β,z,n‖L2(mβ) = ‖(I − Pβ,εΛ,λ)Ψ̃β,z,n‖L2(mβ)

≤ 1

εΛ
‖(− 1

βLβ − λz,n)Ψ̃β,z,n‖L2(mβ).
(4.23)

In view of (4.8) this vanishes as β →∞. Therefore the last term in (4.22) vanishes
as β →∞ and (4.9) now gives

lim
β
〈Ψ̄β,z,n, Ψ̄β,z′,n′〉L2(mβ) =

{
1 if z = z′ and n = n′

0 otherwise.
(4.24)

In particular for β large enough the (Ψ̄β,z,n)(z,n)∈Sλ are linearly independent, and
span Range(Pβ,εΛ,λ) by Theorem 4.1. Now construct (Ψβ,z,n)(z,n)∈Sλ by applying

the Gram-Schmidt procedure on (Ψ̄β,z,n)(z,n)∈Sλ . From (4.24) and Lemma 4.3-(ii)
(with ϕ ≡ 1) it follows that

lim
β
〈Ψ̃β,z,n, Ψβ,z′,n′〉L2(mβ) =

{
1 if z = z′ and n = n′

0 otherwise
. (4.25)

Now apply Remark 4.4 with H = L2(mβ), v = Ψβ,z,n, v′ = Ψβ,z′,n′ , u = Ψ̃β,z,n,

u′ = Ψ̃β,z′,n′ and T ≡ Tϕ the pointwise multiplication by ϕ to get∣∣∣〈Ψβ,z,n, ϕΨβ,z′,n′〉L2(mβ) − 〈Ψ̃β,z,n, ϕΨ̃β,z′,n′〉L2(mβ)

∣∣∣ ≤
2 ‖ϕ‖∞

(√
1− 〈Ψ̃β,z,n, Ψβ,z,n〉2L2(mβ) +

√
1− 〈Ψ̃β,z′,n′ , Ψβ,z′,n′〉2L2(mβ)

)
.

(4.26)

Thus we obtain (4.7) from Lemma 4.3-(ii) and (4.25).
Thus the (Ψβ,z,n)(z,n)∈Sλ are an orthonormal base of Range(Pβ,εΛ,λ) satisfying

(4.7). Since this holds for any λ such that Sλ is not empty and L2(mβ) is a direct
sum of eigenspaces of Lβ , the (Ψβ,z,n)(z,n) are an orthonormal base of L2(mβ) as
λ runs over the positive real numbers such that Sλ is nonempty. �

4.2. Eigenfunctions of the split spectrum. We denote by `β,0, . . . , `β,n the first
n+1 eigenvalues of − 1

βLβ counted with multiplicity. It follows from the smoothness

of V , A.2, A.3 and general principles that `β,0 equals zero for every β and is simple

with constant eigenfunction Φβ,0 ≡ 1/
√
Zβ . Moreover, with the notation of the

previous Subsection 4.1, λx,0 = 0 whenever x ∈ ℘0 is a local minimum, and λz,n > 0
otherwise. It follows then from Theorem 4.1 that there exist ε > 0 and β0 > 0 such
that for each β ≥ β0

Spec(− 1
βLβ) ∩ [0, ε] = {`β,0 = 0, `β,1, . . . , `β,n} . (4.27)

It is not difficult to see that the eigenvalues `β,1, . . . , `β,n are indeed exponentially
small in β. A much stronger statement, giving the precise leading behaviour of the
`β,k’s in a general setting encompassing hypotheses A.1-A.5, was given in [11], (see
also [3] and [8]). The following theorem conveniently resumes in our framework a
weak version of the main result in [11].

Theorem 4.5 (Low-lying eigenvalues). For k = 1, . . . , n the eigenvalue `β,k is
simple, admits a normalized eigenfunction Φβ,k ∈ C∞(M) and satisfies, for ηk as
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in (2.12),

lim
β
eβWk`β,k =

1

2
ηk(xk). (4.28)

Lemma 4.6. For k = 1, . . . , n there exists Φ̃β,k ∈ C∞c (M) with ‖Φ̃β,k‖L2(mβ) = 1,
such that

(i) the probability measure Φ̃2
β,kdmβ converges to δxk in P(M).

(ii) limβ→∞〈Φ̃β,k, Φβ,k〉2 = 1 .

Proof. In this proof the Wk’s are defined as in A.4-A.5, and we set for convenience
Wn+1 = 0 and `β,n+1 = ε, with ε as in (4.27) (notice that this is not an eigenvalue
of − 1

βLβ).

Fix δ > 0 such that

δ < min
k=1,...,n

(Wk −Wk+1). (4.29)

Let Bk ⊂M , respectively Bk,δ, be the connected component of V −1((−∞, V (x̂k))),
respectively V −1((−∞, V (x̂k) − δ)), containing xk. The Bk’s are precompact by
Remark 2.1, and the closure of Bk,δ is contained in Bk. In particular there exists
χk ∈ C∞c (M ; [0, 1]) such that χk ≡ 1 on Bk,δ and χk ≡ 0 on M \Bk.

For k = 1, . . . , n define Φ̃β,k = χk/
√
Zβ,k where

Zβ,k =

∫
e−βV (x)χ2

k(x) dx. (4.30)

V (xk) is the unique minimum of V (x) on Bk, and χ(xk) = 1. Therefore (i) holds.
By Laplace principle

lim
β

1

β
logZβ,k = −V (xk), (4.31)

lim
β
〈Φ̃β,j , Φ̃β,k〉 = 0 j, k = 1, . . . , n, j 6= k, (4.32)

lim
β
〈Φβ,0, Φ̃β,k〉 = 0 k = 1, . . . , n. (4.33)

Notice moreover

inf
x : |∇χk(x)|>0

V (x) ≥ V (x̂k)− δ = V (xk) +Wk − δ. (4.34)

Denote now by Pβ,k := 1[`β,k+1,+∞)(− 1
βLβ) the spectral projection of − 1

βLβ asso-

ciated to the interval [`β,k+1,+∞). By spectral decomposition

Pβ,kΦ = Φ−
k∑
j=0

〈Φ, Φβ,j〉Φβ,j , ∀Φ ∈ L2(mβ). (4.35)

The Markov inequality for spectral projections, an integration by parts and (4.34)
yield∥∥∥Pβ,kΦ̃β,k

∥∥∥2

L2(mβ)
≤ 1

`β,k+1
〈Φ̃β,k, −LβΦ̃β,k〉 =

1

`β,k+1Zβ,k

∫
|∇χk|2(x)e−βV (x)dx

≤ Ck
exp(−β(V (xk) +Wk − δ))

`β,k+1 Zβ,k
,

(4.36)
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where Ck =
∫
|∇χk|2(x)dx < ∞. The estimates of `β,k+1 and Zβ,k provided

respectively in (4.28) and (4.31), and the choice (4.29) of δ thus imply

lim
β

∥∥∥Pβ,kΦ̃β,k

∥∥∥
L2(mβ)

= 0. (4.37)

Taking the scalar product with Φ̃β,k in both sides of (4.35) calculated for Φ = Φ̃β,k,
gives

1− 〈Φ̃β,k, Φβ,k〉2 = 〈Φ̃β,k, Pβ,kΦ̃β,k〉+

k−1∑
j=0

〈Φ̃β,k, Φβ,j〉2

= ‖Pβ,kΦ̃β,k‖2L2(mβ) + 〈Φ̃β,k, Φβ,0〉2

+

k−1∑
j=1

(
〈Φ̃β,j , Φβ,j〉〈Φ̃β,k, Φ̃β,j〉

+ 〈Φ̃β,k, Φβ,j − 〈Φ̃β,j , Φβ,j〉Φ̃β,j〉
)2

≤ ‖Pβ,kΦ̃β,k‖2L2(mβ) + 〈Φ̃β,k, Φβ,0〉2

+ 2

k−1∑
j=1

〈Φ̃β,k, Φ̃β,j〉2 + 1− 〈Φ̃β,j , Φβ,j〉2

= oβ(1) + 2

k−1∑
j=1

(
1− 〈Φ̃β,j , Φβ,j〉2

)
,

(4.38)

where in the last line we used (4.32), (4.33) and (4.37).
In order to prove (ii), we now proceed by finite induction over k. The statement

(ii) holds for k = 1 as the sum in the last line of (4.38) is actually empty. But then
from (4.38) one immediately yields the inductive step.

�

Proposition 4.7. For k = 0, . . . , n let Φβ,k be a normalized eigenfunction corre-
sponding to `β,k and define the probability measure mβ,k by

dmβ,k = Φ2
β,k dmβ . (4.39)

Then mβ,k converges to δxk in P(M) as β →∞. In particular for h 6= k it holds

lim
β

∫
|Φβ,h Φβ,k|dmβ = 0. (4.40)

Proof. The statement (4.39) is immediate for k = 0, since we assumed x0 to be the

unique global minimizer of V . Let k ≥ 1, take Φ̃β,k as in Lemma 4.6 and fix a test
function ϕ ∈ Cb(M). Now apply Remark 4.4 with H = L2(mβ), v = v′ = Φβ,k,

u = u′ = Φ̃β,k, and T ≡ Tϕ the pointwise multiplication by ϕ. We get from (4.21)∣∣∣∣∫ ϕdmβ,k −
∫
ϕ Φ̃2

β,k dmβ

∣∣∣∣ =
∣∣∣〈Φβ,k, TϕΦβ,k〉 − 〈Φ̃β,k, TϕΦ̃β,k〉

∣∣∣
≤ 4 ‖ϕ‖C(M)

√
1− 〈Φ̃β,k, Φβ,k〉2.

(4.41)
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This vanishes by Lemma 4.6-(ii). Therefore by Lemma 4.6-(i)

lim
β

∫
ϕdmβ,k = lim

β

∫
ϕ Φ̃2

β,k dmβ(x) = ϕ(xk), (4.42)

namely mβ,k → δxk as β → ∞. Now (4.40) is an immediate consequence of this
fact, since for E ⊂M a neighborhood of xh not containing xk∫

|Φβ,h Φβ,k|dmβ ≤
(∫

E

|Φβ,k|2dmβ

)1/2

+

(∫
Ec
|Φβ,h|2dmβ

)1/2

, (4.43)

and both terms vanish as β →∞. �

5. Γ-convergence of Iβ

Proposition 5.1. Assume V ∈ C2(M) and A.2. Then (Iβ) is equicoercive.

Proof. Let R(x) := infβ≥β0
|∇V |2(x)− 2

β∆V (x). Taking ψ = β∇V in the first line

of (3.2) and recalling (3.6), one obtains for β ≥ β0 and each µ ∈ P(M),

Iβ(µ) ≥ β−2

∫
dµ
(
β2|∇V |2 − β∆V − β2

2 |∇V |
2
)

= 1
2

∫
dµ
(
|∇V |2 − 2

β∆V
)
≥ 1

2

∫
dµR.

(5.1)

In particular, for any t > 0 and µ ∈ P(M), it holds µ({R ≤ t}) ≥ 1 − 2t−1Iβ(µ).
By A.2, R has compact sublevel sets, therefore any family (µβ) ⊂ P(M) such that
(Iβ(µβ)) is uniformly bounded, is tight. And, by Prohorov’s Theorem, precompact.

�

Proof of (2.13), Γ-liminf. Assume that µβ → µ. Then, replacing ψ by β ψ in (3.2),
one obtains for each ψ ∈ Ω

Iβ(µβ) ≥
∫
dµβ

(
∇V · ψ − 1

β∇ · ψ −
1
2 ψ

2
)
, (5.2)

which implies

lim
β
Iβ(µβ) ≥

∫
dµ
(
∇V · ψ − 1

2 ψ
2
)
. (5.3)

Optimizing over ψ we get the result. �

Proof of (2.13), Γ-limsup. We proceed in three steps.
Step1. First assume µ = δx̄ for some x̄ ∈ M . Take U ≡ Ux̄ ∈ C2(M ; [0,+∞)) a

smooth function such that

(i) U(x) = distance(x, x̄)2 in a neighborhood of x̄, and U is strictly positive
elsewhere.

(ii) If M = Rd, then U(x) ≥ |x|2 + |∇V |2(x) + |∆V |(x) for x large enough and
∇ exp(−U) ∈ L2(dx) (it’s immediate to check that such a U exists).

Let then

µβ,x̄(dx) =
1

Cβ
exp(−2β U(x))dx. (5.4)

By Laplace principle µβ,x̄ → δx̄. On the other hand an explicit calculation shows

Iβ(µβ,x̄) =

∫
dµβ,x̄

(
|∇V |2

2
+ 2|∇U |2 − 1

β
∆V

)
. (5.5)
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If M is compact, then

lim
β

∫
dµβ,x̄ |∇U |2 = |∇U |2(x̄) = 0, (5.6)

lim
β

∫
dµβ,x̄ ∆V = ∆V (x̄), (5.7)

so that the second and third term in the l.h.s. of (5.5) vanish to get

lim
β
Iβ(µβ,x̄) = lim

β

∫
dµβ,x̄

|∇V |2

2
=
|∇V |2(x̄)

2
= I(δx̄). (5.8)

If M = Rd, (5.6), (5.7) and (5.8) still hold if we restrict the integral to a (large)
ball B containing x̄. Since e−2βU/Cβ vanishes pointwise out of B, it’s enough to
show that the integrands in (5.6), (5.7) and (5.8) are uniformly integrable. This is
easily established by condition (ii) above.

Step2. If µ =
∑N
k=1 αkδx̄k , then define µβ =

∑N
k=1 αkµβ,x̄k , where µβ,x̄ is defined

as in (5.4). Clearly µβ → µ. On the other hand, since Iβ is convex and I is linear,

again limβ Iβ(µβ) ≤ I(µ).
Step3. By a standard diagonal argument, it’s now enough to show that finite

convex combinations of Dirac masses are I-dense in P(M). This is trivial, since I
is linear. �

6. First order development by Γ-convergence

In this section we prove (2.14). The following remark is a restatement of (3.2).

Remark 6.1. If µ = %mβ and h ∈ C2(M) is such that h2 = %, then

Iβ(µ) = − 2

β2

∫
dmβ(x)h(x)(Lβh)(x). (6.1)

In particular if dµ = h2dmβ and h is an L2(mβ)-normalized eigenfunction of − 1
βLβ

with eigenvalue λ, then

Iβ(µ) =
2

β
λ. (6.2)

More generally, for Pβ,ε,λ defined as in (4.5) and for h ∈ Range(Pβ,ε,λ)

2

β
(λ− ε) ≤ Iβ(µ) ≤ 2

β
(λ+ ε). (6.3)

Proof of (2.14): Γ-liminf inequality. Let µβ be a sequence converging to µ in P(M),
we need to show that

lim
β
βIβ(µβ) ≥ J(µ). (6.4)

From the Γ-liminf (2.13) proved in Section 5, the liminf in (6.4) equals +∞ unless
I(µ) = 0, namely µ has the form

µ =
∑
z∈℘

αzδz. (6.5)

Up to passing to a suitable subsequence (still labeled β hereafter), we can assume
that the liminf is actually a limit, so that with no loss of generality Iβ(µβ) < +∞
for all β large enough. Then by Proposition 3.3 we can assume that %β = dµβ/dmβ
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is in C2(M) and bounded away from 0. In particular hβ :=
√
%β ∈ C2(M). Fix

ε > 0, Λ large enough and such that

Λ > max
z∈℘

λz,0, (6.6)

and let β ≥ max(z,n) : λz,n≤Λ βε,z,n. By Proposition 4.2 and using the notation

therein introduced, recalling also (4.3)-(4.5), we can write

hβ =
∑
λ≤Λ

Pβ,ε,λhβ + Pβ,Λhβ , (6.7)

where

Pβ,Λ := 1(Λ,+∞)(− 1
βLβ) , Pβ,ε,λhβ =

∑
(z,n)∈Sλ

γβ,z,nΨβ,z,n ,

γβ,z,n := 〈hβ , Ψβ,z,n〉 ∈ [−1, 1].

By (6.1), Proposition 4.2 and the Markov spectral inequality

βIβ(µβ) = 2
∑
λ≤Λ

〈− 1
βLβPβ,ε,λhβ , Pβ,ε,λhβ〉mβ

+ 2〈− 1
βLβPβ,Λhβ , Pβ,Λhβ〉mβ

≥ 2
∑
λ≤Λ

(λ− ε)‖Pβ,ε,λhβ‖2L2(mβ) + 2Λ‖Pβ,Λhβ‖2L2(mβ)

= 2
∑
λ≤Λ

∑
(z,n)∈Sλ

γ2
β,z,n(λz,n − ε) + 2Λ‖Pβ,Λhβ‖2L2(mβ)

≥ 2
∑
z∈℘

αβ,z,Λ(λz,0 − ε) + 2Λ‖Pβ,Λhβ‖2L2(mβ),

(6.8)

where we used in the last line λz,n ≥ λz,0 and introduced

αβ,z,Λ =
∑

n : λz,n≤Λ

γ2
β,z,n. (6.9)

As we take β →∞, (6.8) holds for any ε > 0, in particular we gather

lim
β
‖Pβ,Λhβ‖2L2(mβ) ≤ lim

β

1
2ΛβIβ(µβ) (6.10)

and, since ∑
z∈℘

αz = 1 = ‖hβ‖2L2(mβ) = ‖Pβ,Λhβ‖2L2(mβ) +
∑
z∈℘

αβ,z,Λ, (6.11)

still by (6.8) and the fact that ε is arbitrary (once we take β →∞)

lim
β
βIβ(µβ) ≥ lim

β
2
∑
z∈℘

αβ,z,Λλz,0 + 2Λ

(∑
z∈℘

αz − αβ,z,Λ

)
= 2

∑
z∈℘

αzλz,0 + 2 lim
β

∑
z∈℘

(αz − αβ,z,Λ)(Λ− λz,0)

= J(µ) + 2 lim
β

∑
z∈℘

(αz − αβ,z,Λ)(Λ− λz,0),

(6.12)
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where in the last line we used (4.2). Since the sum above is finite, in view of (6.6),
we conclude once we show that

lim
β
αβ,z,Λ ≤ αz, ∀z ∈ ℘. (6.13)

To this aim, fix z ∈ ℘ and χ ∈ Cb(M), 0 ≤ χ ≤ 1, such that χ(z) = 1 and χ(z′) = 0
for z′ ∈ ℘, z′ 6= z. Then

αz = µ(χ) = lim
β
µβ(χ) = lim

β
mβ(h2

βχ)

= lim
β

∑
λ,λ′≤Λ

∑
(z,n)∈Sλ

∑
(z′,n′)∈Sλ′

γβ,z,nγβ,z′,n′〈χΨβ,z,n, Ψβ,z′,n′〉L2(mβ)

+ lim
β
〈χPβ,Λhβ , 2hβ − Pβ,Λhβ〉L2(mβ).

(6.14)

Using (4.7) both for the on- and off-diagonal terms in the above sum and recalling
(6.9) we obtain

αz ≥ lim
β
αβ,z,Λ − 2‖χ‖Cb‖PΛ,βhβ‖L2(mβ) ≥ lim

β
αβ,z,Λ − lim

β

√
2βIβ(µβ)

Λ
, (6.15)

where in the last inequality we used (6.10). Since we can assume limβ βIβ(µβ) =

C < +∞ with no loss of generality, and since αβ,z,Λ is increasing in Λ, from (6.15)
we gather

lim
β
αβ,z,Λ ≤ inf

Λ′≥Λ
lim
β
αβ,z,Λ′ ≤ αz + inf

Λ′≥Λ

√
2C

Λ
= αz, (6.16)

namely (6.13). �

Proof of (2.14): Γ-limsup inequality. If J(µ) = +∞ there is nothing to prove. So
we can assume µ =

∑
z∈℘ αzδz. Recall the functions (Ψβ,z,n)z∈℘,n∈Nd introduced

in Proposition 4.2 and define µβ,z ∈ P(M) and the recovery sequence µβ ∈ P(M)
by

dµβ,z := Ψ2
β,z,0 dmβ , (6.17)

µβ :=
∑
z∈℘

αzmβ,z. (6.18)

By (4.7), µβ,z → δz in P(M), so that µβ → µ.
Using the notation of Proposition 4.2, for each ε > 0 and for each β ≥ maxz∈℘ βε,z,0,

by (6.3) and (4.2)

Iβ(mβ,z) ≤ 2
β (λz,0 + ε) = 1

β (ζ(z) + 2ε). (6.19)

Now, since Iβ is convex by Remark 3.2

β Iβ(µβ) ≤ β
∑
z∈℘

αzI(mβ,z) ≤
∑
z∈℘

αz (ζ(z) + 2ε) = J(µ) + 2ε. (6.20)

As we take the limsup β → +∞, (6.20) holds for any ε > 0, and thus limβ Iβ(µβ) ≥
I(µ). �
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7. Exponential development by Γ-convergence

In this section we prove (2.15).

Proof of (2.15): Γ-liminf inequality. Fix some k = 1, . . . , n and let µβ be a se-
quence converging to µ. We need to show that

lim
β
βeβWkIβ(µβ) ≥ Jk(µ). (7.1)

Up to passing to a suitable subsequence (still labeled β hereafter), we can assume
that the liminf is actually a limit, so that with no loss of generality Iβ(µβ) < +∞
for all β large enough. Then by Proposition 3.3 we can assume that %β = dµβ/dmβ

is in C2(M) and bounded away from 0. In particular hβ :=
√
%β ∈ C2(M). As

in the proof of Lemma 4.6 we denote by Pβ,k := 1[`β,k+1,+∞)(− 1
βLβ) the spectral

projection of − 1
βLβ associated to the interval [`β,k+1,+∞). Then, since hβ ∈

L2(mβ), we can write

hβ =

k∑
j=0

γβ,jΦβ,j + Pβ,khβ ,

γβ,j = 〈hβ , Φβ,j〉 ∈ [−1, 1].

(7.2)

By (6.1) and the spectral Markov inequality

Iβ(µβ) =
2

β

k∑
j=0

γ2
β,j`β,j −

2

β2

∫
dmβ(x)Pβ,khβ(x) (LβPβ,khβ)(x)

≥ 2

β

k∑
j=0

γ2
β,j`β,j +

2`β,k+1

β
‖Pβ,khβ‖2L2(mβ),

(7.3)

i.e.

βeβWkIβ(µβ) ≥2γ2
β,k e

βWk`β,k

+ 2

k−1∑
j=0

γ2
β,j e

βWk`β,j + 2eβWk`β,k+1‖Pβ,khβ‖2L2(mβ).
(7.4)

From (4.28) and assumption A.5, the terms γ2
β,j e

βWk`β,j with an index j ≤ k−1

vanish as β → ∞, since γ2
β,j ≤ 1. On the other hand, still by (4.28) and A.5, the

term eβWk`β,k+1‖Pβ,khβ‖2L2(mβ) diverges to +∞ unless ‖Pβ,khβ‖L2(mβ) vanishes.

Thus setting α := limβ γ
2
β,k we gather again by (4.28)

lim
β
βeβWkIβ(µβ) ≥

{
+∞ if limβ ‖Pβ,khβ‖L2(mβ) > 0,

αηk(xk) otherwise.
(7.5)

In particular, if limβ ‖Pβ,khβ‖L2(mβ) > 0, we proved the inequality (7.1) no matter
what the limit µ of the µβ is.

Now we claim that if limβ ‖Pβ,khβ‖L2(mβ) = 0, then necessarily limβ µβ = µ =∑k
j=0 αjδxj for some αj , with αk = α, so that limβ βe

βWkIβ(µβ) ≥ αk ηk(xk),
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namely (7.1). To prove this claim notice that

dµβ = (hβ)2dmβ

=

 k∑
j=0

γ2
β,jΦ

2
β,j

 dmβ +

 k∑
i 6=j, i,j=0

γβ,iγβ,jΦβ,iΦβ,j

 dmβ

+ (Pβ,khβ)

2

k∑
j=0

γβ,jΦβ,j + Pβ,khβ

 dmβ .

(7.6)

Since ‖(Pβ,khβ)‖L2(mβ) vanishes as β →∞ and (4.40) holds, the last two term above
also vanish (weakly) as measures as β → ∞. On the other hand, since µβ → µ, it

follows from Proposition 4.7 that αj = limβ γ
2
β,j exists and µ =

∑k
j=0 αjδxj . �

Proof of (2.15): Γ-limsup inequality. If Jk(µ) = +∞ there is nothing to prove. So

we can assume µ =
∑k
j=0 αjδxj . For mβ,j as in (4.39), define the recovery sequence

µβ by

µβ :=

k∑
j=0

αjmβ,j . (7.7)

By Proposition 4.7, µβ → µ in P(M). Iβ is convex, and by (6.2)

Iβ(µβ) ≤
k∑
j=0

αjI(mβ,j) =
2

β

k∑
j=0

αj`β,j (7.8)

By (4.28) and hypotheses A.5 one finally gets

lim
β
βeβWkIβ(µβ) ≤ 2αk lim

β
eβWk`β,k = αkηk(xk) = Jk(µ). (7.9)

�
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